biotite 1.3.0__cp312-cp312-macosx_10_13_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of biotite might be problematic. Click here for more details.

Files changed (354) hide show
  1. biotite/__init__.py +18 -0
  2. biotite/application/__init__.py +69 -0
  3. biotite/application/application.py +276 -0
  4. biotite/application/autodock/__init__.py +12 -0
  5. biotite/application/autodock/app.py +500 -0
  6. biotite/application/blast/__init__.py +14 -0
  7. biotite/application/blast/alignment.py +92 -0
  8. biotite/application/blast/webapp.py +428 -0
  9. biotite/application/clustalo/__init__.py +12 -0
  10. biotite/application/clustalo/app.py +223 -0
  11. biotite/application/dssp/__init__.py +12 -0
  12. biotite/application/dssp/app.py +159 -0
  13. biotite/application/localapp.py +342 -0
  14. biotite/application/mafft/__init__.py +12 -0
  15. biotite/application/mafft/app.py +116 -0
  16. biotite/application/msaapp.py +363 -0
  17. biotite/application/muscle/__init__.py +13 -0
  18. biotite/application/muscle/app3.py +227 -0
  19. biotite/application/muscle/app5.py +163 -0
  20. biotite/application/sra/__init__.py +18 -0
  21. biotite/application/sra/app.py +447 -0
  22. biotite/application/tantan/__init__.py +12 -0
  23. biotite/application/tantan/app.py +199 -0
  24. biotite/application/util.py +77 -0
  25. biotite/application/viennarna/__init__.py +18 -0
  26. biotite/application/viennarna/rnaalifold.py +310 -0
  27. biotite/application/viennarna/rnafold.py +254 -0
  28. biotite/application/viennarna/rnaplot.py +208 -0
  29. biotite/application/viennarna/util.py +77 -0
  30. biotite/application/webapp.py +76 -0
  31. biotite/copyable.py +71 -0
  32. biotite/database/__init__.py +23 -0
  33. biotite/database/afdb/__init__.py +12 -0
  34. biotite/database/afdb/download.py +191 -0
  35. biotite/database/entrez/__init__.py +15 -0
  36. biotite/database/entrez/check.py +60 -0
  37. biotite/database/entrez/dbnames.py +101 -0
  38. biotite/database/entrez/download.py +228 -0
  39. biotite/database/entrez/key.py +44 -0
  40. biotite/database/entrez/query.py +263 -0
  41. biotite/database/error.py +16 -0
  42. biotite/database/pubchem/__init__.py +21 -0
  43. biotite/database/pubchem/download.py +258 -0
  44. biotite/database/pubchem/error.py +30 -0
  45. biotite/database/pubchem/query.py +819 -0
  46. biotite/database/pubchem/throttle.py +98 -0
  47. biotite/database/rcsb/__init__.py +13 -0
  48. biotite/database/rcsb/download.py +160 -0
  49. biotite/database/rcsb/query.py +963 -0
  50. biotite/database/uniprot/__init__.py +13 -0
  51. biotite/database/uniprot/check.py +40 -0
  52. biotite/database/uniprot/download.py +126 -0
  53. biotite/database/uniprot/query.py +292 -0
  54. biotite/file.py +244 -0
  55. biotite/interface/__init__.py +19 -0
  56. biotite/interface/openmm/__init__.py +20 -0
  57. biotite/interface/openmm/state.py +93 -0
  58. biotite/interface/openmm/system.py +227 -0
  59. biotite/interface/pymol/__init__.py +201 -0
  60. biotite/interface/pymol/cgo.py +346 -0
  61. biotite/interface/pymol/convert.py +185 -0
  62. biotite/interface/pymol/display.py +267 -0
  63. biotite/interface/pymol/object.py +1226 -0
  64. biotite/interface/pymol/shapes.py +178 -0
  65. biotite/interface/pymol/startup.py +169 -0
  66. biotite/interface/rdkit/__init__.py +19 -0
  67. biotite/interface/rdkit/mol.py +490 -0
  68. biotite/interface/version.py +94 -0
  69. biotite/interface/warning.py +19 -0
  70. biotite/sequence/__init__.py +84 -0
  71. biotite/sequence/align/__init__.py +199 -0
  72. biotite/sequence/align/alignment.py +702 -0
  73. biotite/sequence/align/banded.cpython-312-darwin.so +0 -0
  74. biotite/sequence/align/banded.pyx +652 -0
  75. biotite/sequence/align/buckets.py +71 -0
  76. biotite/sequence/align/cigar.py +425 -0
  77. biotite/sequence/align/kmeralphabet.cpython-312-darwin.so +0 -0
  78. biotite/sequence/align/kmeralphabet.pyx +595 -0
  79. biotite/sequence/align/kmersimilarity.cpython-312-darwin.so +0 -0
  80. biotite/sequence/align/kmersimilarity.pyx +233 -0
  81. biotite/sequence/align/kmertable.cpython-312-darwin.so +0 -0
  82. biotite/sequence/align/kmertable.pyx +3411 -0
  83. biotite/sequence/align/localgapped.cpython-312-darwin.so +0 -0
  84. biotite/sequence/align/localgapped.pyx +892 -0
  85. biotite/sequence/align/localungapped.cpython-312-darwin.so +0 -0
  86. biotite/sequence/align/localungapped.pyx +279 -0
  87. biotite/sequence/align/matrix.py +631 -0
  88. biotite/sequence/align/matrix_data/3Di.mat +24 -0
  89. biotite/sequence/align/matrix_data/BLOSUM100.mat +31 -0
  90. biotite/sequence/align/matrix_data/BLOSUM30.mat +31 -0
  91. biotite/sequence/align/matrix_data/BLOSUM35.mat +31 -0
  92. biotite/sequence/align/matrix_data/BLOSUM40.mat +31 -0
  93. biotite/sequence/align/matrix_data/BLOSUM45.mat +31 -0
  94. biotite/sequence/align/matrix_data/BLOSUM50.mat +31 -0
  95. biotite/sequence/align/matrix_data/BLOSUM50_13p.mat +25 -0
  96. biotite/sequence/align/matrix_data/BLOSUM50_14.3.mat +25 -0
  97. biotite/sequence/align/matrix_data/BLOSUM50_5.0.mat +25 -0
  98. biotite/sequence/align/matrix_data/BLOSUM55.mat +31 -0
  99. biotite/sequence/align/matrix_data/BLOSUM60.mat +31 -0
  100. biotite/sequence/align/matrix_data/BLOSUM62.mat +31 -0
  101. biotite/sequence/align/matrix_data/BLOSUM62_13p.mat +25 -0
  102. biotite/sequence/align/matrix_data/BLOSUM62_14.3.mat +25 -0
  103. biotite/sequence/align/matrix_data/BLOSUM62_5.0.mat +25 -0
  104. biotite/sequence/align/matrix_data/BLOSUM65.mat +31 -0
  105. biotite/sequence/align/matrix_data/BLOSUM70.mat +31 -0
  106. biotite/sequence/align/matrix_data/BLOSUM75.mat +31 -0
  107. biotite/sequence/align/matrix_data/BLOSUM80.mat +31 -0
  108. biotite/sequence/align/matrix_data/BLOSUM85.mat +31 -0
  109. biotite/sequence/align/matrix_data/BLOSUM90.mat +31 -0
  110. biotite/sequence/align/matrix_data/BLOSUMN.mat +31 -0
  111. biotite/sequence/align/matrix_data/CorBLOSUM49_5.0.mat +25 -0
  112. biotite/sequence/align/matrix_data/CorBLOSUM57_13p.mat +25 -0
  113. biotite/sequence/align/matrix_data/CorBLOSUM57_14.3.mat +25 -0
  114. biotite/sequence/align/matrix_data/CorBLOSUM61_5.0.mat +25 -0
  115. biotite/sequence/align/matrix_data/CorBLOSUM66_13p.mat +25 -0
  116. biotite/sequence/align/matrix_data/CorBLOSUM67_14.3.mat +25 -0
  117. biotite/sequence/align/matrix_data/DAYHOFF.mat +32 -0
  118. biotite/sequence/align/matrix_data/GONNET.mat +26 -0
  119. biotite/sequence/align/matrix_data/IDENTITY.mat +25 -0
  120. biotite/sequence/align/matrix_data/MATCH.mat +25 -0
  121. biotite/sequence/align/matrix_data/NUC.mat +25 -0
  122. biotite/sequence/align/matrix_data/PAM10.mat +34 -0
  123. biotite/sequence/align/matrix_data/PAM100.mat +34 -0
  124. biotite/sequence/align/matrix_data/PAM110.mat +34 -0
  125. biotite/sequence/align/matrix_data/PAM120.mat +34 -0
  126. biotite/sequence/align/matrix_data/PAM130.mat +34 -0
  127. biotite/sequence/align/matrix_data/PAM140.mat +34 -0
  128. biotite/sequence/align/matrix_data/PAM150.mat +34 -0
  129. biotite/sequence/align/matrix_data/PAM160.mat +34 -0
  130. biotite/sequence/align/matrix_data/PAM170.mat +34 -0
  131. biotite/sequence/align/matrix_data/PAM180.mat +34 -0
  132. biotite/sequence/align/matrix_data/PAM190.mat +34 -0
  133. biotite/sequence/align/matrix_data/PAM20.mat +34 -0
  134. biotite/sequence/align/matrix_data/PAM200.mat +34 -0
  135. biotite/sequence/align/matrix_data/PAM210.mat +34 -0
  136. biotite/sequence/align/matrix_data/PAM220.mat +34 -0
  137. biotite/sequence/align/matrix_data/PAM230.mat +34 -0
  138. biotite/sequence/align/matrix_data/PAM240.mat +34 -0
  139. biotite/sequence/align/matrix_data/PAM250.mat +34 -0
  140. biotite/sequence/align/matrix_data/PAM260.mat +34 -0
  141. biotite/sequence/align/matrix_data/PAM270.mat +34 -0
  142. biotite/sequence/align/matrix_data/PAM280.mat +34 -0
  143. biotite/sequence/align/matrix_data/PAM290.mat +34 -0
  144. biotite/sequence/align/matrix_data/PAM30.mat +34 -0
  145. biotite/sequence/align/matrix_data/PAM300.mat +34 -0
  146. biotite/sequence/align/matrix_data/PAM310.mat +34 -0
  147. biotite/sequence/align/matrix_data/PAM320.mat +34 -0
  148. biotite/sequence/align/matrix_data/PAM330.mat +34 -0
  149. biotite/sequence/align/matrix_data/PAM340.mat +34 -0
  150. biotite/sequence/align/matrix_data/PAM350.mat +34 -0
  151. biotite/sequence/align/matrix_data/PAM360.mat +34 -0
  152. biotite/sequence/align/matrix_data/PAM370.mat +34 -0
  153. biotite/sequence/align/matrix_data/PAM380.mat +34 -0
  154. biotite/sequence/align/matrix_data/PAM390.mat +34 -0
  155. biotite/sequence/align/matrix_data/PAM40.mat +34 -0
  156. biotite/sequence/align/matrix_data/PAM400.mat +34 -0
  157. biotite/sequence/align/matrix_data/PAM410.mat +34 -0
  158. biotite/sequence/align/matrix_data/PAM420.mat +34 -0
  159. biotite/sequence/align/matrix_data/PAM430.mat +34 -0
  160. biotite/sequence/align/matrix_data/PAM440.mat +34 -0
  161. biotite/sequence/align/matrix_data/PAM450.mat +34 -0
  162. biotite/sequence/align/matrix_data/PAM460.mat +34 -0
  163. biotite/sequence/align/matrix_data/PAM470.mat +34 -0
  164. biotite/sequence/align/matrix_data/PAM480.mat +34 -0
  165. biotite/sequence/align/matrix_data/PAM490.mat +34 -0
  166. biotite/sequence/align/matrix_data/PAM50.mat +34 -0
  167. biotite/sequence/align/matrix_data/PAM500.mat +34 -0
  168. biotite/sequence/align/matrix_data/PAM60.mat +34 -0
  169. biotite/sequence/align/matrix_data/PAM70.mat +34 -0
  170. biotite/sequence/align/matrix_data/PAM80.mat +34 -0
  171. biotite/sequence/align/matrix_data/PAM90.mat +34 -0
  172. biotite/sequence/align/matrix_data/PB.license +21 -0
  173. biotite/sequence/align/matrix_data/PB.mat +18 -0
  174. biotite/sequence/align/matrix_data/RBLOSUM52_5.0.mat +25 -0
  175. biotite/sequence/align/matrix_data/RBLOSUM59_13p.mat +25 -0
  176. biotite/sequence/align/matrix_data/RBLOSUM59_14.3.mat +25 -0
  177. biotite/sequence/align/matrix_data/RBLOSUM64_5.0.mat +25 -0
  178. biotite/sequence/align/matrix_data/RBLOSUM69_13p.mat +25 -0
  179. biotite/sequence/align/matrix_data/RBLOSUM69_14.3.mat +25 -0
  180. biotite/sequence/align/multiple.cpython-312-darwin.so +0 -0
  181. biotite/sequence/align/multiple.pyx +619 -0
  182. biotite/sequence/align/pairwise.cpython-312-darwin.so +0 -0
  183. biotite/sequence/align/pairwise.pyx +585 -0
  184. biotite/sequence/align/permutation.cpython-312-darwin.so +0 -0
  185. biotite/sequence/align/permutation.pyx +313 -0
  186. biotite/sequence/align/primes.txt +821 -0
  187. biotite/sequence/align/selector.cpython-312-darwin.so +0 -0
  188. biotite/sequence/align/selector.pyx +954 -0
  189. biotite/sequence/align/statistics.py +264 -0
  190. biotite/sequence/align/tracetable.cpython-312-darwin.so +0 -0
  191. biotite/sequence/align/tracetable.pxd +64 -0
  192. biotite/sequence/align/tracetable.pyx +370 -0
  193. biotite/sequence/alphabet.py +555 -0
  194. biotite/sequence/annotation.py +836 -0
  195. biotite/sequence/codec.cpython-312-darwin.so +0 -0
  196. biotite/sequence/codec.pyx +155 -0
  197. biotite/sequence/codon.py +476 -0
  198. biotite/sequence/codon_tables.txt +202 -0
  199. biotite/sequence/graphics/__init__.py +33 -0
  200. biotite/sequence/graphics/alignment.py +1101 -0
  201. biotite/sequence/graphics/color_schemes/3di_flower.json +48 -0
  202. biotite/sequence/graphics/color_schemes/autumn.json +51 -0
  203. biotite/sequence/graphics/color_schemes/blossom.json +51 -0
  204. biotite/sequence/graphics/color_schemes/clustalx_dna.json +11 -0
  205. biotite/sequence/graphics/color_schemes/clustalx_protein.json +28 -0
  206. biotite/sequence/graphics/color_schemes/flower.json +51 -0
  207. biotite/sequence/graphics/color_schemes/jalview_buried.json +31 -0
  208. biotite/sequence/graphics/color_schemes/jalview_hydrophobicity.json +31 -0
  209. biotite/sequence/graphics/color_schemes/jalview_prop_helix.json +31 -0
  210. biotite/sequence/graphics/color_schemes/jalview_prop_strand.json +31 -0
  211. biotite/sequence/graphics/color_schemes/jalview_prop_turn.json +31 -0
  212. biotite/sequence/graphics/color_schemes/jalview_taylor.json +28 -0
  213. biotite/sequence/graphics/color_schemes/jalview_zappo.json +28 -0
  214. biotite/sequence/graphics/color_schemes/ocean.json +51 -0
  215. biotite/sequence/graphics/color_schemes/pb_flower.json +40 -0
  216. biotite/sequence/graphics/color_schemes/rainbow_dna.json +11 -0
  217. biotite/sequence/graphics/color_schemes/rainbow_protein.json +30 -0
  218. biotite/sequence/graphics/color_schemes/spring.json +51 -0
  219. biotite/sequence/graphics/color_schemes/sunset.json +51 -0
  220. biotite/sequence/graphics/color_schemes/wither.json +51 -0
  221. biotite/sequence/graphics/colorschemes.py +170 -0
  222. biotite/sequence/graphics/dendrogram.py +231 -0
  223. biotite/sequence/graphics/features.py +544 -0
  224. biotite/sequence/graphics/logo.py +102 -0
  225. biotite/sequence/graphics/plasmid.py +712 -0
  226. biotite/sequence/io/__init__.py +12 -0
  227. biotite/sequence/io/fasta/__init__.py +22 -0
  228. biotite/sequence/io/fasta/convert.py +283 -0
  229. biotite/sequence/io/fasta/file.py +265 -0
  230. biotite/sequence/io/fastq/__init__.py +19 -0
  231. biotite/sequence/io/fastq/convert.py +117 -0
  232. biotite/sequence/io/fastq/file.py +507 -0
  233. biotite/sequence/io/genbank/__init__.py +17 -0
  234. biotite/sequence/io/genbank/annotation.py +269 -0
  235. biotite/sequence/io/genbank/file.py +573 -0
  236. biotite/sequence/io/genbank/metadata.py +336 -0
  237. biotite/sequence/io/genbank/sequence.py +173 -0
  238. biotite/sequence/io/general.py +201 -0
  239. biotite/sequence/io/gff/__init__.py +26 -0
  240. biotite/sequence/io/gff/convert.py +128 -0
  241. biotite/sequence/io/gff/file.py +449 -0
  242. biotite/sequence/phylo/__init__.py +36 -0
  243. biotite/sequence/phylo/nj.cpython-312-darwin.so +0 -0
  244. biotite/sequence/phylo/nj.pyx +221 -0
  245. biotite/sequence/phylo/tree.cpython-312-darwin.so +0 -0
  246. biotite/sequence/phylo/tree.pyx +1169 -0
  247. biotite/sequence/phylo/upgma.cpython-312-darwin.so +0 -0
  248. biotite/sequence/phylo/upgma.pyx +164 -0
  249. biotite/sequence/profile.py +561 -0
  250. biotite/sequence/search.py +117 -0
  251. biotite/sequence/seqtypes.py +720 -0
  252. biotite/sequence/sequence.py +373 -0
  253. biotite/setup_ccd.py +197 -0
  254. biotite/structure/__init__.py +135 -0
  255. biotite/structure/alphabet/__init__.py +25 -0
  256. biotite/structure/alphabet/encoder.py +332 -0
  257. biotite/structure/alphabet/encoder_weights_3di.kerasify +0 -0
  258. biotite/structure/alphabet/i3d.py +109 -0
  259. biotite/structure/alphabet/layers.py +86 -0
  260. biotite/structure/alphabet/pb.license +21 -0
  261. biotite/structure/alphabet/pb.py +170 -0
  262. biotite/structure/alphabet/unkerasify.py +128 -0
  263. biotite/structure/atoms.py +1562 -0
  264. biotite/structure/basepairs.py +1403 -0
  265. biotite/structure/bonds.cpython-312-darwin.so +0 -0
  266. biotite/structure/bonds.pyx +1975 -0
  267. biotite/structure/box.py +724 -0
  268. biotite/structure/celllist.cpython-312-darwin.so +0 -0
  269. biotite/structure/celllist.pyx +864 -0
  270. biotite/structure/chains.py +276 -0
  271. biotite/structure/charges.cpython-312-darwin.so +0 -0
  272. biotite/structure/charges.pyx +520 -0
  273. biotite/structure/compare.py +681 -0
  274. biotite/structure/density.py +109 -0
  275. biotite/structure/dotbracket.py +213 -0
  276. biotite/structure/error.py +39 -0
  277. biotite/structure/filter.py +590 -0
  278. biotite/structure/geometry.py +655 -0
  279. biotite/structure/graphics/__init__.py +13 -0
  280. biotite/structure/graphics/atoms.py +243 -0
  281. biotite/structure/graphics/rna.py +298 -0
  282. biotite/structure/hbond.py +425 -0
  283. biotite/structure/info/__init__.py +24 -0
  284. biotite/structure/info/atom_masses.json +121 -0
  285. biotite/structure/info/atoms.py +90 -0
  286. biotite/structure/info/bonds.py +149 -0
  287. biotite/structure/info/ccd.py +200 -0
  288. biotite/structure/info/components.bcif +0 -0
  289. biotite/structure/info/groups.py +128 -0
  290. biotite/structure/info/masses.py +121 -0
  291. biotite/structure/info/misc.py +137 -0
  292. biotite/structure/info/radii.py +267 -0
  293. biotite/structure/info/standardize.py +185 -0
  294. biotite/structure/integrity.py +213 -0
  295. biotite/structure/io/__init__.py +29 -0
  296. biotite/structure/io/dcd/__init__.py +13 -0
  297. biotite/structure/io/dcd/file.py +67 -0
  298. biotite/structure/io/general.py +243 -0
  299. biotite/structure/io/gro/__init__.py +14 -0
  300. biotite/structure/io/gro/file.py +343 -0
  301. biotite/structure/io/mol/__init__.py +20 -0
  302. biotite/structure/io/mol/convert.py +112 -0
  303. biotite/structure/io/mol/ctab.py +420 -0
  304. biotite/structure/io/mol/header.py +120 -0
  305. biotite/structure/io/mol/mol.py +149 -0
  306. biotite/structure/io/mol/sdf.py +940 -0
  307. biotite/structure/io/netcdf/__init__.py +13 -0
  308. biotite/structure/io/netcdf/file.py +64 -0
  309. biotite/structure/io/pdb/__init__.py +20 -0
  310. biotite/structure/io/pdb/convert.py +388 -0
  311. biotite/structure/io/pdb/file.py +1356 -0
  312. biotite/structure/io/pdb/hybrid36.cpython-312-darwin.so +0 -0
  313. biotite/structure/io/pdb/hybrid36.pyx +242 -0
  314. biotite/structure/io/pdbqt/__init__.py +15 -0
  315. biotite/structure/io/pdbqt/convert.py +113 -0
  316. biotite/structure/io/pdbqt/file.py +688 -0
  317. biotite/structure/io/pdbx/__init__.py +23 -0
  318. biotite/structure/io/pdbx/bcif.py +671 -0
  319. biotite/structure/io/pdbx/cif.py +1088 -0
  320. biotite/structure/io/pdbx/component.py +251 -0
  321. biotite/structure/io/pdbx/compress.py +358 -0
  322. biotite/structure/io/pdbx/convert.py +2097 -0
  323. biotite/structure/io/pdbx/encoding.cpython-312-darwin.so +0 -0
  324. biotite/structure/io/pdbx/encoding.pyx +1047 -0
  325. biotite/structure/io/trajfile.py +696 -0
  326. biotite/structure/io/trr/__init__.py +13 -0
  327. biotite/structure/io/trr/file.py +43 -0
  328. biotite/structure/io/util.py +38 -0
  329. biotite/structure/io/xtc/__init__.py +13 -0
  330. biotite/structure/io/xtc/file.py +43 -0
  331. biotite/structure/mechanics.py +72 -0
  332. biotite/structure/molecules.py +337 -0
  333. biotite/structure/pseudoknots.py +622 -0
  334. biotite/structure/rdf.py +245 -0
  335. biotite/structure/repair.py +302 -0
  336. biotite/structure/residues.py +544 -0
  337. biotite/structure/rings.py +335 -0
  338. biotite/structure/sasa.cpython-312-darwin.so +0 -0
  339. biotite/structure/sasa.pyx +322 -0
  340. biotite/structure/segments.py +292 -0
  341. biotite/structure/sequence.py +110 -0
  342. biotite/structure/spacegroups.json +1567 -0
  343. biotite/structure/spacegroups.license +26 -0
  344. biotite/structure/sse.py +306 -0
  345. biotite/structure/superimpose.py +511 -0
  346. biotite/structure/tm.py +581 -0
  347. biotite/structure/transform.py +736 -0
  348. biotite/structure/util.py +168 -0
  349. biotite/version.py +21 -0
  350. biotite/visualize.py +375 -0
  351. biotite-1.3.0.dist-info/METADATA +162 -0
  352. biotite-1.3.0.dist-info/RECORD +354 -0
  353. biotite-1.3.0.dist-info/WHEEL +6 -0
  354. biotite-1.3.0.dist-info/licenses/LICENSE.rst +30 -0
@@ -0,0 +1,335 @@
1
+ # This source code is part of the Biotite package and is distributed
2
+ # under the 3-Clause BSD License. Please see 'LICENSE.rst' for further
3
+ # information.
4
+
5
+ """
6
+ This module provides functions related to aromatic rings.
7
+ """
8
+
9
+ __name__ = "biotite.structure"
10
+ __author__ = "Patrick Kunzmann"
11
+ __all__ = ["find_aromatic_rings", "find_stacking_interactions", "PiStacking"]
12
+
13
+
14
+ from enum import IntEnum
15
+ import networkx as nx
16
+ import numpy as np
17
+ from biotite.structure.bonds import BondType
18
+ from biotite.structure.error import BadStructureError
19
+ from biotite.structure.geometry import displacement
20
+ from biotite.structure.util import norm_vector, vector_dot
21
+
22
+
23
+ class PiStacking(IntEnum):
24
+ """
25
+ The type of pi-stacking interaction.
26
+
27
+ - ``PARALLEL``: parallel pi-stacking (also called *staggered* or *Sandwich*)
28
+ - ``PERPENDICULAR``: perpendicular pi-stacking (also called *T-shaped*)
29
+ """
30
+
31
+ PARALLEL = 0
32
+ PERPENDICULAR = 1
33
+
34
+
35
+ def find_aromatic_rings(atoms):
36
+ """
37
+ Find (anti-)aromatic rings in a structure.
38
+
39
+ Parameters
40
+ ----------
41
+ atoms : AtomArray or AtomArrayStack
42
+ The atoms to be searched for aromatic rings.
43
+ Requires an associated :class:`BondList`.
44
+
45
+ Returns
46
+ -------
47
+ rings : list of ndarray
48
+ The indices of the atoms that form aromatic rings.
49
+ Each ring is represented by a list of indices.
50
+ Only rings with minimum size are returned, i.e. two connected rings
51
+ (e.g. in tryptophan) are reported as separate rings.
52
+
53
+ Notes
54
+ -----
55
+ This function does not distinguish between aromatic and antiaromatic rings.
56
+ All cycles containing atoms that are completely connected by aromatic bonds
57
+ are considered aromatic rings.
58
+
59
+ The PDB *Chemical Component Dictionary* (CCD) does not identify aromatic rings in
60
+ all compounds as such.
61
+ Prominent examples are the nucleobases, where the 6-membered rings are not
62
+ flagged as aromatic.
63
+
64
+ Examples
65
+ --------
66
+
67
+ >>> nad = residue("NAD")
68
+ >>> rings = find_aromatic_rings(nad)
69
+ >>> print(rings)
70
+ [array([41, 37, 36, 35, 43, 42]), array([19, 18, 16, 15, 21, 20]), array([12, 13, 14, 15, 21])]
71
+ >>> for atom_indices in rings:
72
+ ... print(np.sort(nad.atom_name[atom_indices]))
73
+ ['C2N' 'C3N' 'C4N' 'C5N' 'C6N' 'N1N']
74
+ ['C2A' 'C4A' 'C5A' 'C6A' 'N1A' 'N3A']
75
+ ['C4A' 'C5A' 'C8A' 'N7A' 'N9A']
76
+ """
77
+ if atoms.bonds is None:
78
+ raise BadStructureError("Structure must have an associated BondList")
79
+ bond_array = atoms.bonds.as_array()
80
+ # To detect aromatic rings, only keep bonds that are aromatic
81
+ aromatic_bond_array = bond_array[
82
+ np.isin(
83
+ bond_array[:, 2],
84
+ [
85
+ BondType.AROMATIC,
86
+ BondType.AROMATIC_SINGLE,
87
+ BondType.AROMATIC_DOUBLE,
88
+ BondType.AROMATIC_TRIPLE,
89
+ ],
90
+ ),
91
+ # We can omit the bond type now
92
+ :2,
93
+ ]
94
+ aromatic_bond_graph = nx.from_edgelist(aromatic_bond_array.tolist())
95
+ # Find the cycles with minimum size -> cycle basis
96
+ rings = nx.cycle_basis(aromatic_bond_graph)
97
+ return [np.array(ring, dtype=int) for ring in rings]
98
+
99
+
100
+ def find_stacking_interactions(
101
+ atoms,
102
+ centroid_cutoff=6.5,
103
+ plane_angle_tol=np.deg2rad(30.0),
104
+ shift_angle_tol=np.deg2rad(30.0),
105
+ ):
106
+ """
107
+ Find pi-stacking interactions between aromatic rings.
108
+
109
+ Parameters
110
+ ----------
111
+ atoms : AtomArray
112
+ The atoms to be searched for aromatic rings.
113
+ Requires an associated :class:`BondList`.
114
+ centroid_cutoff : float
115
+ The cutoff distance for ring centroids.
116
+ plane_angle_tol : float
117
+ The tolerance for the angle between ring planes that must be either
118
+ parallel or perpendicular.
119
+ Given in radians.
120
+ shift_angle_tol : float
121
+ The tolerance for the angle between the ring plane normals and the
122
+ centroid difference vector.
123
+ Given in radians.
124
+
125
+ Returns
126
+ -------
127
+ interactions : list of tuple(ndarray, ndarray, PiStacking)
128
+ The stacking interactions between aromatic rings.
129
+ Each element in the list represents one stacking interaction.
130
+ The first two elements of each tuple represent atom indices of the stacked
131
+ rings.
132
+ The third element of each tuple is the type of stacking interaction.
133
+
134
+ See Also
135
+ --------
136
+ find_aromatic_rings : Used for finding the aromatic rings in this function.
137
+
138
+ Notes
139
+ -----
140
+ This function does not distinguish between aromatic and antiaromatic rings.
141
+ Furthermore, it does not distinguish between repulsive and attractive stacking:
142
+ Usually, stacking two rings directly above each other is repulsive, as the pi
143
+ orbitals above the rings repel each other, so a slight horizontal shift is
144
+ usually required to make the interaction attractive.
145
+ However, in details this is strongly dependent on heteroatoms and the exact
146
+ orientation of the rings.
147
+ Hence, this function aggregates all stacking interactions to simplify the
148
+ conditions for pi-stacking.
149
+
150
+ The conditions for pi-stacking are :footcite:`Wojcikowski2015` :
151
+
152
+ - The ring centroids must be within cutoff `centroid_cutoff` distance.
153
+ While :footcite:`Wojcikowski2015` uses a cutoff of 5.0 Å, 6.5 Å was
154
+ adopted from :footcite:`Bouysset2021` to better identify perpendicular
155
+ stacking interactions.
156
+ - The planes must be parallel or perpendicular to each other within a default
157
+ tolerance of 30°.
158
+ - The angle between the plane normals and the centroid difference vector must be
159
+ be either 0° or 90° within a default tolerance of 30°, to check for lateral
160
+ shifts.
161
+
162
+ References
163
+ ----------
164
+
165
+ .. footbibliography::
166
+
167
+ Examples
168
+ --------
169
+
170
+ Detect base stacking interactions in a DNA helix
171
+
172
+ >>> from os.path import join
173
+ >>> dna_helix = load_structure(
174
+ ... join(path_to_structures, "base_pairs", "1qxb.cif"), include_bonds=True
175
+ ... )
176
+ >>> interactions = find_stacking_interactions(dna_helix)
177
+ >>> for ring_atom_indices_1, ring_atom_indices_2, stacking_type in interactions:
178
+ ... print(
179
+ ... dna_helix.res_id[ring_atom_indices_1[0]],
180
+ ... dna_helix.res_id[ring_atom_indices_2[0]],
181
+ ... PiStacking(stacking_type).name
182
+ ... )
183
+ 17 18 PARALLEL
184
+ 17 18 PARALLEL
185
+ 5 6 PARALLEL
186
+ 5 6 PARALLEL
187
+ 5 6 PARALLEL
188
+ """
189
+ rings = find_aromatic_rings(atoms)
190
+ if len(rings) == 0:
191
+ return []
192
+
193
+ ring_centroids = np.array(
194
+ [atoms.coord[atom_indices].mean(axis=0) for atom_indices in rings]
195
+ )
196
+ ring_normals = np.array(
197
+ [_get_ring_normal(atoms.coord[atom_indices]) for atom_indices in rings]
198
+ )
199
+
200
+ # Create an index array that contains the Cartesian product of all rings
201
+ indices = np.stack(
202
+ [
203
+ np.repeat(np.arange(len(rings)), len(rings)),
204
+ np.tile(np.arange(len(rings)), len(rings)),
205
+ ],
206
+ axis=-1,
207
+ )
208
+ # Do not include duplicate pairs
209
+ indices = indices[indices[:, 0] > indices[:, 1]]
210
+
211
+ ## Condition 1: Ring centroids are close enough to each other
212
+ diff = displacement(ring_centroids[indices[:, 0]], ring_centroids[indices[:, 1]])
213
+ # Use squared distance to avoid time consuming sqrt computation
214
+ sq_distance = vector_dot(diff, diff)
215
+ is_interacting = sq_distance < centroid_cutoff**2
216
+ indices = indices[is_interacting]
217
+
218
+ ## Condition 2: Ring planes are parallel or perpendicular
219
+ plane_angles = _minimum_angle(
220
+ ring_normals[indices[:, 0]], ring_normals[indices[:, 1]]
221
+ )
222
+ is_parallel = _is_within_tolerance(plane_angles, 0, plane_angle_tol)
223
+ is_perpendicular = _is_within_tolerance(plane_angles, np.pi / 2, plane_angle_tol)
224
+ is_interacting = is_parallel | is_perpendicular
225
+ indices = indices[is_interacting]
226
+ # Keep in sync with the shape of the filtered indices,
227
+ # i.e. after filtering, `is_parallel==False` means a perpendicular interaction
228
+ is_parallel = is_parallel[is_interacting]
229
+
230
+ ## Condition 3: The ring centroids are not shifted too much
231
+ ## (in terms of normal-centroid angle)
232
+ diff = displacement(ring_centroids[indices[:, 0]], ring_centroids[indices[:, 1]])
233
+ norm_vector(diff)
234
+ angles = np.stack(
235
+ [_minimum_angle(ring_normals[indices[:, i]], diff) for i in range(2)]
236
+ )
237
+ is_interacting = (
238
+ # For parallel stacking, the lateral shift may not exceed the tolerance
239
+ (is_parallel & np.any(_is_within_tolerance(angles, 0, shift_angle_tol), axis=0))
240
+ # For perpendicular stacking, one ring must be above the other,
241
+ # but from the perspective of the other ring, the first ring is approximately
242
+ # in the same plane
243
+ | (
244
+ ~is_parallel
245
+ & (
246
+ (
247
+ _is_within_tolerance(angles[0], 0, shift_angle_tol)
248
+ & _is_within_tolerance(angles[1], np.pi / 2, shift_angle_tol)
249
+ )
250
+ | (
251
+ _is_within_tolerance(angles[0], np.pi / 2, shift_angle_tol)
252
+ & _is_within_tolerance(angles[1], 0, shift_angle_tol)
253
+ )
254
+ )
255
+ )
256
+ )
257
+ indices = indices[is_interacting]
258
+ is_parallel = is_parallel[is_interacting]
259
+
260
+ # Only return pairs of rings where all conditions were fulfilled
261
+ return [
262
+ (
263
+ rings[ring_i],
264
+ rings[ring_j],
265
+ PiStacking.PARALLEL if is_parallel[i] else PiStacking.PERPENDICULAR,
266
+ )
267
+ for i, (ring_i, ring_j) in enumerate(indices)
268
+ ]
269
+
270
+
271
+ def _get_ring_normal(ring_coord):
272
+ """
273
+ Get the normal vector perpendicular to the ring plane.
274
+
275
+ Parameters
276
+ ----------
277
+ ring_coord : ndarray
278
+ The coordinates of the atoms in the ring.
279
+
280
+ Returns
281
+ -------
282
+ normal : ndarray
283
+ The normal vector of the ring plane.
284
+ """
285
+ # Simply use any three atoms in the ring to calculate the normal vector
286
+ # We can also safely assume that there are at least three atoms in the ring,
287
+ # as otherwise it would not be a ring
288
+ normal = np.cross(ring_coord[1] - ring_coord[0], ring_coord[2] - ring_coord[0])
289
+ norm_vector(normal)
290
+ return normal
291
+
292
+
293
+ def _minimum_angle(v1, v2):
294
+ """
295
+ Get the minimum angle between two vectors, i.e. the possible angle range is
296
+ ``[0, pi/2]``.
297
+
298
+ Parameters
299
+ ----------
300
+ v1, v2 : ndarray, shape=(n,3), dtype=float
301
+ The vectors to measure the angle between.
302
+
303
+ Returns
304
+ -------
305
+ angle : ndarray, shape=(n,), dtype=float
306
+ The minimum angle between the two vectors.
307
+
308
+ Notes
309
+ -----
310
+ This restriction is added here as the normal vectors of the ring planes
311
+ have no 'preferred side'.
312
+ """
313
+ # Do not distinguish between the 'sides' of the rings -> take absolute of cosine
314
+ return np.arccos(np.abs(vector_dot(v1, v2)))
315
+
316
+
317
+ def _is_within_tolerance(angles, expected_angle, tolerance):
318
+ """
319
+ Check if the angles are within a certain tolerance.
320
+
321
+ Parameters
322
+ ----------
323
+ angles : ndarray, shape=x, dtype=float
324
+ The angles to check.
325
+ expected_angle : float
326
+ The expected angle.
327
+ tolerance : float
328
+ The tolerance.
329
+
330
+ Returns
331
+ -------
332
+ is_within_tolerance : ndarray, shape=x, dtype=bool
333
+ True if the angles are within the tolerance, False otherwise.
334
+ """
335
+ return np.abs(angles - expected_angle) < tolerance
@@ -0,0 +1,322 @@
1
+ # This source code is part of the Biotite package and is distributed
2
+ # under the 3-Clause BSD License. Please see 'LICENSE.rst' for further
3
+ # information.
4
+
5
+ """
6
+ Use this module to calculate the Solvent Accessible Surface Area (SASA) of
7
+ a protein or single atoms.
8
+ """
9
+
10
+ __name__ = "biotite.structure"
11
+ __author__ = "Patrick Kunzmann"
12
+ __all__ = ["sasa"]
13
+
14
+ cimport cython
15
+ cimport numpy as np
16
+ from libc.stdlib cimport malloc, free
17
+
18
+ import numpy as np
19
+ from .celllist import CellList
20
+ from .filter import filter_solvent, filter_monoatomic_ions
21
+ from .info.radii import vdw_radius_protor, vdw_radius_single
22
+
23
+ ctypedef np.uint8_t np_bool
24
+ ctypedef np.int64_t int64
25
+ ctypedef np.float32_t float32
26
+
27
+
28
+ @cython.boundscheck(False)
29
+ @cython.wraparound(False)
30
+ def sasa(array, float probe_radius=1.4, np.ndarray atom_filter=None,
31
+ bint ignore_ions=True, int point_number=1000,
32
+ point_distr="Fibonacci", vdw_radii="ProtOr"):
33
+ """
34
+ sasa(array, probe_radius=1.4, atom_filter=None, ignore_ions=True,
35
+ point_number=1000, point_distr="Fibonacci", vdw_radii="ProtOr")
36
+
37
+ Calculate the Solvent Accessible Surface Area (SASA) of a protein.
38
+
39
+ This function uses the Shrake-Rupley ("rolling probe")
40
+ algorithm :footcite:`Shrake1973`:
41
+ Every atom is occupied by a evenly distributed point mesh. The
42
+ points that can be reached by the "rolling probe", are surface
43
+ accessible.
44
+
45
+ Parameters
46
+ ----------
47
+ array : AtomArray
48
+ The protein model to calculate the SASA for.
49
+ probe_radius : float, optional
50
+ The VdW-radius of the solvent molecules.
51
+ atom_filter : ndarray, dtype=bool, optional
52
+ If this parameter is given, SASA is only calculated for the
53
+ filtered atoms.
54
+ ignore_ions : bool, optional
55
+ If true, all monoatomic ions are removed before SASA calculation.
56
+ point_number : int, optional
57
+ The number of points in the mesh occupying each atom for SASA
58
+ calculation.
59
+ The SASA calculation time is proportional to the amount of sphere points.
60
+ point_distr : str or function, optional
61
+ If a function is given, the function is used to calculate the
62
+ point distribution for the mesh (the function must take `float`
63
+ *n* as parameter and return a *(n x 3)* :class:`ndarray`).
64
+ Alternatively a string can be given to choose a built-in
65
+ distribution:
66
+
67
+ - **Fibonacci** - Distribute points using a golden section
68
+ spiral.
69
+
70
+ By default *Fibonacci* is used.
71
+ vdw_radii : str or ndarray, dtype=float, optional
72
+ Indicates the set of VdW radii to be used. If an `array`-length
73
+ :class:`ndarray` is given, each atom gets the radius at the
74
+ corresponding index. Radii given for atoms that are not used in
75
+ SASA calculation (e.g. solvent atoms) can have arbitrary values
76
+ (e.g. `NaN`). If instead a string is given, one of the
77
+ built-in sets is used:
78
+
79
+ - **ProtOr** - A set, which does not require hydrogen atoms
80
+ in the model. Suitable for crystal structures.
81
+ :footcite:`Tsai1999`
82
+ - **Single** - A set, which uses a defined VdW radius for
83
+ every single atom, therefore hydrogen atoms are required
84
+ in the model (e.g. NMR elucidated structures).
85
+ Values for main group elements are taken from :footcite:`Mantina2009`,
86
+ and for relevant transition metals from the :footcite:`RDKit`.
87
+
88
+ By default *ProtOr* is used.
89
+
90
+
91
+ Returns
92
+ -------
93
+ sasa : ndarray, dtype=bool, shape=(n,)
94
+ Atom-wise SASA. `NaN` for atoms where SASA has not been
95
+ calculated
96
+ (solvent atoms, hydrogen atoms (ProtOr), atoms not in `filter`).
97
+
98
+ References
99
+ ----------
100
+
101
+ .. footbibliography::
102
+
103
+ """
104
+ cdef int i=0, j=0, k=0, adj_atom_i=0, rel_atom_i=0
105
+
106
+ cdef np.ndarray sasa_filter
107
+ cdef np.ndarray occl_filter
108
+ if atom_filter is not None:
109
+ # Filter for all atoms to calculate SASA for
110
+ sasa_filter = np.array(atom_filter, dtype=bool)
111
+ else:
112
+ sasa_filter = np.ones(len(array), dtype=bool)
113
+ # Filter for all atoms that are considered for occlusion calculation
114
+ # sasa_filter is subfilter of occlusion_filter
115
+ occl_filter = np.ones(len(array), dtype=bool)
116
+ # Remove water residues, since it is the solvent
117
+ filter = ~filter_solvent(array)
118
+ sasa_filter = sasa_filter & filter
119
+ occl_filter = occl_filter & filter
120
+ if ignore_ions:
121
+ filter = ~filter_monoatomic_ions(array)
122
+ sasa_filter = sasa_filter & filter
123
+ occl_filter = occl_filter & filter
124
+
125
+ cdef np.ndarray sphere_points
126
+ if callable(point_distr):
127
+ sphere_points = point_distr(point_number)
128
+ elif point_distr == "Fibonacci":
129
+ sphere_points = _create_fibonacci_points(point_number)
130
+ else:
131
+ raise ValueError(f"'{point_distr}' is not a valid point distribution")
132
+ sphere_points = sphere_points.astype(np.float32)
133
+
134
+ cdef np.ndarray radii
135
+ if isinstance(vdw_radii, np.ndarray):
136
+ radii = vdw_radii.astype(np.float32)
137
+ if len(radii) != array.array_length():
138
+ raise ValueError(
139
+ f"Amount VdW radii ({len(radii)}) and "
140
+ f"amount of atoms ({array.array_length()}) are not equal"
141
+ )
142
+ elif vdw_radii == "ProtOr":
143
+ filter = (array.element != "H")
144
+ sasa_filter = sasa_filter & filter
145
+ occl_filter = occl_filter & filter
146
+ radii = np.full(len(array), np.nan, dtype=np.float32)
147
+ for i in np.arange(len(radii))[occl_filter]:
148
+ rad = vdw_radius_protor(array.res_name[i], array.atom_name[i])
149
+ # 1.8 is default radius
150
+ radii[i] = rad if rad is not None else 1.8
151
+ elif vdw_radii == "Single":
152
+ radii = np.full(len(array), np.nan, dtype=np.float32)
153
+ for i in np.arange(len(radii))[occl_filter]:
154
+ rad = vdw_radius_single(array.element[i])
155
+ # 1.5 is default radius
156
+ radii[i] = rad if rad is not None else 1.8
157
+ else:
158
+ raise KeyError(f"'{vdw_radii}' is not a valid radii set")
159
+ # Increase atom radii by probe size ("rolling probe")
160
+ radii += probe_radius
161
+
162
+ # Memoryview for filter
163
+ # Problem with creating boolean memoryviews
164
+ # -> Type uint8 is used
165
+ cdef np_bool[:] sasa_filter_view = np.frombuffer(sasa_filter,
166
+ dtype=np.uint8)
167
+
168
+ cdef np.ndarray occl_r = radii[occl_filter]
169
+ # Atom array containing occluding atoms
170
+ occl_array = array[occl_filter]
171
+
172
+ # Memoryviews for coordinates of entire (main) array
173
+ # and for coordinates of occluding atom array
174
+ cdef float32[:,:] main_coord = array.coord.astype(np.float32,
175
+ copy=False)
176
+ cdef float32[:,:] occl_coord = occl_array.coord.astype(np.float32,
177
+ copy=False)
178
+ # Memoryviews for sphere points
179
+ cdef float32[:,:] sphere_coord = sphere_points
180
+ # Check if any of these arrays are empty to prevent segfault
181
+ if main_coord.shape[0] == 0 \
182
+ or occl_coord.shape[0] == 0 \
183
+ or sphere_coord.shape[0] == 0:
184
+ raise ValueError("Coordinates are empty")
185
+ # Memoryviews for radii of SASA and occluding atoms
186
+ # their squares and their sum of sqaures
187
+ cdef float32[:] atom_radii = radii
188
+ cdef float32[:] atom_radii_sq = radii * radii
189
+ cdef float32[:] occl_radii = occl_r
190
+ cdef float32[:] occl_radii_sq = occl_r * occl_r
191
+ # Memoryview for atomwise SASA
192
+ cdef float32[:] sasa = np.full(len(array), np.nan, dtype=np.float32)
193
+
194
+ # Area of a sphere point on a unit sphere
195
+ cdef float32 area_per_point = 4.0 * np.pi / point_number
196
+
197
+ # Define further statically typed variables
198
+ # that are needed for SASA calculation
199
+ cdef int n_accesible = 0
200
+ cdef float32 radius = 0
201
+ cdef float32 radius_sq = 0
202
+ cdef float32 adj_radius = 0
203
+ cdef float32 adj_radius_sq = 0
204
+ cdef float32 dist_sq = 0
205
+ cdef float32 point_x = 0
206
+ cdef float32 point_y = 0
207
+ cdef float32 point_z = 0
208
+ cdef float32 atom_x = 0
209
+ cdef float32 atom_y = 0
210
+ cdef float32 atom_z = 0
211
+ cdef float32 occl_x = 0
212
+ cdef float32 occl_y = 0
213
+ cdef float32 occl_z = 0
214
+ cdef float32[:,:] relevant_occl_coord = None
215
+
216
+ # Cell size is as large as the maximum distance,
217
+ # where two atom can intersect.
218
+ # Therefore intersecting atoms are always in the same or adjacent cell.
219
+ cell_list = CellList(occl_array, np.max(radii[occl_filter])*2)
220
+ cdef np.ndarray cell_indices
221
+ cdef int[:,:] cell_indices_view
222
+ cdef int length
223
+ cdef int max_adj_list_length = 0
224
+ cdef int array_length = array.array_length()
225
+
226
+ cell_indices = cell_list.get_atoms_in_cells(array.coord)
227
+ cell_indices_view = cell_indices
228
+ max_adj_list_length = cell_indices.shape[0]
229
+
230
+ # Later on, this array stores coordinates for actual
231
+ # occluding atoms for a certain atom to calculate the
232
+ # SASA for
233
+ # The first three indices of the second axis
234
+ # are x, y and z, the last one is the squared radius
235
+ # This list is as long as the maximal length of a list of
236
+ # adjacent atoms
237
+ relevant_occl_coord = np.zeros((max_adj_list_length, 4),
238
+ dtype=np.float32)
239
+
240
+ # Actual SASA calculation
241
+ for i in range(array_length):
242
+ # First level: The atoms to calculate SASA for
243
+ if not sasa_filter_view[i]:
244
+ # SASA is not calculated for this atom
245
+ continue
246
+ n_accesible = point_number
247
+ atom_x = main_coord[i,0]
248
+ atom_y = main_coord[i,1]
249
+ atom_z = main_coord[i,2]
250
+ radius = atom_radii[i]
251
+ radius_sq = atom_radii_sq[i]
252
+ # Find occluding atoms from list of adjacent atoms
253
+ rel_atom_i = 0
254
+ for j in range(max_adj_list_length):
255
+ # Remove all atoms, where the distance to the relevant atom
256
+ # is larger than the sum of the radii,
257
+ # since those atoms do not touch
258
+ # If distance is 0, it is the same atom,
259
+ # and the atom is removed from the list as well
260
+ adj_atom_i = cell_indices_view[i,j]
261
+ if adj_atom_i == -1:
262
+ # -1 means end of list
263
+ break
264
+ occl_x = occl_coord[adj_atom_i,0]
265
+ occl_y = occl_coord[adj_atom_i,1]
266
+ occl_z = occl_coord[adj_atom_i,2]
267
+ adj_radius = occl_radii[adj_atom_i]
268
+ adj_radius_sq = occl_radii_sq[adj_atom_i]
269
+ dist_sq = distance_sq(atom_x, atom_y, atom_z,
270
+ occl_x, occl_y, occl_z)
271
+ if dist_sq != 0 \
272
+ and dist_sq < (adj_radius+radius) * (adj_radius+radius):
273
+ relevant_occl_coord[rel_atom_i,0] = occl_x
274
+ relevant_occl_coord[rel_atom_i,1] = occl_y
275
+ relevant_occl_coord[rel_atom_i,2] = occl_z
276
+ relevant_occl_coord[rel_atom_i,3] = adj_radius_sq
277
+ rel_atom_i += 1
278
+ for j in range(sphere_coord.shape[0]):
279
+ # Second level: The sphere points for that atom
280
+ # Transform sphere point to sphere of current atom
281
+ point_x = sphere_coord[j,0] * radius + atom_x
282
+ point_y = sphere_coord[j,1] * radius + atom_y
283
+ point_z = sphere_coord[j,2] * radius + atom_z
284
+ for k in range(rel_atom_i):
285
+ # Third level: Compare point to occluding atoms
286
+ dist_sq = distance_sq(point_x, point_y, point_z,
287
+ relevant_occl_coord[k, 0],
288
+ relevant_occl_coord[k, 1],
289
+ relevant_occl_coord[k, 2])
290
+ # Compare squared distance
291
+ # to squared radius of occluding atom
292
+ # (Radius is relevant_occl_coord[3])
293
+ if dist_sq < relevant_occl_coord[k, 3]:
294
+ # Point is occluded
295
+ # -> Continue with next point
296
+ n_accesible -= 1
297
+ break
298
+ sasa[i] = area_per_point * n_accesible * radius_sq
299
+ return np.asarray(sasa)
300
+
301
+
302
+ cdef inline float32 distance_sq(float32 x1, float32 y1, float32 z1,
303
+ float32 x2, float32 y2, float32 z2):
304
+ cdef float32 dx = x2 - x1
305
+ cdef float32 dy = y2 - y1
306
+ cdef float32 dz = z2 - z1
307
+ return dx*dx + dy*dy + dz*dz
308
+
309
+
310
+ def _create_fibonacci_points(n):
311
+ """
312
+ Get an array of approximately equidistant points on a sphere surface
313
+ using a golden section spiral.
314
+ """
315
+ phi = (3 - np.sqrt(5)) * np.pi * np.arange(n)
316
+ z = np.linspace(1 - 1.0/n, 1.0/n - 1, n)
317
+ radius = np.sqrt(1 - z*z)
318
+ coords = np.zeros((n, 3))
319
+ coords[:,0] = radius * np.cos(phi)
320
+ coords[:,1] = radius * np.sin(phi)
321
+ coords[:,2] = z
322
+ return coords