biopipen 0.33.1__py3-none-any.whl → 0.34.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of biopipen might be problematic. Click here for more details.
- biopipen/__init__.py +1 -1
- biopipen/core/filters.py +10 -183
- biopipen/core/proc.py +5 -3
- biopipen/core/testing.py +8 -1
- biopipen/ns/bam.py +40 -4
- biopipen/ns/cnv.py +1 -1
- biopipen/ns/cnvkit.py +1 -1
- biopipen/ns/delim.py +1 -1
- biopipen/ns/gsea.py +63 -37
- biopipen/ns/misc.py +38 -0
- biopipen/ns/plot.py +8 -0
- biopipen/ns/scrna.py +290 -288
- biopipen/ns/scrna_metabolic_landscape.py +207 -366
- biopipen/ns/tcr.py +165 -97
- biopipen/reports/bam/CNVpytor.svelte +4 -9
- biopipen/reports/cnvkit/CNVkitDiagram.svelte +1 -1
- biopipen/reports/cnvkit/CNVkitHeatmap.svelte +1 -1
- biopipen/reports/cnvkit/CNVkitScatter.svelte +1 -1
- biopipen/reports/{delim/SampleInfo.svelte → common.svelte} +2 -3
- biopipen/reports/scrna/DimPlots.svelte +1 -1
- biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte +51 -22
- biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte +46 -42
- biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte +63 -6
- biopipen/reports/snp/PlinkCallRate.svelte +2 -2
- biopipen/reports/snp/PlinkFreq.svelte +1 -1
- biopipen/reports/snp/PlinkHWE.svelte +1 -1
- biopipen/reports/snp/PlinkHet.svelte +1 -1
- biopipen/reports/snp/PlinkIBD.svelte +1 -1
- biopipen/reports/tcr/CDR3AAPhyschem.svelte +1 -1
- biopipen/scripts/bam/CNAClinic.R +41 -6
- biopipen/scripts/bam/CNVpytor.py +2 -1
- biopipen/scripts/bam/ControlFREEC.py +2 -3
- biopipen/scripts/bam/SamtoolsView.py +33 -0
- biopipen/scripts/cnv/AneuploidyScore.R +25 -13
- biopipen/scripts/cnv/AneuploidyScoreSummary.R +218 -163
- biopipen/scripts/cnv/TMADScore.R +4 -4
- biopipen/scripts/cnv/TMADScoreSummary.R +51 -84
- biopipen/scripts/cnvkit/CNVkitGuessBaits.py +3 -3
- biopipen/scripts/cnvkit/CNVkitHeatmap.py +3 -3
- biopipen/scripts/cnvkit/CNVkitReference.py +3 -3
- biopipen/scripts/delim/RowsBinder.R +1 -1
- biopipen/scripts/delim/SampleInfo.R +4 -1
- biopipen/scripts/gene/GeneNameConversion.R +14 -12
- biopipen/scripts/gsea/Enrichr.R +2 -2
- biopipen/scripts/gsea/FGSEA.R +184 -50
- biopipen/scripts/gsea/PreRank.R +3 -3
- biopipen/scripts/misc/Plot.R +80 -0
- biopipen/scripts/plot/VennDiagram.R +2 -2
- biopipen/scripts/protein/ProdigySummary.R +34 -27
- biopipen/scripts/regulatory/MotifAffinityTest.R +11 -9
- biopipen/scripts/regulatory/MotifAffinityTest_AtSNP.R +5 -5
- biopipen/scripts/regulatory/MotifAffinityTest_MotifBreakR.R +4 -4
- biopipen/scripts/regulatory/VariantMotifPlot.R +10 -8
- biopipen/scripts/regulatory/motifs-common.R +10 -9
- biopipen/scripts/rnaseq/Simulation-ESCO.R +14 -11
- biopipen/scripts/rnaseq/Simulation-RUVcorr.R +7 -4
- biopipen/scripts/rnaseq/Simulation.R +0 -2
- biopipen/scripts/rnaseq/UnitConversion.R +6 -5
- biopipen/scripts/scrna/AnnData2Seurat.R +25 -73
- biopipen/scripts/scrna/CellCellCommunication.py +1 -1
- biopipen/scripts/scrna/CellCellCommunicationPlots.R +51 -168
- biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R +99 -150
- biopipen/scripts/scrna/CellTypeAnnotation-direct.R +11 -9
- biopipen/scripts/scrna/CellTypeAnnotation-hitype.R +12 -9
- biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R +14 -11
- biopipen/scripts/scrna/CellTypeAnnotation-sctype.R +19 -16
- biopipen/scripts/scrna/CellTypeAnnotation.R +10 -2
- biopipen/scripts/scrna/CellsDistribution.R +1 -1
- biopipen/scripts/scrna/ExprImputation-alra.R +87 -11
- biopipen/scripts/scrna/ExprImputation-rmagic.R +247 -21
- biopipen/scripts/scrna/ExprImputation-scimpute.R +8 -5
- biopipen/scripts/scrna/MarkersFinder.R +348 -217
- biopipen/scripts/scrna/MetaMarkers.R +3 -3
- biopipen/scripts/scrna/ModuleScoreCalculator.R +14 -13
- biopipen/scripts/scrna/RadarPlots.R +1 -1
- biopipen/scripts/scrna/ScFGSEA.R +157 -75
- biopipen/scripts/scrna/ScSimulation.R +11 -10
- biopipen/scripts/scrna/ScVelo.py +605 -0
- biopipen/scripts/scrna/Seurat2AnnData.R +2 -3
- biopipen/scripts/scrna/SeuratClusterStats-clustree.R +1 -1
- biopipen/scripts/scrna/SeuratClusterStats-features.R +39 -30
- biopipen/scripts/scrna/SeuratClusterStats-ngenes.R +56 -65
- biopipen/scripts/scrna/SeuratClusterStats-stats.R +4 -4
- biopipen/scripts/scrna/SeuratClusterStats.R +9 -6
- biopipen/scripts/scrna/SeuratClustering.R +31 -48
- biopipen/scripts/scrna/SeuratLoading.R +2 -2
- biopipen/scripts/scrna/SeuratMap2Ref.R +66 -367
- biopipen/scripts/scrna/SeuratMetadataMutater.R +5 -7
- biopipen/scripts/scrna/SeuratPreparing.R +76 -24
- biopipen/scripts/scrna/SeuratSubClustering.R +46 -185
- biopipen/scripts/scrna/{SlingShot.R → Slingshot.R} +12 -16
- biopipen/scripts/scrna/Subset10X.R +2 -2
- biopipen/scripts/scrna/TopExpressingGenes.R +141 -184
- biopipen/scripts/scrna/celltypist-wrapper.py +6 -4
- biopipen/scripts/scrna/seurat_anndata_conversion.py +81 -0
- biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R +429 -123
- biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R +346 -245
- biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R +182 -173
- biopipen/scripts/snp/MatrixEQTL.R +39 -20
- biopipen/scripts/snp/PlinkCallRate.R +43 -34
- biopipen/scripts/snp/PlinkFreq.R +34 -41
- biopipen/scripts/snp/PlinkHWE.R +23 -18
- biopipen/scripts/snp/PlinkHet.R +26 -22
- biopipen/scripts/snp/PlinkIBD.R +30 -34
- biopipen/scripts/stats/ChowTest.R +9 -8
- biopipen/scripts/stats/DiffCoexpr.R +13 -11
- biopipen/scripts/stats/LiquidAssoc.R +7 -8
- biopipen/scripts/stats/Mediation.R +8 -8
- biopipen/scripts/stats/MetaPvalue.R +11 -13
- biopipen/scripts/stats/MetaPvalue1.R +6 -5
- biopipen/scripts/tcr/CDR3AAPhyschem.R +105 -164
- biopipen/scripts/tcr/ClonalStats.R +5 -4
- biopipen/scripts/tcr/CloneResidency.R +3 -3
- biopipen/scripts/tcr/CloneSizeQQPlot.R +2 -2
- biopipen/scripts/tcr/Immunarch2VDJtools.R +2 -2
- biopipen/scripts/tcr/ImmunarchFilter.R +3 -3
- biopipen/scripts/tcr/ImmunarchLoading.R +5 -5
- biopipen/scripts/tcr/ScRepCombiningExpression.R +39 -0
- biopipen/scripts/tcr/ScRepLoading.R +114 -92
- biopipen/scripts/tcr/TCRClusterStats.R +2 -2
- biopipen/scripts/tcr/TCRClustering.R +86 -97
- biopipen/scripts/tcr/TESSA.R +65 -115
- biopipen/scripts/tcr/VJUsage.R +5 -5
- biopipen/scripts/vcf/TruvariBenchSummary.R +15 -11
- biopipen/utils/common_docstrs.py +66 -63
- biopipen/utils/reporter.py +177 -0
- {biopipen-0.33.1.dist-info → biopipen-0.34.0.dist-info}/METADATA +2 -1
- {biopipen-0.33.1.dist-info → biopipen-0.34.0.dist-info}/RECORD +130 -144
- {biopipen-0.33.1.dist-info → biopipen-0.34.0.dist-info}/WHEEL +1 -1
- biopipen/reports/scrna/CellCellCommunicationPlots.svelte +0 -14
- biopipen/reports/scrna/SeuratClusterStats.svelte +0 -16
- biopipen/reports/scrna/SeuratMap2Ref.svelte +0 -37
- biopipen/reports/scrna/SeuratPreparing.svelte +0 -15
- biopipen/reports/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.svelte +0 -28
- biopipen/reports/utils/gsea.liq +0 -110
- biopipen/scripts/scrna/CellTypeAnnotation-common.R +0 -10
- biopipen/scripts/scrna/SeuratClustering-common.R +0 -213
- biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R +0 -193
- biopipen/utils/caching.R +0 -44
- biopipen/utils/gene.R +0 -95
- biopipen/utils/gsea.R +0 -329
- biopipen/utils/io.R +0 -20
- biopipen/utils/misc.R +0 -602
- biopipen/utils/mutate_helpers.R +0 -581
- biopipen/utils/plot.R +0 -209
- biopipen/utils/repr.R +0 -146
- biopipen/utils/rnaseq.R +0 -48
- biopipen/utils/single_cell.R +0 -207
- {biopipen-0.33.1.dist-info → biopipen-0.34.0.dist-info}/entry_points.txt +0 -0
|
@@ -1,30 +1,106 @@
|
|
|
1
|
-
{{ biopipen_dir | joinpaths: "utils", "misc.R" | source_r }}
|
|
2
|
-
|
|
3
1
|
library(SeuratWrappers)
|
|
4
2
|
library(Seurat)
|
|
3
|
+
library(purrr)
|
|
4
|
+
library(stringr)
|
|
5
|
+
library(biopipen.utils)
|
|
5
6
|
|
|
6
7
|
infile = {{in.infile | r}}
|
|
7
8
|
outfile = {{out.outfile | r}}
|
|
8
9
|
envs = {{envs.alra_args | r}}
|
|
9
10
|
|
|
10
|
-
|
|
11
|
-
|
|
11
|
+
log <- get_logger()
|
|
12
|
+
|
|
13
|
+
log$info("Loading Seurat object")
|
|
14
|
+
sobj <- read_obj(infile)
|
|
12
15
|
assay <- DefaultAssay(sobj)
|
|
13
16
|
|
|
14
|
-
|
|
15
|
-
|
|
17
|
+
# https://github.com/mojaveazure/seurat-disk/issues/102
|
|
18
|
+
# https://github.com/simoncmo/shared_seurat_scripts/blob/main/function_seurat_janitor.R
|
|
19
|
+
# Try to fix the issue with SCTModel
|
|
20
|
+
log$info("Trying to fix SCTModel issue (see mojaveazure/seurat-disk#102)")
|
|
21
|
+
# --------------------------------------------------------------------------
|
|
22
|
+
# Handle missing median_umi
|
|
23
|
+
fix_median_umi = function(SCTModel_obj){
|
|
24
|
+
err_message = ''
|
|
25
|
+
tryCatch({ test <- methods::validObject(SCTModel_obj) },
|
|
26
|
+
error = function(error_message) {
|
|
27
|
+
err_message <<- as.character(error_message)
|
|
28
|
+
})
|
|
29
|
+
missing_medium_umi = stringr::str_detect(err_message, 'median_umi')
|
|
30
|
+
|
|
31
|
+
if(missing_medium_umi){
|
|
32
|
+
message('Missing medium_umi, calculate again from cell.attributes$umi')
|
|
33
|
+
slot(SCTModel_obj, 'median_umi') = median(SCTModel_obj@cell.attributes$umi)
|
|
34
|
+
}
|
|
35
|
+
return(SCTModel_obj)
|
|
36
|
+
}
|
|
37
|
+
|
|
38
|
+
# Cleaning empty objects
|
|
39
|
+
# General purpose
|
|
40
|
+
clean_seurat_obj_list = function(obj_list, attirbute_to_check){
|
|
41
|
+
if(missing(attirbute_to_check)) {stop("Need attributes to check for cleaning")}
|
|
42
|
+
# Object type
|
|
43
|
+
obj_type = class(obj_list[[1]])[[1]]
|
|
44
|
+
|
|
45
|
+
# Count
|
|
46
|
+
obj_size = unlist(purrr::map(obj_list, function(object){
|
|
47
|
+
nrow(slot(object, attirbute_to_check))
|
|
48
|
+
}))
|
|
49
|
+
|
|
50
|
+
# Remove empty
|
|
51
|
+
if(length(obj_size ==0) != 0 ){
|
|
52
|
+
message(str_glue('Removing {length(obj_size ==0)} empty object from the {obj_type} object list'))
|
|
53
|
+
obj_list = obj_list[obj_size!=0]
|
|
54
|
+
message(str_glue('{length(obj_list)} {obj_type} object(s) left'))
|
|
55
|
+
}
|
|
56
|
+
obj_list
|
|
57
|
+
}
|
|
58
|
+
|
|
59
|
+
# for SCTModel.list slot
|
|
60
|
+
clean_seurat_SCTModel_list = function(sct_model_list){
|
|
61
|
+
clean_seurat_obj_list(obj_list = sct_model_list, attirbute_to_check = 'cell.attributes')
|
|
62
|
+
}
|
|
63
|
+
|
|
64
|
+
fix_seurat_SCT = function(obj){
|
|
65
|
+
# Check first
|
|
66
|
+
if(!'SCT' %in% Assays(obj)){
|
|
67
|
+
message('SCT assay not found. Nothing to fix')
|
|
68
|
+
return(obj)
|
|
69
|
+
}
|
|
70
|
+
|
|
71
|
+
# Model list
|
|
72
|
+
sct_model_list = obj$SCT@SCTModel.list
|
|
73
|
+
# 1. clean SCTModel list
|
|
74
|
+
sct_model_list = clean_seurat_SCTModel_list(sct_model_list)
|
|
75
|
+
|
|
76
|
+
# 2. fix missing median_umi
|
|
77
|
+
sct_model_list = map(sct_model_list, function(sct_model){
|
|
78
|
+
fix_median_umi(sct_model)
|
|
79
|
+
})
|
|
80
|
+
|
|
81
|
+
# Add back and retrun
|
|
82
|
+
obj$SCT@SCTModel.list = sct_model_list
|
|
83
|
+
|
|
84
|
+
return(obj)
|
|
85
|
+
}
|
|
86
|
+
# --------------------------------------------------------------------------
|
|
87
|
+
sobj = fix_seurat_SCT(sobj)
|
|
88
|
+
|
|
89
|
+
log$info("Imputing expression values, using ALRA")
|
|
90
|
+
envs$object <- sobj
|
|
16
91
|
sobj = do_call(RunALRA, envs)
|
|
92
|
+
envs$object <- NULL
|
|
93
|
+
gc()
|
|
17
94
|
|
|
18
|
-
|
|
19
|
-
log_info("Renaming assays")
|
|
95
|
+
log$info("Renaming assays")
|
|
20
96
|
sobj = RenameAssays(sobj, assay.name = assay, new.assay.name = "RAW")
|
|
21
97
|
sobj = RenameAssays(sobj, assay.name = "alra", new.assay.name = assay)
|
|
22
98
|
DefaultAssay(sobj) <- assay
|
|
23
99
|
|
|
24
|
-
sobj@misc$
|
|
100
|
+
sobj@misc$impute_method = "alra"
|
|
25
101
|
|
|
26
|
-
|
|
27
|
-
|
|
102
|
+
log$info("Saving Seurat object")
|
|
103
|
+
save_obj(sobj, outfile)
|
|
28
104
|
|
|
29
105
|
# choosek_plot_file = file.path(dirname(outfile), "choosek.png")
|
|
30
106
|
# png(choosek_plot_file, width = 1200, height = 1000, res = 100)
|
|
@@ -1,30 +1,256 @@
|
|
|
1
|
+
tryCatch(
|
|
2
|
+
{
|
|
3
|
+
# in order to load Rmagic
|
|
4
|
+
workdir <- {{ job.outdir | r }}
|
|
5
|
+
conda_prefix <- Sys.getenv("CONDA_PREFIX")
|
|
6
|
+
setwd(workdir)
|
|
7
|
+
if (!dir.exists("miniconda3")) {
|
|
8
|
+
file.symlink(conda_prefix, "miniconda3")
|
|
9
|
+
}
|
|
10
|
+
},
|
|
11
|
+
error = function(e) {}
|
|
12
|
+
)
|
|
1
13
|
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
conda_prefix = Sys.getenv("CONDA_PREFIX")
|
|
6
|
-
setwd(workdir)
|
|
7
|
-
file.symlink(conda_prefix, "miniconda3")
|
|
8
|
-
}, error=function(e) {})
|
|
9
|
-
|
|
10
|
-
python = {{envs.rmagic_args.python | r}}
|
|
11
|
-
Sys.setenv(RETICULATE_PYTHON = Sys.which(python))
|
|
12
|
-
# reticulate::use_python(python)
|
|
14
|
+
python <- {{ envs.rmagic_args.python | r }}
|
|
15
|
+
Sys.setenv(RETICULATE_PYTHON = ifelse(grepl("/", python, fixed = TRUE), python, Sys.which(python)))
|
|
16
|
+
# reticulate::use_python(python, require = TRUE)
|
|
13
17
|
|
|
14
18
|
library(Rmagic)
|
|
19
|
+
Rmagic:::load_pymagic()
|
|
20
|
+
pymagic <- tryCatch({
|
|
21
|
+
Rmagic:::pymagic
|
|
22
|
+
}, error = function(e) {
|
|
23
|
+
NULL
|
|
24
|
+
})
|
|
25
|
+
if (is.null(pymagic)) {
|
|
26
|
+
stop("Failed to load pymagic module. Please check your Python environment.\n ",
|
|
27
|
+
"Current python used by reticulate: ", reticulate::py_config()$python)
|
|
28
|
+
}
|
|
29
|
+
|
|
30
|
+
library(Matrix)
|
|
15
31
|
library(Seurat)
|
|
32
|
+
library(biopipen.utils)
|
|
33
|
+
|
|
34
|
+
log <- get_logger()
|
|
35
|
+
|
|
36
|
+
infile <- {{ in.infile | r }}
|
|
37
|
+
outfile <- {{ out.outfile | r }}
|
|
38
|
+
threshold <- {{ envs.rmagic_args.threshold | r }}
|
|
39
|
+
|
|
40
|
+
log$info("Loading Seurat object ...")
|
|
41
|
+
sobj <- read_obj(infile)
|
|
42
|
+
|
|
43
|
+
if (threshold > 0) {
|
|
44
|
+
# only use the genes with expression in number of cells greater than threshold
|
|
45
|
+
log$info("Fetching genes with expression great than threshold ({threshold}) ...")
|
|
46
|
+
# get the expression matrix
|
|
47
|
+
layers <- Layers(sobj)
|
|
48
|
+
layer <- ifelse(!"counts" %in% layers, "data", "counts")
|
|
49
|
+
counts <- GetAssayData(sobj, layer = layer)
|
|
50
|
+
# Percent of cells expressing each gene
|
|
51
|
+
dropout_rates <- Matrix::rowSums(counts == 0) / ncol(counts)
|
|
52
|
+
|
|
53
|
+
# Genes to impute
|
|
54
|
+
genes_to_impute <- names(dropout_rates[dropout_rates > threshold])
|
|
55
|
+
|
|
56
|
+
log$info("- Will impute for {length(genes_to_impute)}/{length(dropout_rates)} genes ...")
|
|
57
|
+
rm(counts)
|
|
58
|
+
rm(dropout_rates)
|
|
59
|
+
gc()
|
|
60
|
+
} else {
|
|
61
|
+
genes_to_impute <- NULL
|
|
62
|
+
}
|
|
63
|
+
|
|
64
|
+
# get the expression matrix
|
|
65
|
+
data_impute <- t(GetAssayData(sobj, layer = "data"))
|
|
66
|
+
|
|
67
|
+
log$info("Running MAGIC ...")
|
|
68
|
+
check.int.or.null <- function(x) {
|
|
69
|
+
if (is.numeric(x = x)) {
|
|
70
|
+
x <- as.integer(x = x)
|
|
71
|
+
} else if (!is.null(x = x) && is.na(x = x)) {
|
|
72
|
+
x <- NULL
|
|
73
|
+
}
|
|
74
|
+
x
|
|
75
|
+
}
|
|
76
|
+
|
|
77
|
+
check.double.or.null <- function(x) {
|
|
78
|
+
if (is.numeric(x = x)) {
|
|
79
|
+
x <- as.integer(x = x)
|
|
80
|
+
} else if (!is.null(x = x) && is.na(x = x)) {
|
|
81
|
+
x <- NULL
|
|
82
|
+
}
|
|
83
|
+
x
|
|
84
|
+
}
|
|
85
|
+
|
|
86
|
+
check.int.or.string <- function(x, str) {
|
|
87
|
+
if (is.numeric(x = x)) {
|
|
88
|
+
x <- as.integer(x = x)
|
|
89
|
+
} else if (is.null(x = x) || is.na(x = x)) {
|
|
90
|
+
x <- str
|
|
91
|
+
}
|
|
92
|
+
x
|
|
93
|
+
}
|
|
94
|
+
# the magic function is defined in the Rmagic package
|
|
95
|
+
# it has a bug at line 138 when genes are given as a character vector
|
|
96
|
+
# See also https://github.com/KrishnaswamyLab/MAGIC/issues/227
|
|
97
|
+
magic_patched <- function(
|
|
98
|
+
data,
|
|
99
|
+
genes = NULL,
|
|
100
|
+
knn = 5,
|
|
101
|
+
knn.max = NULL,
|
|
102
|
+
decay = 1,
|
|
103
|
+
t = 3,
|
|
104
|
+
npca = 100,
|
|
105
|
+
solver = "exact",
|
|
106
|
+
init = NULL,
|
|
107
|
+
t.max = 20,
|
|
108
|
+
knn.dist.method = "euclidean",
|
|
109
|
+
verbose = 1,
|
|
110
|
+
n.jobs = 1,
|
|
111
|
+
seed = NULL,
|
|
112
|
+
# deprecated args
|
|
113
|
+
k = NULL, alpha = NULL,
|
|
114
|
+
...) {
|
|
115
|
+
# check installation
|
|
116
|
+
# if (!reticulate::py_module_available(module = "magic") ||
|
|
117
|
+
# !exists("pymagic") || is.null(pymagic)) {
|
|
118
|
+
# Rmagic:::load_pymagic()
|
|
119
|
+
# }
|
|
120
|
+
# check for deprecated arguments
|
|
121
|
+
if (!is.null(k)) {
|
|
122
|
+
message("Argument k is deprecated. Using knn instead.")
|
|
123
|
+
knn <- k
|
|
124
|
+
}
|
|
125
|
+
if (!is.null(alpha)) {
|
|
126
|
+
message("Argument alpha is deprecated. Using decay instead.")
|
|
127
|
+
decay <- alpha
|
|
128
|
+
}
|
|
129
|
+
# validate parameters
|
|
130
|
+
knn <- as.integer(x = knn)
|
|
131
|
+
t.max <- as.integer(x = t.max)
|
|
132
|
+
n.jobs <- as.integer(x = n.jobs)
|
|
133
|
+
npca <- check.int.or.null(npca)
|
|
134
|
+
knn.max <- check.int.or.null(knn.max)
|
|
135
|
+
seed <- check.int.or.null(seed)
|
|
136
|
+
verbose <- check.int.or.null(verbose)
|
|
137
|
+
decay <- check.double.or.null(decay)
|
|
138
|
+
t <- check.int.or.string(t, "auto")
|
|
139
|
+
if (!methods::is(object = data, "Matrix")) {
|
|
140
|
+
data <- as.matrix(x = data)
|
|
141
|
+
}
|
|
142
|
+
# if (length(genes) <= 1 && (is.null(x = genes) || is.na(x = genes))) {
|
|
143
|
+
# ^^^^^^^^^^^^^^^^ bug here
|
|
144
|
+
if (length(genes) <= 1 && (is.null(x = genes) || (length(genes) == 1 && is.na(x = genes)))) {
|
|
145
|
+
genes <- NULL
|
|
146
|
+
gene_names <- colnames(x = data)
|
|
147
|
+
} else if (is.numeric(x = genes)) {
|
|
148
|
+
gene_names <- colnames(x = data)[genes]
|
|
149
|
+
genes <- as.integer(x = genes - 1)
|
|
150
|
+
} else if (length(x = genes) == 1 && genes == "all_genes") {
|
|
151
|
+
gene_names <- colnames(x = data)
|
|
152
|
+
} else if (length(x = genes) == 1 && genes == "pca_only") {
|
|
153
|
+
gene_names <- paste0("PC", 1:npca)
|
|
154
|
+
} else {
|
|
155
|
+
# character vector
|
|
156
|
+
if (!all(genes %in% colnames(x = data))) {
|
|
157
|
+
warning(paste0(
|
|
158
|
+
"Genes ",
|
|
159
|
+
genes[!(genes %in% colnames(data))],
|
|
160
|
+
" not found.",
|
|
161
|
+
collapse = ", "
|
|
162
|
+
))
|
|
163
|
+
}
|
|
164
|
+
genes <- which(x = colnames(x = data) %in% genes)
|
|
165
|
+
gene_names <- colnames(x = data)[genes]
|
|
166
|
+
genes <- as.integer(x = genes - 1)
|
|
167
|
+
}
|
|
168
|
+
# store parameters
|
|
169
|
+
params <- list(
|
|
170
|
+
"data" = data,
|
|
171
|
+
"knn" = knn,
|
|
172
|
+
"knn.max" = knn.max,
|
|
173
|
+
"decay" = decay,
|
|
174
|
+
"t" = t,
|
|
175
|
+
"npca" = npca,
|
|
176
|
+
"solver" = solver,
|
|
177
|
+
"knn.dist.method" = knn.dist.method
|
|
178
|
+
)
|
|
179
|
+
# use pre-initialized values if given
|
|
180
|
+
operator <- NULL
|
|
181
|
+
if (!is.null(x = init)) {
|
|
182
|
+
if (!methods::is(init, "magic")) {
|
|
183
|
+
warning("object passed to init is not a phate object")
|
|
184
|
+
} else {
|
|
185
|
+
operator <- init$operator
|
|
186
|
+
operator$set_params(
|
|
187
|
+
knn = knn,
|
|
188
|
+
knn_max = knn.max,
|
|
189
|
+
decay = decay,
|
|
190
|
+
t = t,
|
|
191
|
+
n_pca = npca,
|
|
192
|
+
solver = solver,
|
|
193
|
+
knn_dist = knn.dist.method,
|
|
194
|
+
n_jobs = n.jobs,
|
|
195
|
+
random_state = seed,
|
|
196
|
+
verbose = verbose,
|
|
197
|
+
...
|
|
198
|
+
)
|
|
199
|
+
}
|
|
200
|
+
}
|
|
201
|
+
if (is.null(x = operator)) {
|
|
202
|
+
operator <- pymagic$MAGIC(
|
|
203
|
+
knn = knn,
|
|
204
|
+
knn_max = knn.max,
|
|
205
|
+
decay = decay,
|
|
206
|
+
t = t,
|
|
207
|
+
n_pca = npca,
|
|
208
|
+
solver = solver,
|
|
209
|
+
knn_dist = knn.dist.method,
|
|
210
|
+
n_jobs = n.jobs,
|
|
211
|
+
random_state = seed,
|
|
212
|
+
verbose = verbose,
|
|
213
|
+
...
|
|
214
|
+
)
|
|
215
|
+
}
|
|
216
|
+
result <- operator$fit_transform(
|
|
217
|
+
data,
|
|
218
|
+
genes = genes,
|
|
219
|
+
t_max = t.max
|
|
220
|
+
)
|
|
221
|
+
colnames(x = result) <- gene_names
|
|
222
|
+
rownames(x = result) <- rownames(data)
|
|
223
|
+
result <- as.data.frame(x = result)
|
|
224
|
+
result <- list(
|
|
225
|
+
"result" = result,
|
|
226
|
+
"operator" = operator,
|
|
227
|
+
"params" = params
|
|
228
|
+
)
|
|
229
|
+
class(x = result) <- c("magic", "list")
|
|
230
|
+
return(result)
|
|
231
|
+
}
|
|
16
232
|
|
|
17
|
-
|
|
18
|
-
outfile <- {{out.outfile | r}}
|
|
233
|
+
data_impute <- magic_patched(data_impute, genes = genes_to_impute)
|
|
19
234
|
|
|
20
|
-
|
|
21
|
-
|
|
235
|
+
if (threshold > 0) {
|
|
236
|
+
data <- t(GetAssayData(sobj, layer = "data"))
|
|
237
|
+
data_impute <- cbind(data[, setdiff(colnames(data), genes_to_impute)], Matrix::as.matrix(data_impute$result))
|
|
238
|
+
rm(data)
|
|
239
|
+
gc()
|
|
240
|
+
} else {
|
|
241
|
+
# if threshold is 0, then we need to transpose the data back
|
|
242
|
+
data_impute <- t(Matrix::as.matrix(data_impute$result))
|
|
243
|
+
}
|
|
22
244
|
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
sobj <-
|
|
245
|
+
log$info("Adding imputed data to Seurat object ...")
|
|
246
|
+
# Add imputed data to the Seurat object
|
|
247
|
+
sobj <- SetAssayData(
|
|
248
|
+
sobj,
|
|
249
|
+
layer = "data",
|
|
250
|
+
new.data = t(data_impute)
|
|
251
|
+
)
|
|
26
252
|
|
|
27
|
-
|
|
253
|
+
sobj@misc$impute_method <- "rmagic"
|
|
28
254
|
|
|
29
|
-
|
|
30
|
-
|
|
255
|
+
log$info("Saving Seurat object ...")
|
|
256
|
+
save_obj(sobj, outfile)
|
|
@@ -3,7 +3,7 @@ library(Seurat)
|
|
|
3
3
|
|
|
4
4
|
infile = {{in.infile | r}}
|
|
5
5
|
outfile = {{out.outfile | r}}
|
|
6
|
-
joboutdir =
|
|
6
|
+
joboutdir = {{job.outdir | append: "/" | r}}
|
|
7
7
|
drop_thre = {{envs.scimpute_args.drop_thre | r}}
|
|
8
8
|
kcluster = {{(envs.scimpute_args.kcluster | default: None | r}}
|
|
9
9
|
ncores = {{envs.scimpute_args.ncores | r}}
|
|
@@ -12,7 +12,7 @@ refgene = {{envs.scimpute_args.refgene | r}}
|
|
|
12
12
|
setwd(joboutdir)
|
|
13
13
|
|
|
14
14
|
labels = NULL
|
|
15
|
-
sobj =
|
|
15
|
+
sobj = read_obj(infile)
|
|
16
16
|
counts = as.data.frame(sobj@assays$RNA@counts)
|
|
17
17
|
kc = length(unique(Idents(sobj)))
|
|
18
18
|
if (kc > 0) {
|
|
@@ -38,6 +38,9 @@ scimpute(
|
|
|
38
38
|
imputed = readRDS(file.path(joboutdir, "scimpute_count.rds"))
|
|
39
39
|
outobj = CreateSeuratObject(counts = imputed)
|
|
40
40
|
|
|
41
|
-
outobj@meta.data = sobj@meta.data[rownames(outobj@meta.data)
|
|
42
|
-
|
|
43
|
-
|
|
41
|
+
outobj@meta.data = sobj@meta.data[rownames(outobj@meta.data), , drop=FALSE]
|
|
42
|
+
# remember that it is the counts being imputed, we still need to
|
|
43
|
+
# normalize the data
|
|
44
|
+
outobj@misc$impute_method = "scimpute"
|
|
45
|
+
|
|
46
|
+
save_obj(outobj, outfile)
|