biopipen 0.32.1__py3-none-any.whl → 0.33.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of biopipen might be problematic. Click here for more details.
- biopipen/__init__.py +1 -1
- biopipen/core/config.toml +6 -0
- biopipen/core/filters.py +77 -26
- biopipen/core/testing.py +6 -1
- biopipen/ns/bam.py +39 -0
- biopipen/ns/cellranger.py +5 -0
- biopipen/ns/cellranger_pipeline.py +2 -2
- biopipen/ns/cnvkit_pipeline.py +4 -1
- biopipen/ns/delim.py +33 -27
- biopipen/ns/protein.py +99 -0
- biopipen/ns/scrna.py +411 -250
- biopipen/ns/snp.py +16 -3
- biopipen/ns/tcr.py +125 -1
- biopipen/ns/vcf.py +34 -0
- biopipen/ns/web.py +5 -1
- biopipen/reports/scrna/SeuratClusterStats.svelte +1 -1
- biopipen/reports/scrna/SeuratMap2Ref.svelte +15 -2
- biopipen/reports/tcr/ClonalStats.svelte +15 -0
- biopipen/reports/utils/misc.liq +22 -7
- biopipen/scripts/bam/BamMerge.py +2 -2
- biopipen/scripts/bam/BamSampling.py +4 -4
- biopipen/scripts/bam/BamSort.py +141 -0
- biopipen/scripts/bam/BamSplitChroms.py +10 -10
- biopipen/scripts/bam/BamSubsetByBed.py +3 -3
- biopipen/scripts/bam/CNVpytor.py +10 -10
- biopipen/scripts/bam/ControlFREEC.py +11 -11
- biopipen/scripts/bed/Bed2Vcf.py +5 -5
- biopipen/scripts/bed/BedConsensus.py +5 -5
- biopipen/scripts/bed/BedLiftOver.sh +6 -4
- biopipen/scripts/bed/BedtoolsIntersect.py +4 -4
- biopipen/scripts/bed/BedtoolsMakeWindows.py +3 -3
- biopipen/scripts/bed/BedtoolsMerge.py +4 -4
- biopipen/scripts/cellranger/CellRangerCount.py +20 -9
- biopipen/scripts/cellranger/CellRangerSummary.R +20 -29
- biopipen/scripts/cellranger/CellRangerVdj.py +8 -8
- biopipen/scripts/cnvkit/CNVkitAccess.py +6 -6
- biopipen/scripts/cnvkit/CNVkitAutobin.py +25 -18
- biopipen/scripts/cnvkit/CNVkitBatch.py +5 -5
- biopipen/scripts/cnvkit/CNVkitCall.py +3 -3
- biopipen/scripts/cnvkit/CNVkitCoverage.py +2 -2
- biopipen/scripts/cnvkit/CNVkitDiagram.py +5 -5
- biopipen/scripts/cnvkit/CNVkitFix.py +3 -3
- biopipen/scripts/cnvkit/CNVkitGuessBaits.py +9 -5
- biopipen/scripts/cnvkit/CNVkitHeatmap.py +4 -4
- biopipen/scripts/cnvkit/CNVkitReference.py +2 -2
- biopipen/scripts/cnvkit/CNVkitScatter.py +5 -5
- biopipen/scripts/cnvkit/CNVkitSegment.py +5 -5
- biopipen/scripts/cnvkit/guess_baits.py +166 -93
- biopipen/scripts/delim/SampleInfo.R +85 -139
- biopipen/scripts/misc/Config2File.py +2 -2
- biopipen/scripts/misc/Str2File.py +2 -2
- biopipen/scripts/protein/MMCIF2PDB.py +33 -0
- biopipen/scripts/protein/PDB2Fasta.py +60 -0
- biopipen/scripts/protein/Prodigy.py +4 -4
- biopipen/scripts/protein/RMSD.py +178 -0
- biopipen/scripts/regulatory/MotifScan.py +8 -8
- biopipen/scripts/scrna/CellCellCommunication.py +59 -22
- biopipen/scripts/scrna/CellsDistribution.R +31 -6
- biopipen/scripts/scrna/MarkersFinder.R +272 -602
- biopipen/scripts/scrna/MetaMarkers.R +16 -7
- biopipen/scripts/scrna/RadarPlots.R +75 -35
- biopipen/scripts/scrna/SCP-plot.R +15202 -0
- biopipen/scripts/scrna/ScVelo.py +0 -0
- biopipen/scripts/scrna/SeuratClusterStats-clustree.R +23 -25
- biopipen/scripts/scrna/SeuratClusterStats-dimplots.R +26 -47
- biopipen/scripts/scrna/SeuratClusterStats-features.R +85 -385
- biopipen/scripts/scrna/SeuratClusterStats-ngenes.R +33 -13
- biopipen/scripts/scrna/SeuratClusterStats-stats.R +45 -228
- biopipen/scripts/scrna/SeuratClusterStats.R +13 -19
- biopipen/scripts/scrna/SeuratMap2Ref.R +16 -6
- biopipen/scripts/scrna/SeuratPreparing.R +138 -81
- biopipen/scripts/scrna/SlingShot.R +71 -0
- biopipen/scripts/scrna/TopExpressingGenes.R +9 -7
- biopipen/scripts/scrna/celltypist-wrapper.py +7 -6
- biopipen/scripts/snp/Plink2GTMat.py +26 -11
- biopipen/scripts/snp/PlinkFilter.py +7 -7
- biopipen/scripts/snp/PlinkFromVcf.py +8 -5
- biopipen/scripts/snp/PlinkSimulation.py +4 -4
- biopipen/scripts/snp/PlinkUpdateName.py +4 -4
- biopipen/scripts/stats/ChowTest.R +48 -22
- biopipen/scripts/tcgamaf/Maf2Vcf.py +2 -2
- biopipen/scripts/tcgamaf/MafAddChr.py +2 -2
- biopipen/scripts/tcr/CDR3AAPhyschem.R +12 -2
- biopipen/scripts/tcr/ClonalStats.R +484 -0
- biopipen/scripts/tcr/CloneResidency.R +23 -5
- biopipen/scripts/tcr/Immunarch-basic.R +8 -1
- biopipen/scripts/tcr/Immunarch-clonality.R +5 -0
- biopipen/scripts/tcr/Immunarch-diversity.R +25 -4
- biopipen/scripts/tcr/Immunarch-geneusage.R +15 -1
- biopipen/scripts/tcr/Immunarch-kmer.R +14 -1
- biopipen/scripts/tcr/Immunarch-overlap.R +15 -1
- biopipen/scripts/tcr/Immunarch-spectratyping.R +10 -1
- biopipen/scripts/tcr/Immunarch-tracking.R +6 -0
- biopipen/scripts/tcr/Immunarch-vjjunc.R +33 -0
- biopipen/scripts/tcr/ScRepLoading.R +127 -0
- biopipen/scripts/tcr/TCRClusterStats.R +24 -7
- biopipen/scripts/tcr/TCRDock.py +10 -6
- biopipen/scripts/tcr/TESSA.R +6 -1
- biopipen/scripts/tcr/vdjtools-patch.sh +1 -1
- biopipen/scripts/vcf/BcftoolsAnnotate.py +8 -8
- biopipen/scripts/vcf/BcftoolsFilter.py +3 -3
- biopipen/scripts/vcf/BcftoolsMerge.py +31 -0
- biopipen/scripts/vcf/BcftoolsSort.py +4 -4
- biopipen/scripts/vcf/BcftoolsView.py +5 -5
- biopipen/scripts/vcf/Vcf2Bed.py +2 -2
- biopipen/scripts/vcf/VcfAnno.py +11 -11
- biopipen/scripts/vcf/VcfDownSample.sh +22 -10
- biopipen/scripts/vcf/VcfFilter.py +5 -5
- biopipen/scripts/vcf/VcfFix.py +7 -7
- biopipen/scripts/vcf/VcfFix_utils.py +12 -3
- biopipen/scripts/vcf/VcfIndex.py +3 -3
- biopipen/scripts/vcf/VcfIntersect.py +3 -3
- biopipen/scripts/vcf/VcfLiftOver.sh +5 -0
- biopipen/scripts/vcf/VcfSplitSamples.py +4 -4
- biopipen/scripts/vcf/bcftools_utils.py +3 -3
- biopipen/scripts/web/Download.py +8 -4
- biopipen/scripts/web/DownloadList.py +5 -5
- biopipen/scripts/web/GCloudStorageDownloadBucket.py +5 -5
- biopipen/scripts/web/GCloudStorageDownloadFile.py +3 -3
- biopipen/scripts/web/gcloud_common.py +1 -1
- biopipen/utils/gsea.R +96 -42
- biopipen/utils/misc.R +205 -7
- biopipen/utils/misc.py +17 -8
- biopipen/utils/plot.R +53 -17
- biopipen/utils/reference.py +11 -11
- biopipen/utils/repr.R +146 -0
- biopipen/utils/vcf.py +1 -1
- {biopipen-0.32.1.dist-info → biopipen-0.33.0.dist-info}/METADATA +9 -9
- {biopipen-0.32.1.dist-info → biopipen-0.33.0.dist-info}/RECORD +131 -122
- {biopipen-0.32.1.dist-info → biopipen-0.33.0.dist-info}/WHEEL +1 -1
- biopipen/scripts/scrna/SeuratClusterStats-hists.R +0 -139
- biopipen/scripts/scrna/SeuratPreparing-common.R +0 -452
- biopipen/scripts/scrna/SeuratPreparing-doublet_detection.R +0 -201
- {biopipen-0.32.1.dist-info → biopipen-0.33.0.dist-info}/entry_points.txt +0 -0
|
@@ -2,15 +2,35 @@
|
|
|
2
2
|
|
|
3
3
|
# features_defaults = {{envs.features_defaults | r: todot="-"}}
|
|
4
4
|
# features = {{envs.features | r: todot="-", skip=1}}
|
|
5
|
-
|
|
5
|
+
log$info("features:")
|
|
6
6
|
|
|
7
7
|
odir = file.path(outdir, "features")
|
|
8
8
|
dir.create(odir, recursive=TRUE, showWarnings=FALSE)
|
|
9
9
|
|
|
10
|
-
|
|
10
|
+
# highly variable features
|
|
11
|
+
hvf <- NULL
|
|
12
|
+
|
|
13
|
+
.get_features = function(features, object) {
|
|
11
14
|
if (is.null(features)) { features = 20 }
|
|
12
15
|
if (is.numeric(features)) {
|
|
13
|
-
|
|
16
|
+
if (!is.null(hvf)) {
|
|
17
|
+
return(hvf[1:features])
|
|
18
|
+
}
|
|
19
|
+
vf <- VariableFeatures(object)
|
|
20
|
+
if (length(vf) == 0) {
|
|
21
|
+
if (DefaultAssay(object) == "SCT") {
|
|
22
|
+
# Still use RNA assay to find variable features
|
|
23
|
+
# See
|
|
24
|
+
# https://github.com/satijalab/seurat/issues/6064
|
|
25
|
+
# https://github.com/satijalab/seurat/issues/8238
|
|
26
|
+
# https://github.com/satijalab/seurat/issues/5761
|
|
27
|
+
vf <- FindVariableFeatures(object, nfeatures = features, assay = "RNA")
|
|
28
|
+
} else {
|
|
29
|
+
vf <- FindVariableFeatures(object, nfeatures = features)
|
|
30
|
+
}
|
|
31
|
+
}
|
|
32
|
+
hvf <<- vf
|
|
33
|
+
return(hvf[1:features])
|
|
14
34
|
}
|
|
15
35
|
if (is.character(features) && length(features) > 1) {
|
|
16
36
|
return (features)
|
|
@@ -36,412 +56,92 @@ dir.create(odir, recursive=TRUE, showWarnings=FALSE)
|
|
|
36
56
|
return (trimws(unlist(strsplit(features, ","))))
|
|
37
57
|
}
|
|
38
58
|
|
|
39
|
-
do_one_features
|
|
40
|
-
|
|
59
|
+
do_one_features <- function(name) {
|
|
60
|
+
log$info("- Case: {name}")
|
|
41
61
|
|
|
42
|
-
case
|
|
43
|
-
case
|
|
44
|
-
|
|
45
|
-
"
|
|
46
|
-
"
|
|
47
|
-
"subset",
|
|
48
|
-
"plus",
|
|
49
|
-
"ident",
|
|
50
|
-
"cluster_orderby",
|
|
51
|
-
"kind"
|
|
52
|
-
)
|
|
62
|
+
case <- list_update(features_defaults, features[[name]])
|
|
63
|
+
case <- extract_vars(
|
|
64
|
+
case,
|
|
65
|
+
"devpars", "more_formats", "save_code", "save_data", "order_by",
|
|
66
|
+
"subset", "features", "descr")
|
|
53
67
|
|
|
54
|
-
if (is.
|
|
55
|
-
case$object
|
|
68
|
+
if (!is.null(subset)) {
|
|
69
|
+
case$object <- srtobj %>% filter(!!parse_expr(subset))
|
|
56
70
|
} else {
|
|
57
|
-
case$object
|
|
71
|
+
case$object <- srtobj
|
|
58
72
|
}
|
|
59
73
|
|
|
60
|
-
if (!is.null(
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
} else if (!is.null(case$cluster_orderby)) {
|
|
69
|
-
cluster_order_df = case$object@meta.data %>%
|
|
70
|
-
group_by(!!sym(case$ident)) %>%
|
|
71
|
-
summarise(!!sym(case$cluster_orderby) := !!parse_expr(case$cluster_orderby)) %>%
|
|
72
|
-
arrange(!!sym(case$cluster_orderby))
|
|
73
|
-
cluster_order_val = cluster_order_df[[case$cluster_orderby]]
|
|
74
|
-
clusters = cluster_order_df[[case$ident]] %>% as.character() %>% unique()
|
|
75
|
-
case$object@meta.data[[case$ident]] = factor(Idents(case$object), levels = clusters)
|
|
76
|
-
Idents(case$object) = case$ident
|
|
77
|
-
}
|
|
78
|
-
n_uidents = length(unique(Idents(case$object)))
|
|
79
|
-
max_nchar_idents = max(nchar(unique(as.character(Idents(case$object)))))
|
|
74
|
+
if (exists("order_by") && !is.null(order_by)) {
|
|
75
|
+
if (length(order_by) < 2) {
|
|
76
|
+
clusters <- case$object@meta.data %>%
|
|
77
|
+
group_by(!!sym(case$ident)) %>%
|
|
78
|
+
arrange(!!parse_expr(order_by)) %>%
|
|
79
|
+
ungroup() %>%
|
|
80
|
+
pull(!!sym(case$ident)) %>%
|
|
81
|
+
unique()
|
|
80
82
|
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
case$kind = "ridge"
|
|
85
|
-
if (is.null(case$cols)) {
|
|
86
|
-
case$cols = pal_biopipen()(n_uidents)
|
|
87
|
-
}
|
|
88
|
-
excluded_args = c(excluded_args, "split.by", "reduction")
|
|
89
|
-
fn = RidgePlot
|
|
90
|
-
default_devpars = function(features, ncol) {
|
|
91
|
-
if (is.null(ncol)) { ncol = 1 }
|
|
92
|
-
list(
|
|
93
|
-
width = 400 * ncol,
|
|
94
|
-
height = ceiling(length(features) / ncol) * ifelse(n_uidents < 10, 300, 400),
|
|
95
|
-
res = 100
|
|
96
|
-
)
|
|
97
|
-
}
|
|
98
|
-
} else if (case$kind %in% c("vln", "violin", "vlnplot", "violinplot")) {
|
|
99
|
-
case$kind = "violin"
|
|
100
|
-
if (is.null(case$cols)) { case$cols = pal_biopipen()(n_uidents) }
|
|
101
|
-
if (is.null(case$pt.size)) { case$pt.size = 0 }
|
|
102
|
-
|
|
103
|
-
excluded_args = c(excluded_args, "reduction")
|
|
104
|
-
fn = VlnPlot
|
|
105
|
-
default_devpars = function(features, ncol) {
|
|
106
|
-
if (is.null(ncol)) { ncol = 1 }
|
|
107
|
-
list(
|
|
108
|
-
width = 400 * ncol,
|
|
109
|
-
height = ceiling(length(features) / ncol) * (max_nchar_idents * .1 + 275),
|
|
110
|
-
res = 100
|
|
111
|
-
)
|
|
112
|
-
}
|
|
113
|
-
} else if (case$kind %in% c("feature", "featureplot")) {
|
|
114
|
-
case$kind = "feature"
|
|
115
|
-
if (is.null(case$cols)) {
|
|
116
|
-
case$cols = c("lightgrey", pal_biopipen()(1))
|
|
117
|
-
}
|
|
118
|
-
excluded_args = c(excluded_args, "group.by", "assay", "layer")
|
|
119
|
-
case$shape.by = case$group.by
|
|
120
|
-
if (!is.null(case$ident)) {
|
|
121
|
-
key <- paste0("sub_umap_", case$ident)
|
|
122
|
-
if (key %in% names(case$object@reductions) && is.null(case$reduction)) {
|
|
123
|
-
case$reduction = key
|
|
124
|
-
case$object = filter(case$object, !is.na(!!sym(case$ident)))
|
|
125
|
-
}
|
|
126
|
-
}
|
|
127
|
-
fn = FeaturePlot
|
|
128
|
-
default_devpars = function(features, ncol) {
|
|
129
|
-
if (is.null(ncol)) { ncol = 1 }
|
|
130
|
-
list(
|
|
131
|
-
width = 400 * ncol,
|
|
132
|
-
height = ceiling(length(features) / ncol) * 300,
|
|
133
|
-
res = 100
|
|
134
|
-
)
|
|
135
|
-
}
|
|
136
|
-
} else if (case$kind %in% c("dot", "dotplot")) {
|
|
137
|
-
case$kind = "dot"
|
|
138
|
-
if (is.null(case$cols)) {
|
|
139
|
-
case$cols = c("lightgrey", pal_biopipen()(1))
|
|
140
|
-
}
|
|
141
|
-
if (is.null(case$plus)) {
|
|
142
|
-
case$plus = 'theme_prism(axis_text_angle=90)'
|
|
143
|
-
}
|
|
144
|
-
excluded_args = c(excluded_args, "layer", "ncol", "reduction")
|
|
145
|
-
fn = DotPlot
|
|
146
|
-
default_devpars = function(features, ncol) {
|
|
147
|
-
list(
|
|
148
|
-
height = max(n_uidents * 80 + 150, 420),
|
|
149
|
-
width = length(features) * 50 + 150,
|
|
150
|
-
res = 100
|
|
151
|
-
)
|
|
152
|
-
}
|
|
153
|
-
} else if ("heatmap" == case$kind) {
|
|
154
|
-
case$kind = "heatmap"
|
|
155
|
-
case = list_update(
|
|
156
|
-
list(
|
|
157
|
-
group.colors = pal_biopipen()(n_uidents),
|
|
158
|
-
size = 3.5,
|
|
159
|
-
group.bar.height = 0.01
|
|
160
|
-
),
|
|
161
|
-
case
|
|
162
|
-
)
|
|
163
|
-
if (is.null(case$plus)) {
|
|
164
|
-
case$plus = 'scale_fill_gradient2(
|
|
165
|
-
low = "lightblue",
|
|
166
|
-
high = "darkblue",
|
|
167
|
-
na.value = "white"
|
|
168
|
-
)'
|
|
169
|
-
}
|
|
170
|
-
excluded_args = c(excluded_args, "group.by", "split.by", "downsample", "ncol", "reduction", "layer")
|
|
171
|
-
fn = DoHeatmap
|
|
172
|
-
default_devpars = function(features, ncol) {
|
|
173
|
-
list(
|
|
174
|
-
width = n_uidents * 60 + 150,
|
|
175
|
-
height = length(features) * 40 + 150,
|
|
176
|
-
res = 100
|
|
177
|
-
)
|
|
178
|
-
}
|
|
179
|
-
} else if (case$kind == "avgheatmap") {
|
|
180
|
-
case$kind = "avgheatmap"
|
|
181
|
-
excluded_args = c(
|
|
182
|
-
excluded_args,
|
|
183
|
-
"group.by", "split.by", "downsample", "ncol", "reduction", "layer",
|
|
184
|
-
"assay", "object"
|
|
185
|
-
)
|
|
186
|
-
default_devpars = function(features, ncol) {
|
|
187
|
-
list(
|
|
188
|
-
width = n_uidents * 30 + 350,
|
|
189
|
-
height = length(features) * 15 + 150,
|
|
190
|
-
res = 100
|
|
191
|
-
)
|
|
192
|
-
}
|
|
193
|
-
} else if (case$kind %in% c("bar", "barplot")) {
|
|
194
|
-
case$kind = "bar"
|
|
195
|
-
if (is.null(case$features) || length(case$features) == 0) {
|
|
196
|
-
stop("No features is specified for barplot")
|
|
197
|
-
}
|
|
198
|
-
if (length(case$features) > 1) {
|
|
199
|
-
stop("Only one feature is allowed for barplot")
|
|
200
|
-
}
|
|
201
|
-
excluded_args = c(excluded_args, "reduction")
|
|
202
|
-
default_devpars = function(features, ncol) {
|
|
203
|
-
if (is.null(ncol)) { ncol = 1 }
|
|
204
|
-
list(
|
|
205
|
-
height = 500 * ncol,
|
|
206
|
-
width = n_uidents * 60 + 150,
|
|
207
|
-
res = 100
|
|
208
|
-
)
|
|
83
|
+
case$object@meta.data[[case$ident]] <- factor(case$object@meta.data[[case$ident]], levels = clusters)
|
|
84
|
+
} else {
|
|
85
|
+
case$object@meta.data[[case$ident]] <- fct_relevel(case$object@meta.data[[case$ident]], order_by)
|
|
209
86
|
}
|
|
210
|
-
} else if ("table" == case$kind) {
|
|
211
|
-
case$kind = "table"
|
|
212
|
-
excluded_args = c(excluded_args, "group.by", "split.by", "assay", "reduction")
|
|
213
|
-
case$assays = case$assay
|
|
214
|
-
fn = AverageExpression
|
|
215
|
-
if (is.null(case$layer)) { case$layer = "data" }
|
|
216
|
-
} else {
|
|
217
|
-
stop(paste0("Unknown kind of plot: ", case$kind))
|
|
218
87
|
}
|
|
219
88
|
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
89
|
+
info <- case_info(name, odir, is_dir = FALSE, create = TRUE)
|
|
90
|
+
case$features <- .get_features(features, case$object)
|
|
91
|
+
p <- do_call(gglogger::register(FeatureStatPlot), case)
|
|
92
|
+
save_plot(p, info$prefix, devpars, formats = c("png", more_formats))
|
|
93
|
+
if (save_code) {
|
|
94
|
+
save_plotcode(p, info$prefix,
|
|
95
|
+
setup = c("library(scplotter)", "load('data.RData')", "invisible(list2env('case'))"),
|
|
96
|
+
"case",
|
|
97
|
+
auto_data_setup = FALSE)
|
|
223
98
|
}
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
figfile <- file.path(odir, paste0(slugify(name), ".bar.png"))
|
|
227
|
-
genes <- rownames(GetAssayData(case$object))
|
|
228
|
-
genes <- genes[sapply(genes, function(x) grepl(x, case$features))]
|
|
229
|
-
if (length(genes) == 0) {
|
|
230
|
-
p <- case$object@meta.data %>%
|
|
231
|
-
group_by(Idents = Idents(case$object)) %>%
|
|
232
|
-
summarise(!!sym(name) := !!parse_expr(case$features)) %>%
|
|
233
|
-
ggplot(aes(x = Idents, y = !!sym(name)))
|
|
234
|
-
} else {
|
|
235
|
-
p <- case$object@meta.data %>%
|
|
236
|
-
bind_cols(FetchData(case$object, vars = genes, layer = case$layer, cells = rownames(case$object@meta.data))) %>%
|
|
237
|
-
group_by(Idents = Idents(case$object)) %>%
|
|
238
|
-
summarise(!!sym(name) := !!parse_expr(case$features)) %>%
|
|
239
|
-
ggplot(aes(x = Idents, y = !!sym(name)))
|
|
240
|
-
}
|
|
241
|
-
|
|
242
|
-
if (!is.null(case$group.by)) {
|
|
243
|
-
p <- p + geom_bar(aes(fill = !!sym(case$group.by)), stat = "identity", position = "dodge")
|
|
244
|
-
} else {
|
|
245
|
-
p <- p + geom_bar(aes(fill = Idents), stat = "identity")
|
|
246
|
-
}
|
|
247
|
-
|
|
248
|
-
p <- p +
|
|
249
|
-
scale_fill_biopipen() +
|
|
250
|
-
theme_prism() +
|
|
251
|
-
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
|
|
252
|
-
labs(x = "Idents", y = name)
|
|
253
|
-
|
|
254
|
-
if (!is.null(case$split.by)) {
|
|
255
|
-
p <- p + facet_wrap(~ !!sym(case$split.by), ncol = case$ncol)
|
|
256
|
-
} else {
|
|
257
|
-
case$ncol = 1
|
|
258
|
-
}
|
|
259
|
-
|
|
260
|
-
if (!is.null(case$plus)) {
|
|
261
|
-
p <- p + eval(parse(text = case$plus))
|
|
262
|
-
}
|
|
263
|
-
devpars = list_update(default_devpars(NULL, case$ncol), devpars)
|
|
264
|
-
png(figfile, res = devpars$res, width = devpars$width, height = devpars$height)
|
|
265
|
-
print(p)
|
|
266
|
-
dev.off()
|
|
267
|
-
|
|
268
|
-
add_report(
|
|
99
|
+
if (exists("descr") && !is.null(descr)) {
|
|
100
|
+
reporter$add2(
|
|
269
101
|
list(
|
|
270
102
|
kind = "descr",
|
|
271
|
-
content =
|
|
272
|
-
),
|
|
273
|
-
list(
|
|
274
|
-
kind = "image",
|
|
275
|
-
src = figfile
|
|
103
|
+
content = descr
|
|
276
104
|
),
|
|
277
|
-
|
|
278
|
-
h2 = ifelse(is.null(section), "#", name)
|
|
105
|
+
hs = c(info$section, info$name)
|
|
279
106
|
)
|
|
280
|
-
|
|
281
|
-
return(NULL)
|
|
282
107
|
}
|
|
283
108
|
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
assay <- assay %||% DefaultAssay(object)
|
|
288
|
-
layer <- layer %||% ifelse("scale.data" %in% Layers(object, assay = assay), "scale.data", "data")
|
|
289
|
-
|
|
290
|
-
case_features <- case$features
|
|
291
|
-
case$features <- NULL
|
|
292
|
-
meta_feats <- intersect(case_features, colnames(object@meta.data))
|
|
293
|
-
expr_feats <- setdiff(case_features, meta_feats)
|
|
294
|
-
exprs <- NULL
|
|
295
|
-
if (length(meta_feats) > 0) {
|
|
296
|
-
exprs <- object@meta.data %>% select(all_of(c(meta_feats, ident))) %>%
|
|
297
|
-
group_by(!!sym(ident)) %>%
|
|
298
|
-
summarise(across(everything(), ~ mean(.x, na.rm = TRUE))) %>%
|
|
299
|
-
column_to_rownames(ident) %>%
|
|
300
|
-
t()
|
|
109
|
+
if (save_data) {
|
|
110
|
+
if (!inherits(p$data, "data.frame") && !inherits(p$data, "matrix")) {
|
|
111
|
+
stop("'save_data = TRUE' is not supported for plot_type: ", case$plot_type)
|
|
301
112
|
}
|
|
302
|
-
|
|
303
|
-
|
|
304
|
-
object,
|
|
305
|
-
assays = assay,
|
|
306
|
-
layer = layer,
|
|
307
|
-
features = expr_feats,
|
|
308
|
-
group.by = ident)[[assay]]
|
|
309
|
-
exprs <- bind_rows(exprs, as.data.frame(exprs_tmp))
|
|
310
|
-
}
|
|
311
|
-
|
|
312
|
-
ha <- NULL
|
|
313
|
-
extra_height <- 0
|
|
314
|
-
extra_width <- 0 # legend
|
|
315
|
-
if (!is.null(cluster_order_val)) {
|
|
316
|
-
ha <- list()
|
|
317
|
-
ha[[cluster_orderby]] <- cluster_order_val
|
|
318
|
-
if (is.numeric(cluster_order_val)) {
|
|
319
|
-
col_fun <- colorRamp2(
|
|
320
|
-
c(min(cluster_order_val), max(cluster_order_val)),
|
|
321
|
-
c("lightyellow", "red"))
|
|
322
|
-
ha$col <- list()
|
|
323
|
-
ha$col[[cluster_orderby]] <- col_fun
|
|
324
|
-
}
|
|
325
|
-
ha <- do_call(HeatmapAnnotation, ha)
|
|
326
|
-
extra_height <- 40
|
|
327
|
-
extra_width <- 120
|
|
328
|
-
}
|
|
329
|
-
|
|
330
|
-
col_fun <- colorRamp2(
|
|
331
|
-
c(min(exprs, na.rm = T), 0, max(exprs, na.rm = T)),
|
|
332
|
-
c("lightblue", "white", "darkred"))
|
|
333
|
-
|
|
334
|
-
case <- list_update(list(
|
|
335
|
-
matrix = as.matrix(exprs),
|
|
336
|
-
name = "Average expression",
|
|
337
|
-
col = col_fun,
|
|
338
|
-
na_col = "white",
|
|
339
|
-
row_names_side = "right",
|
|
340
|
-
cluster_rows = FALSE,
|
|
341
|
-
cluster_columns = FALSE,
|
|
342
|
-
rect_gp = gpar(col = "gray", lwd = 1),
|
|
343
|
-
row_names_max_width = max_text_width(rownames(exprs)),
|
|
344
|
-
top_annotation = ha
|
|
345
|
-
), case)
|
|
346
|
-
p <- do_call(Heatmap, case)
|
|
347
|
-
|
|
348
|
-
def_devpars = default_devpars(case_features, NULL)
|
|
349
|
-
def_devpars$width = def_devpars$width + extra_width
|
|
350
|
-
def_devpars$height = def_devpars$height + extra_height
|
|
351
|
-
devpars = list_update(def_devpars, devpars)
|
|
352
|
-
png(figfile, res = devpars$res, width = devpars$width, height = devpars$height)
|
|
353
|
-
print(p)
|
|
354
|
-
dev.off()
|
|
355
|
-
|
|
356
|
-
add_report(
|
|
113
|
+
write.table(p$data, paste0(info$prefix, ".data.txt"), sep="\t", quote=FALSE, row.names=FALSE)
|
|
114
|
+
reporter$add2(
|
|
357
115
|
list(
|
|
358
|
-
|
|
359
|
-
|
|
116
|
+
name = "Plot",
|
|
117
|
+
contents = list(
|
|
118
|
+
reporter$image(
|
|
119
|
+
info$prefix, more_formats, save_code, kind = "image")
|
|
120
|
+
)
|
|
360
121
|
),
|
|
361
122
|
list(
|
|
362
|
-
|
|
363
|
-
|
|
123
|
+
name = "Data",
|
|
124
|
+
contents = list(
|
|
125
|
+
list(
|
|
126
|
+
kind = "descr",
|
|
127
|
+
content = "Data used directly for the plot"
|
|
128
|
+
),
|
|
129
|
+
list(
|
|
130
|
+
kind = "table",
|
|
131
|
+
src = paste0(info$prefix, ".data.txt"),
|
|
132
|
+
data = list(nrows = 100)
|
|
133
|
+
)
|
|
134
|
+
)
|
|
364
135
|
),
|
|
365
|
-
|
|
366
|
-
|
|
136
|
+
hs = c(info$section, info$name),
|
|
137
|
+
ui = "tabs"
|
|
367
138
|
)
|
|
368
|
-
|
|
369
|
-
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
case$ncol = min(case$ncol, length(case$features))
|
|
373
|
-
}
|
|
374
|
-
|
|
375
|
-
if (kind == "table") {
|
|
376
|
-
expr = do_call(fn, case)[[DefaultAssay(case$object)]] %>%
|
|
377
|
-
as.data.frame() %>%
|
|
378
|
-
rownames_to_column("Feature") %>%
|
|
379
|
-
select(Feature, everything())
|
|
380
|
-
|
|
381
|
-
exprfile = file.path(odir, paste0(slugify(name), ".txt"))
|
|
382
|
-
write.table(expr, exprfile, sep="\t", quote=FALSE, row.names=FALSE)
|
|
383
|
-
|
|
384
|
-
add_report(
|
|
385
|
-
list(
|
|
386
|
-
kind = "descr",
|
|
387
|
-
content = paste0("Table of expression value for selected features, by ", ident)
|
|
388
|
-
),
|
|
389
|
-
list(
|
|
390
|
-
kind = "table",
|
|
391
|
-
src = exprfile
|
|
392
|
-
),
|
|
393
|
-
h1 = ifelse(is.null(case$section), name, case$section),
|
|
394
|
-
h2 = ifelse(is.null(case$section), "#", name)
|
|
139
|
+
} else {
|
|
140
|
+
reporter$add2(
|
|
141
|
+
reporter$image(info$prefix, more_formats, save_code, kind = "image"),
|
|
142
|
+
hs = c(info$section, info$name)
|
|
395
143
|
)
|
|
396
|
-
return(NULL)
|
|
397
|
-
}
|
|
398
|
-
|
|
399
|
-
devpars = list_update(default_devpars(case$features, case$ncol), devpars)
|
|
400
|
-
if (kind == "heatmap") {
|
|
401
|
-
if (!exists("downsample") || is.null(downsample)) {
|
|
402
|
-
log_warn(" 'downsample' is not specified for `heatmap`, using `downsample=1000`")
|
|
403
|
-
downsample = 1000
|
|
404
|
-
}
|
|
405
|
-
if (is.numeric(downsample)) {
|
|
406
|
-
case$object = base::subset(case$object, downsample = downsample)
|
|
407
|
-
} else {
|
|
408
|
-
stop(paste0("Unknown downsample method: ", downsample))
|
|
409
|
-
}
|
|
410
|
-
}
|
|
411
|
-
p = do_call(fn, case)
|
|
412
|
-
if (!is.null(plus)) {
|
|
413
|
-
for (pls in plus) {
|
|
414
|
-
p = p + eval(parse(text = pls))
|
|
415
|
-
}
|
|
416
144
|
}
|
|
417
|
-
figfile = file.path(odir, paste0(slugify(name), ".", slugify(kind), ".png"))
|
|
418
|
-
png(figfile, width=devpars$width, height=devpars$height, res=devpars$res)
|
|
419
|
-
tryCatch({
|
|
420
|
-
print(p)
|
|
421
|
-
}, error = function(e) {
|
|
422
|
-
stop(
|
|
423
|
-
paste(
|
|
424
|
-
paste(names(devpars), collapse=" "),
|
|
425
|
-
paste(devpars, collapse=" "),
|
|
426
|
-
e,
|
|
427
|
-
sep = "\n"
|
|
428
|
-
)
|
|
429
|
-
)
|
|
430
|
-
})
|
|
431
|
-
dev.off()
|
|
432
|
-
|
|
433
|
-
add_report(
|
|
434
|
-
list(
|
|
435
|
-
kind = "descr",
|
|
436
|
-
content = paste0(kind, "plots for selected features, by ", ident)
|
|
437
|
-
),
|
|
438
|
-
list(
|
|
439
|
-
kind = "image",
|
|
440
|
-
src = figfile
|
|
441
|
-
),
|
|
442
|
-
h1 = ifelse(is.null(section), name, section),
|
|
443
|
-
h2 = ifelse(is.null(section), "#", name)
|
|
444
|
-
)
|
|
445
145
|
}
|
|
446
146
|
|
|
447
147
|
sapply(names(features), do_one_features)
|
|
@@ -2,19 +2,17 @@
|
|
|
2
2
|
|
|
3
3
|
# ngenes_defaults <- {{envs.ngenes_defaults | r: todot="-"}}
|
|
4
4
|
# ngenes <- {{envs.ngenes | r: todot="-", skip=1}}
|
|
5
|
-
|
|
5
|
+
log$info("ngenes:")
|
|
6
6
|
|
|
7
7
|
odir <- file.path(outdir, "ngenes")
|
|
8
8
|
dir.create(odir, recursive=TRUE, showWarnings=FALSE)
|
|
9
9
|
|
|
10
10
|
do_one_ngenes <- function(name) {
|
|
11
|
-
|
|
11
|
+
log$info("- Case: {name}")
|
|
12
12
|
|
|
13
13
|
case <- list_update(ngenes_defaults, ngenes[[name]])
|
|
14
14
|
case$devpars <- list_update(ngenes_defaults$devpars, case$devpars)
|
|
15
15
|
|
|
16
|
-
figfile = file.path(odir, paste0(slugify(name), ".boxplot.png"))
|
|
17
|
-
|
|
18
16
|
if (!is.null(case$subset)) {
|
|
19
17
|
sobj <- srtobj %>% filter(!!rlang::parse_expr(case$subset))
|
|
20
18
|
} else {
|
|
@@ -25,31 +23,43 @@ do_one_ngenes <- function(name) {
|
|
|
25
23
|
select_cols = c(case$ident, case$group.by, case$split.by, ".nexpr")
|
|
26
24
|
df_cells = df_cells %>% select(all_of(select_cols))
|
|
27
25
|
|
|
28
|
-
p = df_cells
|
|
26
|
+
p = df_cells |>
|
|
29
27
|
ggplot(aes(
|
|
30
28
|
x=!!sym(case$ident),
|
|
31
29
|
y=.nexpr,
|
|
32
30
|
fill=!!sym(ifelse(is.null(case$group.by), case$ident, case$group.by))
|
|
33
31
|
)) +
|
|
34
|
-
geom_violin(position = ifelse(is.null(case$group.by), "identity", "dodge")) +
|
|
32
|
+
geom_violin(alpha = 0.6, position = ifelse(is.null(case$group.by), "identity", "dodge")) +
|
|
35
33
|
geom_boxplot(
|
|
36
34
|
position = ifelse(is.null(case$group.by), "identity", "dodge"),
|
|
37
35
|
width = .1,
|
|
38
36
|
fill = "white"
|
|
39
37
|
) +
|
|
40
|
-
|
|
41
|
-
scale_fill_biopipen() +
|
|
38
|
+
plotthis::theme_this() +
|
|
39
|
+
# scale_fill_biopipen() +
|
|
42
40
|
ylab("Number of genes expressed")
|
|
43
41
|
|
|
44
42
|
if (!is.null(case$split.by)) {
|
|
45
43
|
p = p + facet_wrap(case$split.by)
|
|
46
44
|
}
|
|
47
45
|
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
46
|
+
figprefix = file.path(odir, paste0(slugify(name), ".boxplot"))
|
|
47
|
+
|
|
48
|
+
save_plot(p, figprefix, case$devpars)
|
|
49
|
+
save_plotcode(
|
|
50
|
+
p,
|
|
51
|
+
figprefix,
|
|
52
|
+
c(
|
|
53
|
+
'library(rlang)',
|
|
54
|
+
'library(ggplot2)',
|
|
55
|
+
'library(ggprism)',
|
|
56
|
+
'',
|
|
57
|
+
'load("data.RData")'
|
|
58
|
+
),
|
|
59
|
+
"df_cells", "case"
|
|
60
|
+
)
|
|
51
61
|
|
|
52
|
-
|
|
62
|
+
reporter$add(
|
|
53
63
|
list(
|
|
54
64
|
kind = "descr",
|
|
55
65
|
content = paste0(
|
|
@@ -62,7 +72,17 @@ do_one_ngenes <- function(name) {
|
|
|
62
72
|
)
|
|
63
73
|
)
|
|
64
74
|
),
|
|
65
|
-
list(
|
|
75
|
+
list(
|
|
76
|
+
kind = "image",
|
|
77
|
+
src = paste0(figprefix, ".png"),
|
|
78
|
+
download = list(
|
|
79
|
+
paste0(figprefix, ".pdf"),
|
|
80
|
+
list(
|
|
81
|
+
src = paste0(figprefix, ".code.zip"),
|
|
82
|
+
tip = "Download the code to reproduce the plot",
|
|
83
|
+
icon = "Code"
|
|
84
|
+
)
|
|
85
|
+
)),
|
|
66
86
|
h1 = name
|
|
67
87
|
)
|
|
68
88
|
}
|