biopipen 0.34.10__py3-none-any.whl → 0.34.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of biopipen might be problematic. Click here for more details.

biopipen/__init__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "0.34.10"
1
+ __version__ = "0.34.11"
biopipen/ns/scrna.py CHANGED
@@ -1089,7 +1089,7 @@ class MarkersFinder(Proc):
1089
1089
  - <more>: See <https://satijalab.org/seurat/reference/findmarkers>
1090
1090
  allmarker_plots_defaults (ns): Default options for the plots for all markers when `ident-1` is not specified.
1091
1091
  - plot_type: The type of the plot.
1092
- See <https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html>.
1092
+ See <https://pwwang.github.io/biopipen.utils.R/reference/VizDEGs.html>.
1093
1093
  Available types are `violin`, `box`, `bar`, `ridge`, `dim`, `heatmap` and `dot`.
1094
1094
  - more_formats (type=list): The extra formats to save the plot in.
1095
1095
  - save_code (flag): Whether to save the code to generate the plot.
@@ -1099,7 +1099,7 @@ class MarkersFinder(Proc):
1099
1099
  - width (type=int): The width of the plots.
1100
1100
  - order_by: an expression to order the markers, passed by `dplyr::arrange()`.
1101
1101
  - genes: The number of top genes to show or an expression passed to `dplyr::filter()` to filter the genes.
1102
- - <more>: Other arguments passed to [`scplotter::FeatureStatPlot()`](https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html).
1102
+ - <more>: Other arguments passed to [`biopipen.utils::VizDEGs()`](https://pwwang.github.io/biopipen.utils.R/reference/VizDEGs.html).
1103
1103
  allmarker_plots (type=json): All marker plot cases.
1104
1104
  The keys are the names of the cases and the values are the dicts inherited from `allmarker_plots_defaults`.
1105
1105
  allenrich_plots_defaults (ns): Default options for the plots to generate for the enrichment analysis.
@@ -1114,7 +1114,7 @@ class MarkersFinder(Proc):
1114
1114
  The cases under `envs.cases` can inherit this options.
1115
1115
  marker_plots_defaults (ns): Default options for the plots to generate for the markers.
1116
1116
  - plot_type: The type of the plot.
1117
- See <https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html>.
1117
+ See <https://pwwang.github.io/biopipen.utils.R/reference/VizDEGs.html>.
1118
1118
  Available types are `violin`, `box`, `bar`, `ridge`, `dim`, `heatmap` and `dot`.
1119
1119
  There are two additional types available - `volcano_pct` and `volcano_log2fc`.
1120
1120
  - more_formats (type=list): The extra formats to save the plot in.
@@ -1125,7 +1125,7 @@ class MarkersFinder(Proc):
1125
1125
  - width (type=int): The width of the plots.
1126
1126
  - order_by: an expression to order the markers, passed by `dplyr::arrange()`.
1127
1127
  - genes: The number of top genes to show or an expression passed to `dplyr::filter()` to filter the genes.
1128
- - <more>: Other arguments passed to [`scplotter::FeatureStatPlot()`](https://pwwang.github.io/scplotter/reference/FeatureStatPlot.html).
1128
+ - <more>: Other arguments passed to [`biopipen.utils::VizDEGs()`](https://pwwang.github.io/biopipen.utils.R/reference/VizDEGs.html).
1129
1129
  If `plot_type` is `volcano_pct` or `volcano_log2fc`, they will be passed to
1130
1130
  [`scplotter::VolcanoPlot()`](https://pwwang.github.io/plotthis/reference/VolcanoPlot.html).
1131
1131
  marker_plots (type=json): Cases of the plots to generate for the markers.
@@ -50,6 +50,15 @@ The cells are grouped at 2 dimensions: `subset_by`, usually the clinic groups th
50
50
  </ListItem>
51
51
  </UnorderedList>
52
52
 
53
+ <style>
54
+ .listitem {
55
+ font-size: large;
56
+ font-weight: bold;
57
+ margin: 1rem 0 0.5rem 0;
58
+ display: inline-block;
59
+ }
60
+ </style>
61
+
53
62
  {%- macro report_job(job, h=1) -%}
54
63
  {{ job | render_job: h=h }}
55
64
  {%- endmacro -%}
@@ -59,12 +68,3 @@ The cells are grouped at 2 dimensions: `subset_by`, usually the clinic groups th
59
68
  {%- endmacro -%}
60
69
 
61
70
  {{ report_jobs(jobs, head_job, report_job) }}
62
-
63
- <style>
64
- .listitem {
65
- font-size: large;
66
- font-weight: bold;
67
- margin: 1rem 0 0.5rem 0;
68
- display: inline-block;
69
- }
70
- </style>
@@ -82,6 +82,15 @@ The cells are grouped at 2 dimensions: `subset_by`, usually the clinic groups th
82
82
  </ListItem>
83
83
  </UnorderedList>
84
84
 
85
+ <style>
86
+ .listitem {
87
+ font-size: large;
88
+ font-weight: bold;
89
+ margin: 1rem 0 0.5rem 0;
90
+ display: inline-block;
91
+ }
92
+ </style>
93
+
85
94
  {%- macro report_job(job, h=1) -%}
86
95
  {{ job | render_job: h=h }}
87
96
  {%- endmacro -%}
@@ -92,11 +101,3 @@ The cells are grouped at 2 dimensions: `subset_by`, usually the clinic groups th
92
101
 
93
102
  {{ report_jobs(jobs, head_job, report_job) }}
94
103
 
95
- <style>
96
- .listitem {
97
- font-size: large;
98
- font-weight: bold;
99
- margin: 1rem 0 0.5rem 0;
100
- display: inline-block;
101
- }
102
- </style>
@@ -61,6 +61,15 @@ The cells are grouped at 2 dimensions: `subset_by`, usually the clinic groups th
61
61
  </ListItem>
62
62
  </UnorderedList>
63
63
 
64
+ <style>
65
+ .listitem {
66
+ font-size: large;
67
+ font-weight: bold;
68
+ margin: 1rem 0 0.5rem 0;
69
+ display: inline-block;
70
+ }
71
+ </style>
72
+
64
73
  {%- macro report_job(job, h=1) -%}
65
74
  {{ job | render_job: h=h }}
66
75
  {%- endmacro -%}
@@ -70,12 +79,3 @@ The cells are grouped at 2 dimensions: `subset_by`, usually the clinic groups th
70
79
  {%- endmacro -%}
71
80
 
72
81
  {{ report_jobs(jobs, head_job, report_job) }}
73
-
74
- <style>
75
- .listitem {
76
- font-size: large;
77
- font-weight: bold;
78
- margin: 1rem 0 0.5rem 0;
79
- display: inline-block;
80
- }
81
- </style>
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: biopipen
3
- Version: 0.34.10
3
+ Version: 0.34.11
4
4
  Summary: Bioinformatics processes/pipelines that can be run from `pipen run`
5
5
  License: MIT
6
6
  Author: pwwang
@@ -1,4 +1,4 @@
1
- biopipen/__init__.py,sha256=u7r_X5RPL4hal_HhVAZpDtDz0JbAd6bKAwNi0BAOm5c,24
1
+ biopipen/__init__.py,sha256=1GTRPz3gyaWKOyHElhtx6TB-YNqMbOWmaezYgfEjQI0,24
2
2
  biopipen/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  biopipen/core/config.py,sha256=edK5xnDhM8j27srDzsxubi934NMrglLoKrdcC8qsEPk,1069
4
4
  biopipen/core/config.toml,sha256=lZV_vbYWk6uqm19ZWJcsZCcSNqAdIfN2fOfamzxZpg4,2148
@@ -22,7 +22,7 @@ biopipen/ns/plot.py,sha256=N41_izb6zi-XArUly5WhLebapNXbTNSgGlOCCwtrDlY,18282
22
22
  biopipen/ns/protein.py,sha256=YJtlKoHI2p5yHdxKeQnNtm5QrbxDGOq1UXOdt_7tlTs,6391
23
23
  biopipen/ns/regulatory.py,sha256=WlnX_R8jEFyxCjk8mru5Qu5iCQJLzjMWiWGoc3gygzc,16221
24
24
  biopipen/ns/rnaseq.py,sha256=bKAa6friFWof4yDTWZQahm1MS-lrdetO1GqDKdfxXYc,7708
25
- biopipen/ns/scrna.py,sha256=ts8yust_YJBb-95Wl59KbEfStML3Eb4fmZInpfatXGc,146298
25
+ biopipen/ns/scrna.py,sha256=i3LNPJtr3qZeweMnp7Z4x31oRYwkp6KsQrst4epOWEU,146288
26
26
  biopipen/ns/scrna_metabolic_landscape.py,sha256=EwLMrsj_pTqvyAgtHLoishjQxCg_j8n5OofuTofUph0,22096
27
27
  biopipen/ns/snp.py,sha256=iXWrw7Lmhf4_ct57HGT7JGTClCXUD4sZ2FzOgsC2pTg,28123
28
28
  biopipen/ns/stats.py,sha256=DlPyK5Vsg6ZEkV9SDS3aAw21eXzvOHgqeZDkXPhg7go,20509
@@ -51,9 +51,9 @@ biopipen/reports/scrna/DimPlots.svelte,sha256=ubIx8dgppzSB8WS_B4LN2T3bOTerP4Ck6o
51
51
  biopipen/reports/scrna/MarkersFinder.svelte,sha256=77rD1psj0VJykPDhfwS-B8mubvaasREAE6RYR2atTN4,444
52
52
  biopipen/reports/scrna/MetaMarkers.svelte,sha256=iIFRKjvVYrM1AtDWqq8UfeS8q23R8FKg2yepKAw2KSE,508
53
53
  biopipen/reports/scrna/RadarPlots.svelte,sha256=g_fp9d3vdnzk-egXPhkhhfWXOeG569Rj8rYLRIKmlLc,396
54
- biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte,sha256=0AmtzoGZXh5OnxGtZd5NBItVd-BeuGk9mEIhhWa1ab8,2527
55
- biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte,sha256=RpIT1O3yiJEEqRcdS-ydYDghChQ0YLbD1RtSK2CQS_k,5654
56
- biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte,sha256=kW6AxFr7VnX9yVL74IbUEBuI7xRfbmnROXR6C7jRets,3009
54
+ biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte,sha256=4ruKluhHiKG1_sLnkCddYWIeVGXN6uzL_k2yl3jsS8k,2527
55
+ biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte,sha256=nA35qYGDGdeFcMLqrP_T5VDpFKIA_p3wrnhiMQXlPLQ,5655
56
+ biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte,sha256=hSVrDzVo1vEIh2XQTFL36hBpg_VCObXwKzeaCTZRWUU,3009
57
57
  biopipen/reports/snp/PlinkCallRate.svelte,sha256=u0JGUzBS6MJR38TrI7tz08E7uFJToFPeALinu-KLUOg,706
58
58
  biopipen/reports/snp/PlinkFreq.svelte,sha256=GCLQXL3OY4b8BDzaLZ3vHVrsv2lNm5657UaSdiimE9w,523
59
59
  biopipen/reports/snp/PlinkHWE.svelte,sha256=zlAbn0DLwGBka-X9-MQplpfYkQIanH-QhgQL2GtK0UA,490
@@ -284,7 +284,7 @@ biopipen/utils/misc.py,sha256=pDZ-INWVNqHuXYvcjmu8KqNAigkh2lsHy0BxX44CPvc,4048
284
284
  biopipen/utils/reference.py,sha256=Oc6IlA1giLxymAuI7DO-IQLHQ7-DbsWzOQE86oTDfMU,5955
285
285
  biopipen/utils/reporter.py,sha256=VwLl6xyVDWnGY7NEXyqBlkW8expKJoNQ5iTyZSELf5c,4922
286
286
  biopipen/utils/vcf.py,sha256=MmMbAtLUcKPp02jUdk9TzuET2gWSeoWn7xgoOXFysK0,9393
287
- biopipen-0.34.10.dist-info/METADATA,sha256=IeN3Cn85Wko4l4ANyDPAxcKF1P5eJQ1SRyBxTfPg6b8,1027
288
- biopipen-0.34.10.dist-info/WHEEL,sha256=zp0Cn7JsFoX2ATtOhtaFYIiE2rmFAD4OcMhtUki8W3U,88
289
- biopipen-0.34.10.dist-info/entry_points.txt,sha256=BYqHGBQJxyFDNLYqgH64ycI5PYwnlqwYcCFsMvJgzAU,653
290
- biopipen-0.34.10.dist-info/RECORD,,
287
+ biopipen-0.34.11.dist-info/METADATA,sha256=MfIYyJ_H0P5vB0uzbCXpFQsDQ4hBAHPV-lrk-IBAAH0,1027
288
+ biopipen-0.34.11.dist-info/WHEEL,sha256=zp0Cn7JsFoX2ATtOhtaFYIiE2rmFAD4OcMhtUki8W3U,88
289
+ biopipen-0.34.11.dist-info/entry_points.txt,sha256=BYqHGBQJxyFDNLYqgH64ycI5PYwnlqwYcCFsMvJgzAU,653
290
+ biopipen-0.34.11.dist-info/RECORD,,