biopipen 0.31.7__py3-none-any.whl → 0.32.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of biopipen might be problematic. Click here for more details.
- biopipen/__init__.py +1 -1
- biopipen/ns/scrna.py +153 -0
- biopipen/reports/scrna/CellCellCommunicationPlots.svelte +14 -0
- biopipen/reports/scrna/SeuratMap2Ref.svelte +10 -6
- biopipen/scripts/scrna/AnnData2Seurat.R +22 -14
- biopipen/scripts/scrna/CCPlotR-patch.R +161 -0
- biopipen/scripts/scrna/CellCellCommunication.py +101 -0
- biopipen/scripts/scrna/CellCellCommunicationPlots.R +191 -0
- biopipen/scripts/scrna/Seurat2AnnData.R +2 -42
- biopipen/scripts/scrna/SeuratMap2Ref.R +20 -1
- biopipen/scripts/tcr/GIANA/GIANA.py +1356 -797
- biopipen/scripts/tcr/GIANA/GIANA4.py +1364 -789
- biopipen/scripts/tcr/GIANA/query.py +164 -162
- biopipen/scripts/tcr/TCRClustering.R +25 -4
- biopipen/utils/single_cell.R +92 -1
- {biopipen-0.31.7.dist-info → biopipen-0.32.0.dist-info}/METADATA +1 -1
- {biopipen-0.31.7.dist-info → biopipen-0.32.0.dist-info}/RECORD +19 -15
- {biopipen-0.31.7.dist-info → biopipen-0.32.0.dist-info}/WHEEL +0 -0
- {biopipen-0.31.7.dist-info → biopipen-0.32.0.dist-info}/entry_points.txt +0 -0
|
@@ -5,220 +5,222 @@ import subprocess as sp
|
|
|
5
5
|
import pandas as pd
|
|
6
6
|
from GIANA4 import *
|
|
7
7
|
|
|
8
|
-
|
|
8
|
+
|
|
9
|
+
def CreateReference(rFile, outdir="./", Vgene=True, ST=3):
|
|
9
10
|
## convert input reference file into a python workplace
|
|
10
|
-
h=open(rFile)
|
|
11
|
-
alines=h.readlines()
|
|
12
|
-
ww=alines[0].strip().split(
|
|
13
|
-
if not ww[0].startswith(
|
|
11
|
+
h = open(rFile)
|
|
12
|
+
alines = h.readlines()
|
|
13
|
+
ww = alines[0].strip().split("\t")
|
|
14
|
+
if not ww[0].startswith("C"):
|
|
14
15
|
## header line
|
|
15
|
-
hline=alines[0]
|
|
16
|
-
alines=alines[1:]
|
|
17
|
-
elif
|
|
18
|
-
hline=alines[0]
|
|
19
|
-
alines=alines[1:]
|
|
16
|
+
hline = alines[0]
|
|
17
|
+
alines = alines[1:]
|
|
18
|
+
elif "CDR3" in ww[0]:
|
|
19
|
+
hline = alines[0]
|
|
20
|
+
alines = alines[1:]
|
|
20
21
|
else:
|
|
21
|
-
hline=
|
|
22
|
-
seqs=[]
|
|
23
|
-
vgs=[]
|
|
24
|
-
infoList=[]
|
|
25
|
-
count=0
|
|
22
|
+
hline = "CDR3\t" + "\t".join(["Info" + str(x) for x in range(len(ww) - 1)])
|
|
23
|
+
seqs = []
|
|
24
|
+
vgs = []
|
|
25
|
+
infoList = []
|
|
26
|
+
count = 0
|
|
26
27
|
for ll in alines:
|
|
27
|
-
ww=ll.strip().split(
|
|
28
|
-
cdr3=ww[0]
|
|
29
|
-
if
|
|
28
|
+
ww = ll.strip().split("\t")
|
|
29
|
+
cdr3 = ww[0]
|
|
30
|
+
if "*" in cdr3:
|
|
30
31
|
continue
|
|
31
|
-
if
|
|
32
|
+
if "_" in cdr3:
|
|
32
33
|
continue
|
|
33
34
|
seqs.append(ww[0])
|
|
34
35
|
if Vgene:
|
|
35
36
|
vgs.append(ww[1])
|
|
36
|
-
infoList.append(
|
|
37
|
+
infoList.append("\t".join(ww[1:]))
|
|
37
38
|
else:
|
|
38
|
-
infoList.append(
|
|
39
|
-
count+=1
|
|
40
|
-
LD,VD, ID,SD= BuildLengthDict(
|
|
39
|
+
infoList.append("\t".join(ww[1:]))
|
|
40
|
+
count += 1
|
|
41
|
+
LD, VD, ID, SD = BuildLengthDict(
|
|
42
|
+
seqs, vGene=vgs, INFO=infoList, sIDs=[x for x in range(len(seqs))]
|
|
43
|
+
)
|
|
41
44
|
LDu_r, VDu_r, IDu_r, SDu_r = CollapseUnique(LD, VD, ID, SD)
|
|
42
|
-
flagLD_r={}
|
|
43
|
-
dMD_r={}
|
|
45
|
+
flagLD_r = {}
|
|
46
|
+
dMD_r = {}
|
|
44
47
|
for kk in LDu_r:
|
|
45
|
-
vss=SDu_r[kk]
|
|
46
|
-
vInfo=IDu_r[kk]
|
|
47
|
-
flagL=[len(x)-1 for x in vInfo]
|
|
48
|
-
flagLD_r[kk]=flagL
|
|
49
|
-
dM=np.array([EncodingCDR3(x[ST:-2], M6, n0) for x in vss])
|
|
50
|
-
dM=dM.astype("float32")
|
|
51
|
-
dMD_r[kk]=dM
|
|
52
|
-
## ff0=re.sub('.txt','',rFile)
|
|
53
|
-
## outfile=outdir+ff0+'_giana_ref.shelve'
|
|
54
|
-
## giana_shelf = shelve.open(outfile, 'n')
|
|
55
|
-
## giana_shelf['flagLD']=flagLD_r
|
|
56
|
-
## giana_shelf['dMD']=dMD_r
|
|
57
|
-
## giana_shelf['LDu']=LDu_r
|
|
58
|
-
## giana_shelf['VDu']=VDu_r
|
|
59
|
-
## giana_shelf['IDu']=IDu_r
|
|
60
|
-
## giana_shelf['SDu']=SDu_r
|
|
61
|
-
## giana_shelf.close()
|
|
48
|
+
vss = SDu_r[kk]
|
|
49
|
+
vInfo = IDu_r[kk]
|
|
50
|
+
flagL = [len(x) - 1 for x in vInfo]
|
|
51
|
+
flagLD_r[kk] = flagL
|
|
52
|
+
dM = np.array([EncodingCDR3(x[ST:-2], M6, n0) for x in vss])
|
|
53
|
+
dM = dM.astype("float32")
|
|
54
|
+
dMD_r[kk] = dM
|
|
55
|
+
## ff0=re.sub('.txt','',rFile)
|
|
56
|
+
## outfile=outdir+ff0+'_giana_ref.shelve'
|
|
57
|
+
## giana_shelf = shelve.open(outfile, 'n')
|
|
58
|
+
## giana_shelf['flagLD']=flagLD_r
|
|
59
|
+
## giana_shelf['dMD']=dMD_r
|
|
60
|
+
## giana_shelf['LDu']=LDu_r
|
|
61
|
+
## giana_shelf['VDu']=VDu_r
|
|
62
|
+
## giana_shelf['IDu']=IDu_r
|
|
63
|
+
## giana_shelf['SDu']=SDu_r
|
|
64
|
+
## giana_shelf.close()
|
|
62
65
|
return [LDu_r, VDu_r, IDu_r, SDu_r, dMD_r]
|
|
63
66
|
|
|
64
|
-
|
|
67
|
+
|
|
68
|
+
def MakeQuery(qFile, rData=[], dbFile=None, Vgene=True, thr=7, ST=3, thr_s=3.3):
|
|
65
69
|
if dbFile is not None:
|
|
66
70
|
with shelve.open(dbFile) as db:
|
|
67
71
|
for key in db:
|
|
68
|
-
globals()[key]=db[key]
|
|
72
|
+
globals()[key] = db[key]
|
|
69
73
|
else:
|
|
70
|
-
if len(rData)==0:
|
|
71
|
-
raise("Need to provide either a reference file or a shelve")
|
|
72
|
-
LDu_r=rData[0]
|
|
73
|
-
VDu_r=rData[1]
|
|
74
|
-
IDu_r=rData[2]
|
|
75
|
-
SDu_r=rData[3]
|
|
76
|
-
dMD_r=rData[4]
|
|
77
|
-
h=open(qFile)
|
|
78
|
-
alines=h.readlines()
|
|
79
|
-
ww=alines[0].strip().split(
|
|
80
|
-
if not ww[0].startswith(
|
|
74
|
+
if len(rData) == 0:
|
|
75
|
+
raise ("Need to provide either a reference file or a shelve")
|
|
76
|
+
LDu_r = rData[0]
|
|
77
|
+
VDu_r = rData[1]
|
|
78
|
+
IDu_r = rData[2]
|
|
79
|
+
SDu_r = rData[3]
|
|
80
|
+
dMD_r = rData[4]
|
|
81
|
+
h = open(qFile)
|
|
82
|
+
alines = h.readlines()
|
|
83
|
+
ww = alines[0].strip().split("\t")
|
|
84
|
+
if not ww[0].startswith("C"):
|
|
81
85
|
## header line
|
|
82
|
-
hline=alines[0]
|
|
83
|
-
alines=alines[1:]
|
|
84
|
-
elif
|
|
85
|
-
hline=alines[0]
|
|
86
|
-
alines=alines[1:]
|
|
86
|
+
hline = alines[0]
|
|
87
|
+
alines = alines[1:]
|
|
88
|
+
elif "CDR3" in ww[0]:
|
|
89
|
+
hline = alines[0]
|
|
90
|
+
alines = alines[1:]
|
|
87
91
|
else:
|
|
88
|
-
hline=
|
|
89
|
-
seqs=[]
|
|
90
|
-
vgs=[]
|
|
91
|
-
infoList=[]
|
|
92
|
-
count=0
|
|
92
|
+
hline = "CDR3\t" + "\t".join(["Info" + str(x) for x in range(len(ww) - 1)])
|
|
93
|
+
seqs = []
|
|
94
|
+
vgs = []
|
|
95
|
+
infoList = []
|
|
96
|
+
count = 0
|
|
93
97
|
for ll in alines:
|
|
94
|
-
ww=ll.strip().split(
|
|
95
|
-
cdr3=ww[0]
|
|
96
|
-
if
|
|
98
|
+
ww = ll.strip().split("\t")
|
|
99
|
+
cdr3 = ww[0]
|
|
100
|
+
if "*" in cdr3:
|
|
97
101
|
continue
|
|
98
|
-
if
|
|
102
|
+
if "_" in cdr3:
|
|
99
103
|
continue
|
|
100
104
|
seqs.append(ww[0])
|
|
101
105
|
if Vgene:
|
|
102
106
|
vgs.append(ww[1])
|
|
103
|
-
infoList.append(
|
|
107
|
+
infoList.append("\t".join(ww[1:]))
|
|
104
108
|
else:
|
|
105
|
-
infoList.append(
|
|
106
|
-
count+=1
|
|
107
|
-
LD,VD, ID,SD= BuildLengthDict(
|
|
109
|
+
infoList.append("\t".join(ww[1:]))
|
|
110
|
+
count += 1
|
|
111
|
+
LD, VD, ID, SD = BuildLengthDict(
|
|
112
|
+
seqs, vGene=vgs, INFO=infoList, sIDs=[x for x in range(len(seqs))]
|
|
113
|
+
)
|
|
108
114
|
LDu, VDu, IDu, SDu = CollapseUnique(LD, VD, ID, SD)
|
|
109
|
-
tmpFile=
|
|
110
|
-
g=open(tmpFile,
|
|
115
|
+
tmpFile = "tmp_query.txt"
|
|
116
|
+
g = open(tmpFile, "w")
|
|
111
117
|
for kk in LDu:
|
|
112
|
-
vss=SDu[kk]
|
|
113
|
-
vInfo=IDu[kk]
|
|
114
|
-
vss_r=SDu_r[kk]
|
|
115
|
-
vInfo_r=IDu_r[kk]
|
|
116
|
-
flagL=[len(x)-1 for x in vInfo]
|
|
117
|
-
dM_r=dMD_r[kk]
|
|
118
|
-
dM=np.array([EncodingCDR3(x[ST:-2], M6, n0) for x in vss])
|
|
119
|
-
dM=dM.astype("float32")
|
|
120
|
-
nq=dM.shape[0]
|
|
121
|
-
nr=dM_r.shape[0]
|
|
122
|
-
vssc=vss+vss_r
|
|
123
|
-
vInfoc=vInfo+vInfo_r
|
|
124
|
-
dMc=np.concatenate((dM, dM_r))
|
|
125
|
-
index = faiss.IndexFlatL2(Ndim*6)
|
|
118
|
+
vss = SDu[kk]
|
|
119
|
+
vInfo = IDu[kk]
|
|
120
|
+
vss_r = SDu_r[kk]
|
|
121
|
+
vInfo_r = IDu_r[kk]
|
|
122
|
+
flagL = [len(x) - 1 for x in vInfo]
|
|
123
|
+
dM_r = dMD_r[kk]
|
|
124
|
+
dM = np.array([EncodingCDR3(x[ST:-2], M6, n0) for x in vss])
|
|
125
|
+
dM = dM.astype("float32")
|
|
126
|
+
nq = dM.shape[0]
|
|
127
|
+
nr = dM_r.shape[0]
|
|
128
|
+
vssc = vss + vss_r
|
|
129
|
+
vInfoc = vInfo + vInfo_r
|
|
130
|
+
dMc = np.concatenate((dM, dM_r))
|
|
131
|
+
index = faiss.IndexFlatL2(Ndim * 6)
|
|
126
132
|
index.add(dMc)
|
|
127
133
|
D, I = index.search(dM, 2)
|
|
128
|
-
vv=np.where((D[0:nq,1]<=thr))[0]
|
|
129
|
-
flagL=np.array(flagL)
|
|
130
|
-
vv0=np.where((D[0:nq,1]>thr) & (flagL>0))[0]
|
|
131
|
-
curList=[]
|
|
134
|
+
vv = np.where((D[0:nq, 1] <= thr))[0]
|
|
135
|
+
flagL = np.array(flagL)
|
|
136
|
+
vv0 = np.where((D[0:nq, 1] > thr) & (flagL > 0))[0]
|
|
137
|
+
curList = []
|
|
132
138
|
for v in vv0:
|
|
133
139
|
for ii in range(len(vInfoc[v])):
|
|
134
|
-
line=vssc[v]+
|
|
135
|
-
_=g.write(line)
|
|
140
|
+
line = vssc[v] + "\t" + vInfoc[v][ii] + "\t" + "query\n"
|
|
141
|
+
_ = g.write(line)
|
|
136
142
|
for v in vv:
|
|
137
|
-
tmpI=I[v,]
|
|
143
|
+
tmpI = I[v,]
|
|
138
144
|
if v not in tmpI:
|
|
139
|
-
tmpI[0]=v
|
|
140
|
-
idx1=tmpI[0]
|
|
141
|
-
idx2=tmpI[1]
|
|
142
|
-
c1=vssc[idx1]
|
|
143
|
-
c2=vssc[idx2]
|
|
144
|
-
info1=vInfoc[idx1]
|
|
145
|
-
info2=vInfoc[idx2]
|
|
145
|
+
tmpI[0] = v
|
|
146
|
+
idx1 = tmpI[0]
|
|
147
|
+
idx2 = tmpI[1]
|
|
148
|
+
c1 = vssc[idx1]
|
|
149
|
+
c2 = vssc[idx2]
|
|
150
|
+
info1 = vInfoc[idx1]
|
|
151
|
+
info2 = vInfoc[idx2]
|
|
146
152
|
for tmpInfo in info1:
|
|
147
|
-
tup1=(c1, tmpInfo)
|
|
153
|
+
tup1 = (c1, tmpInfo)
|
|
148
154
|
if tup1 not in curList:
|
|
149
|
-
if idx1<nq:
|
|
150
|
-
line1=c1+
|
|
155
|
+
if idx1 < nq:
|
|
156
|
+
line1 = c1 + "\t" + tmpInfo + "\t" + "query\n"
|
|
151
157
|
else:
|
|
152
|
-
line1=c1+
|
|
153
|
-
_=g.write(line1)
|
|
158
|
+
line1 = c1 + "\t" + tmpInfo + "\t" + "ref\n"
|
|
159
|
+
_ = g.write(line1)
|
|
154
160
|
curList.append(tup1)
|
|
155
161
|
for tmpInfo in info2:
|
|
156
|
-
tup2=(c2, tmpInfo)
|
|
162
|
+
tup2 = (c2, tmpInfo)
|
|
157
163
|
if tup2 not in curList:
|
|
158
|
-
if idx2<nq:
|
|
159
|
-
line2=c2+
|
|
164
|
+
if idx2 < nq:
|
|
165
|
+
line2 = c2 + "\t" + tmpInfo + "\t" + "query\n"
|
|
160
166
|
else:
|
|
161
|
-
line2=c2+
|
|
162
|
-
_=g.write(line2)
|
|
167
|
+
line2 = c2 + "\t" + tmpInfo + "\t" + "ref\n"
|
|
168
|
+
_ = g.write(line2)
|
|
163
169
|
curList.append(tup2)
|
|
164
170
|
g.close()
|
|
165
|
-
cmd=
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
171
|
+
cmd = "python3 GIANA4.1.py -f tmp_query.txt -S " + str(
|
|
172
|
+
thr_s
|
|
173
|
+
) ## updated to GIANA4.1
|
|
174
|
+
p = sp.run(cmd, shell=True)
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
def MergeExist(
|
|
178
|
+
refClusterFile,
|
|
179
|
+
outFile="queryFinal.txt",
|
|
180
|
+
queryClusterFile="tmp_query--RotationEncodingBL62.txt",
|
|
181
|
+
direction="q",
|
|
182
|
+
):
|
|
169
183
|
## This function compare the query file with ref cluster file and merge the two based on shared TCRs
|
|
170
184
|
## If direction is 'q', the overlapping clusters will be added to the query file
|
|
171
185
|
## If direction is 'r', the overlapping and non-overlapping clusters will be added to the reference file
|
|
172
|
-
refT=pd.read_table(refClusterFile, skiprows=2, delimiter=
|
|
173
|
-
queryT=pd.read_table(queryClusterFile, skiprows=2, delimiter=
|
|
174
|
-
nq=queryT.shape[1]
|
|
175
|
-
nr=refT.shape[1]
|
|
176
|
-
if nr != nq-1:
|
|
186
|
+
refT = pd.read_table(refClusterFile, skiprows=2, delimiter="\t", header=None)
|
|
187
|
+
queryT = pd.read_table(queryClusterFile, skiprows=2, delimiter="\t", header=None)
|
|
188
|
+
nq = queryT.shape[1]
|
|
189
|
+
nr = refT.shape[1]
|
|
190
|
+
if nr != nq - 1:
|
|
177
191
|
print("ERROR: Make sure reference and the query samples have the same columns!")
|
|
178
192
|
print("No query file is generated.")
|
|
179
193
|
return
|
|
180
|
-
gn=np.unique(queryT[1])
|
|
181
|
-
queryTs=pd.DataFrame([], columns=queryT.columns)
|
|
194
|
+
gn = np.unique(queryT[1])
|
|
195
|
+
queryTs = pd.DataFrame([], columns=queryT.columns)
|
|
182
196
|
for nn in gn:
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
queryTs.index=range(queryTs.shape[0])
|
|
190
|
-
keyr=refT[0]+
|
|
191
|
-
keyq=queryTs[0]+
|
|
192
|
-
vvr=np.where(queryTs[nq-1]==
|
|
193
|
-
vvr_in=np.where(keyr.isin(keyq[vvr]))[0]
|
|
194
|
-
gn_r=list(refT.loc[vvr_in,1].drop_duplicates())
|
|
195
|
-
ddo=pd.DataFrame([], columns=refT.columns)
|
|
197
|
+
tmp_ddq = queryT.loc[np.where(queryT[1] == nn)[0], :]
|
|
198
|
+
cls_lab = np.unique(tmp_ddq[nq - 1])
|
|
199
|
+
if len(cls_lab) == 1:
|
|
200
|
+
if cls_lab[0] == "ref":
|
|
201
|
+
continue
|
|
202
|
+
queryTs = queryTs.append(tmp_ddq)
|
|
203
|
+
queryTs.index = range(queryTs.shape[0])
|
|
204
|
+
keyr = refT[0] + "_" + refT[2]
|
|
205
|
+
keyq = queryTs[0] + "_" + queryTs[2]
|
|
206
|
+
vvr = np.where(queryTs[nq - 1] == "ref")[0]
|
|
207
|
+
vvr_in = np.where(keyr.isin(keyq[vvr]))[0]
|
|
208
|
+
gn_r = list(refT.loc[vvr_in, 1].drop_duplicates())
|
|
209
|
+
ddo = pd.DataFrame([], columns=refT.columns)
|
|
196
210
|
for nn in gn_r:
|
|
197
|
-
tmp_dd=refT.loc[np.where(refT[1]==nn)[0]
|
|
198
|
-
tmpkey=tmp_dd[0]+
|
|
199
|
-
vv=np.where(keyq.isin(tmpkey))[0][0]
|
|
200
|
-
gq=queryTs[1][vv]
|
|
201
|
-
tmp_dd[1]=gq
|
|
202
|
-
ddo=ddo.append(tmp_dd)
|
|
203
|
-
if direction==
|
|
204
|
-
ddo[nq-1]=
|
|
211
|
+
tmp_dd = refT.loc[np.where(refT[1] == nn)[0], :]
|
|
212
|
+
tmpkey = tmp_dd[0] + "_" + tmp_dd[2]
|
|
213
|
+
vv = np.where(keyq.isin(tmpkey))[0][0]
|
|
214
|
+
gq = queryTs[1][vv]
|
|
215
|
+
tmp_dd[1] = gq
|
|
216
|
+
ddo = ddo.append(tmp_dd)
|
|
217
|
+
if direction == "q":
|
|
218
|
+
ddo[nq - 1] = "ref"
|
|
205
219
|
## remove groups that contain only ref group
|
|
206
|
-
queryTs=queryTs.append(ddo)
|
|
207
|
-
queryTs=queryTs.drop_duplicates()
|
|
208
|
-
queryTs.to_csv(outFile, sep=
|
|
209
|
-
# queryTs.index=range(queryTs.shape[0])
|
|
210
|
-
if direction==
|
|
220
|
+
queryTs = queryTs.append(ddo)
|
|
221
|
+
queryTs = queryTs.drop_duplicates()
|
|
222
|
+
queryTs.to_csv(outFile, sep="\t", header=False, index=False)
|
|
223
|
+
# queryTs.index=range(queryTs.shape[0])
|
|
224
|
+
if direction == "r":
|
|
211
225
|
## to be developed
|
|
212
226
|
pass
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
@@ -60,10 +60,12 @@ prepare_clustcr = function(clustcr_dir) {
|
|
|
60
60
|
}
|
|
61
61
|
clustcr_source = '
|
|
62
62
|
import sys
|
|
63
|
-
import pandas as pd
|
|
64
|
-
import clustcr
|
|
65
63
|
import atexit
|
|
66
64
|
|
|
65
|
+
import pandas as pd
|
|
66
|
+
from scipy import sparse as scipy_sparse
|
|
67
|
+
|
|
68
|
+
|
|
67
69
|
@atexit.register
|
|
68
70
|
def clustcr_exit():
|
|
69
71
|
import pandas as pd
|
|
@@ -78,13 +80,32 @@ def clustcr_exit():
|
|
|
78
80
|
sys.stderr.write(f"- sklearn: {sklearn.__version__}\\n")
|
|
79
81
|
sys.stderr.write(f"- matplotlib: {matplotlib.__version__}\\n")
|
|
80
82
|
|
|
83
|
+
|
|
84
|
+
# Monkey-patch scipy.sparse.isspmatrix to adopt latest scipy v1.14
|
|
85
|
+
# If not, an error is raised:
|
|
86
|
+
# numpy.linalg.LinAlgError: 0-dimensional array given.
|
|
87
|
+
# Array must be at least two-dimensional
|
|
88
|
+
scipy_sparse.isspmatrix = lambda x: isinstance(
|
|
89
|
+
x,
|
|
90
|
+
(
|
|
91
|
+
scipy_sparse.spmatrix,
|
|
92
|
+
scipy_sparse.csr_array,
|
|
93
|
+
scipy_sparse.csr_matrix,
|
|
94
|
+
scipy_sparse.csc_array,
|
|
95
|
+
scipy_sparse.csc_matrix,
|
|
96
|
+
),
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
import clustcr # noqa: #402
|
|
101
|
+
|
|
81
102
|
clustcr_dir, clustcr_infile = sys.argv[1:3]
|
|
82
103
|
cdr3df = pd.read_csv(clustcr_infile, index_col=None)
|
|
83
104
|
cdr3 = cdr3df.iloc[:, 0]
|
|
84
105
|
|
|
85
|
-
clustering = clustcr.Clustering(
|
|
106
|
+
clustering = clustcr.Clustering()
|
|
86
107
|
output = clustering.fit(cdr3)
|
|
87
|
-
output.clusters_df.to_csv(clustcr_dir + "/clusters.txt", sep="
|
|
108
|
+
output.clusters_df.to_csv(clustcr_dir + "/clusters.txt", sep="\t", index=False)
|
|
88
109
|
'
|
|
89
110
|
clustcr_file = file.path(clustcr_dir, "_clustcr.py")
|
|
90
111
|
cat(sprintf(clustcr_source, clustering_args), file=clustcr_file)
|
biopipen/utils/single_cell.R
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
suppressPackageStartupMessages(library(rlang))
|
|
2
2
|
suppressPackageStartupMessages(library(dplyr))
|
|
3
3
|
suppressPackageStartupMessages(library(tidyr))
|
|
4
|
-
suppressPackageStartupMessages(library(immunarch))
|
|
4
|
+
try(suppressPackageStartupMessages(library(immunarch)))
|
|
5
5
|
|
|
6
6
|
#' Expand a Immunarch object into cell-level
|
|
7
7
|
#'
|
|
@@ -114,3 +114,94 @@ immdata_from_expanded <- function(
|
|
|
114
114
|
)
|
|
115
115
|
out
|
|
116
116
|
}
|
|
117
|
+
|
|
118
|
+
#' Convert Seurat object to Anndata
|
|
119
|
+
#'
|
|
120
|
+
#' @param sobjfile Seurat object file
|
|
121
|
+
#' @param outfile Output file
|
|
122
|
+
#' @param assay Assay to be used
|
|
123
|
+
#'
|
|
124
|
+
#' @export
|
|
125
|
+
seurat_to_anndata <- function(sobjfile, outfile, assay = NULL, log_info, tmpdir = NULL, log_indent = "") {
|
|
126
|
+
library(Seurat)
|
|
127
|
+
library(SeuratDisk)
|
|
128
|
+
library(hdf5r)
|
|
129
|
+
if (endsWith(sobjfile, ".rds") || endsWith(sobjfile, ".RDS")) {
|
|
130
|
+
library(digest)
|
|
131
|
+
|
|
132
|
+
dig <- digest::digest(sobjfile, algo = "md5")
|
|
133
|
+
dig <- substr(dig, 1, 8)
|
|
134
|
+
assay_name <- ifelse(is.null(assay), "", paste0("_", assay))
|
|
135
|
+
tmpdir <- tmpdir %||% dirname(outfile)
|
|
136
|
+
dir.create(tmpdir, showWarnings = FALSE)
|
|
137
|
+
h5seurat_file <- file.path(
|
|
138
|
+
tmpdir,
|
|
139
|
+
paste0(
|
|
140
|
+
tools::file_path_sans_ext(basename(outfile)),
|
|
141
|
+
assay_name, ".", dig, ".h5seurat"
|
|
142
|
+
)
|
|
143
|
+
)
|
|
144
|
+
if (file.exists(h5seurat_file) &&
|
|
145
|
+
(file.mtime(h5seurat_file) < file.mtime(sobjfile))) {
|
|
146
|
+
file.remove(h5seurat_file)
|
|
147
|
+
}
|
|
148
|
+
if (!file.exists(h5seurat_file)) {
|
|
149
|
+
log_info("{log_indent}Reading RDS file ...")
|
|
150
|
+
sobj <- readRDS(sobjfile)
|
|
151
|
+
assay <- assay %||% DefaultAssay(sobj)
|
|
152
|
+
# In order to convert to h5ad
|
|
153
|
+
# https://github.com/satijalab/seurat/issues/8220#issuecomment-1871874649
|
|
154
|
+
sobj$RNAv3 <- as(object = sobj[[assay]], Class = "Assay")
|
|
155
|
+
DefaultAssay(sobj) <- "RNAv3"
|
|
156
|
+
sobj$RNA <- NULL
|
|
157
|
+
sobj <- RenameAssays(sobj, RNAv3 = "RNA")
|
|
158
|
+
|
|
159
|
+
log_info("{log_indent}Saving to H5Seurat file ...")
|
|
160
|
+
SaveH5Seurat(sobj, h5seurat_file)
|
|
161
|
+
rm(sobj)
|
|
162
|
+
gc()
|
|
163
|
+
sobjfile <- h5seurat_file
|
|
164
|
+
} else {
|
|
165
|
+
log_info("{log_indent}Using existing H5Seurat file ...")
|
|
166
|
+
}
|
|
167
|
+
}
|
|
168
|
+
|
|
169
|
+
if (!endsWith(sobjfile, ".h5seurat")) {
|
|
170
|
+
stop(paste0("Unknown input file format: ",
|
|
171
|
+
tools::file_ext(sobjfile),
|
|
172
|
+
". Supported formats: .rds, .RDS, .h5seurat"))
|
|
173
|
+
}
|
|
174
|
+
|
|
175
|
+
log_info("{log_indent}Converting to Anndata ...")
|
|
176
|
+
Convert(sobjfile, dest = outfile, assay = assay %||% "RNA", overwrite = TRUE)
|
|
177
|
+
|
|
178
|
+
log_info("{log_indent}Fixing categorical data ...")
|
|
179
|
+
# See: https://github.com/mojaveazure/seurat-disk/issues/183
|
|
180
|
+
H5.create_reference <- function(self, ...) {
|
|
181
|
+
space <- self$get_space()
|
|
182
|
+
do.call("[", c(list(space), list(...)))
|
|
183
|
+
ref_type <- hdf5r::h5const$H5R_OBJECT
|
|
184
|
+
ref_obj <- hdf5r::H5R_OBJECT$new(1, self)
|
|
185
|
+
res <- .Call("R_H5Rcreate", ref_obj$ref, self$id, ".", ref_type,
|
|
186
|
+
space$id, FALSE, PACKAGE = "hdf5r")
|
|
187
|
+
if (res$return_val < 0) {
|
|
188
|
+
stop("Error creating object reference")
|
|
189
|
+
}
|
|
190
|
+
ref_obj$ref <- res$ref
|
|
191
|
+
return(ref_obj)
|
|
192
|
+
}
|
|
193
|
+
|
|
194
|
+
h5ad <- H5File$new(outfile, "r+")
|
|
195
|
+
cats <- names(h5ad[["obs/__categories"]])
|
|
196
|
+
for (cat in cats) {
|
|
197
|
+
catname <- paste0("obs/__categories/", cat)
|
|
198
|
+
obsname <- paste0("obs/", cat)
|
|
199
|
+
ref <- H5.create_reference(h5ad[[catname]])
|
|
200
|
+
h5ad[[obsname]]$create_attr(
|
|
201
|
+
attr_name = "categories",
|
|
202
|
+
robj = ref,
|
|
203
|
+
space = H5S$new(type = "scalar")
|
|
204
|
+
)
|
|
205
|
+
}
|
|
206
|
+
h5ad$close()
|
|
207
|
+
}
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
biopipen/__init__.py,sha256=
|
|
1
|
+
biopipen/__init__.py,sha256=s1FApnNsg-mmWP3shY6ep6EAjZrNFXHlyBXWcP2KV6Q,23
|
|
2
2
|
biopipen/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
3
|
biopipen/core/config.py,sha256=edK5xnDhM8j27srDzsxubi934NMrglLoKrdcC8qsEPk,1069
|
|
4
4
|
biopipen/core/config.toml,sha256=7IXvviRicZ2D1h6x3BVgbLJ96nsh-ikvZ0sVlQepqFE,1944
|
|
@@ -22,7 +22,7 @@ biopipen/ns/plot.py,sha256=XzLq0A8qCIQRbxhPEdWhEfbRZ8g3e4KriVz0RP8enNY,18078
|
|
|
22
22
|
biopipen/ns/protein.py,sha256=33pzM-gvBTw0jH60mvfqnriM6uw2zj3katZ82nC9owI,3309
|
|
23
23
|
biopipen/ns/regulatory.py,sha256=gJjGVpJrdv-rg2t5UjK4AGuvtLNymaNYNvoD8PhlbvE,15929
|
|
24
24
|
biopipen/ns/rnaseq.py,sha256=bKAa6friFWof4yDTWZQahm1MS-lrdetO1GqDKdfxXYc,7708
|
|
25
|
-
biopipen/ns/scrna.py,sha256=
|
|
25
|
+
biopipen/ns/scrna.py,sha256=viIfqTH_0f7kSpHpKfrUf7HUr_w-V_oRYRj1TwuXYNs,120878
|
|
26
26
|
biopipen/ns/scrna_metabolic_landscape.py,sha256=6AhaynGG3lNRi96N2tReVT46BJMuEwooSSd2irBoN80,28347
|
|
27
27
|
biopipen/ns/snp.py,sha256=-Jx5Hsv_7KV7TqLU0nHCaPkMEN0CFdi4tNVlyq0rUZ4,27259
|
|
28
28
|
biopipen/ns/stats.py,sha256=DlPyK5Vsg6ZEkV9SDS3aAw21eXzvOHgqeZDkXPhg7go,20509
|
|
@@ -46,6 +46,7 @@ biopipen/reports/delim/SampleInfo.svelte,sha256=Vpjrdd3AXNDNhx2pzDaFA61xPMYAFKvv
|
|
|
46
46
|
biopipen/reports/gsea/FGSEA.svelte,sha256=3gNbZovmRWK6QjtxfgZgmft6LUurVZfQyHBRqyGMosk,405
|
|
47
47
|
biopipen/reports/gsea/GSEA.svelte,sha256=lYHf8h8RLx3i-jNCEGu_LM-dbYm9ZJDzyAEadsZXzmQ,417
|
|
48
48
|
biopipen/reports/protein/ProdigySummary.svelte,sha256=WEYPwmcmgtSqpFpTvNPV40yZR-7ERa5LgZni2RXxUZQ,348
|
|
49
|
+
biopipen/reports/scrna/CellCellCommunicationPlots.svelte,sha256=McLQtgzbJGnb9o3GC17sRee96e-naPNPIF8SQyRp-Kc,346
|
|
49
50
|
biopipen/reports/scrna/CellsDistribution.svelte,sha256=Mg6P0tazpzOxsOAtc-0LGEim5KprPt5KIgoW3TzrxxA,413
|
|
50
51
|
biopipen/reports/scrna/DimPlots.svelte,sha256=ZLbtN0ioevRyEky4jb_DkDGAcpy_jAhaHfFym5ELEPM,479
|
|
51
52
|
biopipen/reports/scrna/MarkersFinder.svelte,sha256=77rD1psj0VJykPDhfwS-B8mubvaasREAE6RYR2atTN4,444
|
|
@@ -53,7 +54,7 @@ biopipen/reports/scrna/MetaMarkers.svelte,sha256=iIFRKjvVYrM1AtDWqq8UfeS8q23R8FK
|
|
|
53
54
|
biopipen/reports/scrna/RadarPlots.svelte,sha256=g_fp9d3vdnzk-egXPhkhhfWXOeG569Rj8rYLRIKmlLc,396
|
|
54
55
|
biopipen/reports/scrna/ScFGSEA.svelte,sha256=Gqt-XjqsB3XgdR3XukvphwyMExZpScwqgEo7AD-gK6g,491
|
|
55
56
|
biopipen/reports/scrna/SeuratClusterStats.svelte,sha256=rTsoOCiVm7lEyBYgu2ZVcKNGi4g6PynYoOSx0DHdTHo,429
|
|
56
|
-
biopipen/reports/scrna/SeuratMap2Ref.svelte,sha256=
|
|
57
|
+
biopipen/reports/scrna/SeuratMap2Ref.svelte,sha256=1g-FEmvR2YMn0OF66qESNBWmGdHQY3u8QuG4M-T7Y4E,659
|
|
57
58
|
biopipen/reports/scrna/SeuratPreparing.svelte,sha256=CCQ3qodjfoQeMZhSZp7irvSqBt10m7urzcWEOHsZa8M,365
|
|
58
59
|
biopipen/reports/scrna/TopExpressingGenes.svelte,sha256=h2Or2cKCzuY2cypq1PKrqiHFVMZmFUgFOXoQumvfGSk,471
|
|
59
60
|
biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte,sha256=4M8V6jDv1_ZviTsRdoYNQixoTnKiD06oPHzVabUTq6k,978
|
|
@@ -138,7 +139,10 @@ biopipen/scripts/rnaseq/Simulation-ESCO.R,sha256=68cEHDdJclX8P8Q7ey9yBOfK09M_kxl
|
|
|
138
139
|
biopipen/scripts/rnaseq/Simulation-RUVcorr.R,sha256=6C6Ke5RLF0fC2V9WQPoFEdqoDabCnhslZBIyB6zhIxc,1155
|
|
139
140
|
biopipen/scripts/rnaseq/Simulation.R,sha256=PK9tZS88AcBPStcFalZlMU0KE0gSqFSQvhUoQ-8eg90,871
|
|
140
141
|
biopipen/scripts/rnaseq/UnitConversion.R,sha256=pr1uZuzjapZKwIupE-xtE2HW-OwdVCGBVaHQ_3ipIDw,11377
|
|
141
|
-
biopipen/scripts/scrna/AnnData2Seurat.R,sha256=
|
|
142
|
+
biopipen/scripts/scrna/AnnData2Seurat.R,sha256=PohvXtUziu0_A_HL5HaOYG1wSVdLgMaV8yhzEKDQT84,2814
|
|
143
|
+
biopipen/scripts/scrna/CCPlotR-patch.R,sha256=KpB8fwacBaWaUNjIidcLUkMShLjS4Gq9UY8LUgIITB0,8369
|
|
144
|
+
biopipen/scripts/scrna/CellCellCommunication.py,sha256=1txufcxFsniB9UET_L2RA2qaQZfjidjUbUsese_hoGE,2899
|
|
145
|
+
biopipen/scripts/scrna/CellCellCommunicationPlots.R,sha256=KE-yy7TkMjPz4opfQgosr6NfMQQYeg4mgzfDod-RJrQ,6104
|
|
142
146
|
biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R,sha256=2lkIwtSw2A21RCUBdo3BVUdAwsLTIq65NDA-ZR1YWE0,9644
|
|
143
147
|
biopipen/scripts/scrna/CellTypeAnnotation-common.R,sha256=s2exGdJ3WM8mDDeBXGUxuKO1DAGVgRiirHaJD0lPgDw,336
|
|
144
148
|
biopipen/scripts/scrna/CellTypeAnnotation-direct.R,sha256=hmuk3G4IbF66Sv4RmrcrKn8b4J7ZEBD5PzJHa5EKYB8,2125
|
|
@@ -159,7 +163,7 @@ biopipen/scripts/scrna/RadarPlots.R,sha256=4zs0hAm7yq1Ls62f_29koPLqAKCeKbYiztNM-
|
|
|
159
163
|
biopipen/scripts/scrna/SCImpute.R,sha256=dSJOHhmJ3x_72LBRXT72dbCti5oiB85CJ-OjWtqONbk,2958
|
|
160
164
|
biopipen/scripts/scrna/ScFGSEA.R,sha256=MFoJ3i3LFBfsPCxwLPnTh141ZJyrzwnrTuCZIFwvYjU,6318
|
|
161
165
|
biopipen/scripts/scrna/ScSimulation.R,sha256=b2LtL68ucxLoI57tSEDD0hOSbVHUA_x88Y96eK07N-s,1712
|
|
162
|
-
biopipen/scripts/scrna/Seurat2AnnData.R,sha256=
|
|
166
|
+
biopipen/scripts/scrna/Seurat2AnnData.R,sha256=zXkdHEqv6H8RCw1bEPStvYHVpu5oRnioWxz164MgHxQ,276
|
|
163
167
|
biopipen/scripts/scrna/SeuratClusterStats-clustree.R,sha256=FkbniQMHiZGrFAIuS8nUfPVJKFofSL-ZnpxTqIhTa54,3058
|
|
164
168
|
biopipen/scripts/scrna/SeuratClusterStats-dimplots.R,sha256=NEdlJHNXnJZfF7YkefYVWTPO8Z_KAppRAs9rNvB8TXs,2360
|
|
165
169
|
biopipen/scripts/scrna/SeuratClusterStats-features.R,sha256=DeGo7AkBRq0V3Y3JDaifId6rrr5dwawTzcSAJ3W1lxE,15614
|
|
@@ -171,7 +175,7 @@ biopipen/scripts/scrna/SeuratClustering-common.R,sha256=JX4Cn2FC6GOcBqaVyGDD3MM5
|
|
|
171
175
|
biopipen/scripts/scrna/SeuratClustering.R,sha256=0OKRBQ5rFuupK7c03_sSt2HMwMdMnCYFqTvkRXFKchs,1706
|
|
172
176
|
biopipen/scripts/scrna/SeuratFilter.R,sha256=BrYK0MLdaTtQvInMaQsmOt7oH_hlks0M1zykkJtg2lM,509
|
|
173
177
|
biopipen/scripts/scrna/SeuratLoading.R,sha256=ekWKnHIqtQb3kHVQiVymAHXXqiUxs6KKefjZKjaykmk,900
|
|
174
|
-
biopipen/scripts/scrna/SeuratMap2Ref.R,sha256=
|
|
178
|
+
biopipen/scripts/scrna/SeuratMap2Ref.R,sha256=MP6ttYv8bK5kzWNoP3DXEad06snotVOqCqdvBHsOasc,12776
|
|
175
179
|
biopipen/scripts/scrna/SeuratMetadataMutater.R,sha256=PMwG0Xvl_EEVKkicfrIi4arEqpY948PkYLkb59kTAXI,1135
|
|
176
180
|
biopipen/scripts/scrna/SeuratPreparing-common.R,sha256=WuD7lGS17eAUQWSiIdAoV0EIeqS3Tnkkx-7PbP6Q3tc,16279
|
|
177
181
|
biopipen/scripts/scrna/SeuratPreparing-doublet_detection.R,sha256=TNN2lfFjpnnO0rguMsG38JYCP1nFUhcPLJ1LqGj-Sc8,6674
|
|
@@ -212,10 +216,10 @@ biopipen/scripts/tcr/Attach2Seurat.R,sha256=0KZaBkuPvqOBXq4ZG3pzIIua5HL-161K5dVX
|
|
|
212
216
|
biopipen/scripts/tcr/CDR3AAPhyschem.R,sha256=ZxHyn4vJF-1PDbnbozovOipET_QZKqeFrKUibRpLgzw,16825
|
|
213
217
|
biopipen/scripts/tcr/CloneResidency.R,sha256=KAcFB39vTYsk8IEj44s8oSFVhKjpAdJ8hkpKxtdWzRA,21540
|
|
214
218
|
biopipen/scripts/tcr/CloneSizeQQPlot.R,sha256=hds1C80Q_W40Ikp-BrFfvh_aBf_V61lz-1YAvkDESyk,4569
|
|
215
|
-
biopipen/scripts/tcr/GIANA/GIANA.py,sha256=
|
|
216
|
-
biopipen/scripts/tcr/GIANA/GIANA4.py,sha256=
|
|
219
|
+
biopipen/scripts/tcr/GIANA/GIANA.py,sha256=jo0d58K57CF4W6mc2Q-hQn9rLl6oLHTsr5JceP8xqN0,54874
|
|
220
|
+
biopipen/scripts/tcr/GIANA/GIANA4.py,sha256=X_iXdgKZ9V5T87jXBdml0H6bwiDjsAqoPKhsdF72lj8,53904
|
|
217
221
|
biopipen/scripts/tcr/GIANA/Imgt_Human_TRBV.fasta,sha256=XUwDPXJxVH5O9Q0gCL6EILKXEwVyiAZXm4VS2vkPcnQ,15371
|
|
218
|
-
biopipen/scripts/tcr/GIANA/query.py,sha256=
|
|
222
|
+
biopipen/scripts/tcr/GIANA/query.py,sha256=YJeCk24Hab7XfQxZ5VNesdjr_LVxPH0KH9rwGm1ePf4,7680
|
|
219
223
|
biopipen/scripts/tcr/Immunarch-basic.R,sha256=2UAQtGEDKgf5LmPeGlNkkAfQOCtdYpCiBMAn-JHOV4A,3036
|
|
220
224
|
biopipen/scripts/tcr/Immunarch-clonality.R,sha256=NN6WikD-9BKodgKRAbvM2oMLrhn9FUWjqIb69DpHnAk,3744
|
|
221
225
|
biopipen/scripts/tcr/Immunarch-diversity.R,sha256=6T8-IXIMyy4YXgIA4TXJThy91FqgLVsljqxd3PxLDys,27136
|
|
@@ -232,7 +236,7 @@ biopipen/scripts/tcr/ImmunarchLoading.R,sha256=Vw2oIza3mDJzg9kuo-w5jvwdivk4AtDA6
|
|
|
232
236
|
biopipen/scripts/tcr/ImmunarchSplitIdents.R,sha256=FGCeGV0uSmFU91lKkldUAeV4A2m3hHw5X4GNi8ffGzI,1873
|
|
233
237
|
biopipen/scripts/tcr/SampleDiversity.R,sha256=oipN4-2nQZe8bYjI0lZ0SvZ7T8GZ_FWkpkobi1cwmWE,2664
|
|
234
238
|
biopipen/scripts/tcr/TCRClusterStats.R,sha256=QhXgfKSh27VHO901hDizyGYTXMYFJxW22StchQUq3uE,12906
|
|
235
|
-
biopipen/scripts/tcr/TCRClustering.R,sha256=
|
|
239
|
+
biopipen/scripts/tcr/TCRClustering.R,sha256=Lt_e32c52gJ9fz1abboGXLIR--Lx2dqW0oFlSOCrCVs,10079
|
|
236
240
|
biopipen/scripts/tcr/TCRDock.py,sha256=jjzxMWp-hs0LDtA1mVbiWDvUieSO7X-F9yeKGy1LSTM,3026
|
|
237
241
|
biopipen/scripts/tcr/TESSA.R,sha256=XFC2P_e_Gm83jG5EjzVIW6KcyG5IieAaK7sXDA3_oZ0,6864
|
|
238
242
|
biopipen/scripts/tcr/TESSA_source/Atchley_factors.csv,sha256=SumqDOqP67P54uM7Cuc5_O_rySTWcGo7eX3psMSPX9s,763
|
|
@@ -284,9 +288,9 @@ biopipen/utils/mutate_helpers.R,sha256=Bqy6Oi4rrPEPJw0Jq32bVAwwBfZv7JJL9jFcK5x-c
|
|
|
284
288
|
biopipen/utils/plot.R,sha256=fmWnCv6EpOU8NvHFvShbdPRqB659vHcDlJAqWIXM8XQ,4415
|
|
285
289
|
biopipen/utils/reference.py,sha256=oi5evicLwHxF0KAIPNZohBeHJLJQNWFJH0cr2y5pgcg,5873
|
|
286
290
|
biopipen/utils/rnaseq.R,sha256=Ro2B2dG-Z2oVaT5tkwp9RHBz4dp_RF-JcizlM5GYXFs,1298
|
|
287
|
-
biopipen/utils/single_cell.R,sha256=
|
|
291
|
+
biopipen/utils/single_cell.R,sha256=3jmTV9-kHTXyBA6GRlRf_Ig0jx_5jRr6E1THoa1869k,7564
|
|
288
292
|
biopipen/utils/vcf.py,sha256=ajXs0M_QghEctlvUlSRjWQIABVF02wPdYd-0LP4mIsU,9377
|
|
289
|
-
biopipen-0.
|
|
290
|
-
biopipen-0.
|
|
291
|
-
biopipen-0.
|
|
292
|
-
biopipen-0.
|
|
293
|
+
biopipen-0.32.0.dist-info/METADATA,sha256=1kWhdtPEVLqTrBh-9eK1I-Fb7KVCycmWJTA4_HXQLlw,882
|
|
294
|
+
biopipen-0.32.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
|
295
|
+
biopipen-0.32.0.dist-info/entry_points.txt,sha256=BYqHGBQJxyFDNLYqgH64ycI5PYwnlqwYcCFsMvJgzAU,653
|
|
296
|
+
biopipen-0.32.0.dist-info/RECORD,,
|
|
File without changes
|