biopipen 0.29.1__py3-none-any.whl → 0.29.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of biopipen might be problematic. Click here for more details.
- biopipen/__init__.py +1 -1
- biopipen/scripts/scrna/MarkersFinder.R +2 -1
- biopipen/scripts/scrna/MetaMarkers.R +20 -2
- biopipen/scripts/scrna/SeuratClusterStats-features.R +3 -1
- biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R +5 -2
- biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R +5 -1
- biopipen/scripts/stats/Mediation.R +15 -3
- {biopipen-0.29.1.dist-info → biopipen-0.29.2.dist-info}/METADATA +1 -1
- {biopipen-0.29.1.dist-info → biopipen-0.29.2.dist-info}/RECORD +11 -11
- {biopipen-0.29.1.dist-info → biopipen-0.29.2.dist-info}/WHEEL +0 -0
- {biopipen-0.29.1.dist-info → biopipen-0.29.2.dist-info}/entry_points.txt +0 -0
biopipen/__init__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "0.29.
|
|
1
|
+
__version__ = "0.29.2"
|
|
@@ -70,7 +70,8 @@ if (defassay == "SCT" && !"PrepSCTFindMarkers" %in% names(srtobj@commands)) {
|
|
|
70
70
|
|
|
71
71
|
srtobj <- PrepSCTFindMarkers(srtobj)
|
|
72
72
|
# compose a new SeuratCommand to record it to srtobj@commands
|
|
73
|
-
|
|
73
|
+
commands <- names(srtobj@commands)
|
|
74
|
+
scommand <- srtobj@commands[[commands[length(commands)]]]
|
|
74
75
|
scommand@name <- "PrepSCTFindMarkers"
|
|
75
76
|
scommand@time.stamp <- Sys.time()
|
|
76
77
|
scommand@assay.used <- "SCT"
|
|
@@ -36,6 +36,20 @@ set.seed(8525)
|
|
|
36
36
|
|
|
37
37
|
log_info("- Reading Seurat object ...")
|
|
38
38
|
srtobj <- readRDS(srtfile)
|
|
39
|
+
if (DefaultAssay(srtobj) == "SCT" && !"PrepSCTFindMarkers" %in% names(srtobj@commands)) {
|
|
40
|
+
log_warn("- SCTransform used but PrepSCTFindMarkers not applied, running ...")
|
|
41
|
+
|
|
42
|
+
srtobj <- PrepSCTFindMarkers(srtobj)
|
|
43
|
+
# compose a new SeuratCommand to record it to srtobj@commands
|
|
44
|
+
commands <- names(srtobj@commands)
|
|
45
|
+
scommand <- srtobj@commands[[commands[length(commands)]]]
|
|
46
|
+
scommand@name <- "PrepSCTFindMarkers"
|
|
47
|
+
scommand@time.stamp <- Sys.time()
|
|
48
|
+
scommand@assay.used <- "SCT"
|
|
49
|
+
scommand@call.string <- "PrepSCTFindMarkers(object = srtobj)"
|
|
50
|
+
scommand@params <- list()
|
|
51
|
+
srtobj@commands$PrepSCTFindMarkers <- scommand
|
|
52
|
+
}
|
|
39
53
|
|
|
40
54
|
log_info("- Mutate meta data if needed ...")
|
|
41
55
|
if (!is.null(mutaters) && length(mutaters)) {
|
|
@@ -79,13 +93,13 @@ expand_each <- function(name, case) {
|
|
|
79
93
|
by = make.names(paste0("..", name, "_", case$each, "_", each))
|
|
80
94
|
idents <- case$idents
|
|
81
95
|
if (is.null(idents) || length(idents) == 0) {
|
|
82
|
-
srtobj@meta.data
|
|
96
|
+
srtobj@meta.data <<- srtobj@meta.data %>%
|
|
83
97
|
mutate(
|
|
84
98
|
!!sym(by) := if_else(!!sym(case$each) == each, !!sym(case$group_by), NA)
|
|
85
99
|
)
|
|
86
100
|
idents <- srtobj@meta.data %>% pull(case$group_by) %>% unique() %>% na.omit()
|
|
87
101
|
} else {
|
|
88
|
-
srtobj@meta.data
|
|
102
|
+
srtobj@meta.data <<- srtobj@meta.data %>%
|
|
89
103
|
mutate(
|
|
90
104
|
!!sym(by) := if_else(
|
|
91
105
|
!!sym(case$each) == each & !!sym(case$group_by) %in% case$idents,
|
|
@@ -204,6 +218,10 @@ do_case <- function(casename) {
|
|
|
204
218
|
if (is.null(df)) {
|
|
205
219
|
msg <- "No markers found. May be due to too few cells or features."
|
|
206
220
|
} else {
|
|
221
|
+
df <- df[
|
|
222
|
+
apply(df, 1, function(x) !all(is.na(x)) && !all(x == x[1])), ,
|
|
223
|
+
drop = FALSE
|
|
224
|
+
]
|
|
207
225
|
genes <- rownames(df)
|
|
208
226
|
# rows: cells, cols: genes
|
|
209
227
|
df <- cbind(as.data.frame(scale(Matrix::t(df))), sobj@meta.data[, case$group_by])
|
|
@@ -75,6 +75,7 @@ do_one_features = function(name) {
|
|
|
75
75
|
Idents(case$object) = case$ident
|
|
76
76
|
}
|
|
77
77
|
n_uidents = length(unique(Idents(case$object)))
|
|
78
|
+
max_nchar_idents = max(nchar(unique(as.character(Idents(case$object)))))
|
|
78
79
|
|
|
79
80
|
fn = NULL
|
|
80
81
|
default_devpars = NULL
|
|
@@ -97,13 +98,14 @@ do_one_features = function(name) {
|
|
|
97
98
|
case$kind = "violin"
|
|
98
99
|
if (is.null(case$cols)) { case$cols = pal_biopipen()(n_uidents) }
|
|
99
100
|
if (is.null(case$pt.size)) { case$pt.size = 0 }
|
|
101
|
+
|
|
100
102
|
excluded_args = c(excluded_args, "reduction")
|
|
101
103
|
fn = VlnPlot
|
|
102
104
|
default_devpars = function(features, ncol) {
|
|
103
105
|
if (is.null(ncol)) { ncol = 1 }
|
|
104
106
|
list(
|
|
105
107
|
width = 400 * ncol,
|
|
106
|
-
height = ceiling(length(features) / ncol) *
|
|
108
|
+
height = ceiling(length(features) / ncol + max_nchar_idents * .05) * 150,
|
|
107
109
|
res = 100
|
|
108
110
|
)
|
|
109
111
|
}
|
|
@@ -139,8 +139,11 @@ do_one_subset <- function(s, subset_col, subset_prefix) {
|
|
|
139
139
|
if (any(unlist(lapply(x, class)) == "try-error")) {
|
|
140
140
|
stop("mclapply error")
|
|
141
141
|
}
|
|
142
|
-
|
|
143
|
-
|
|
142
|
+
for (r in x) {
|
|
143
|
+
if (!is.null(r)) {
|
|
144
|
+
do.call(add_report, r)
|
|
145
|
+
}
|
|
146
|
+
}
|
|
144
147
|
}
|
|
145
148
|
|
|
146
149
|
do_one_subset_col <- function(subset_col, subset_prefix) {
|
|
@@ -35,9 +35,20 @@ if (!is.null(fmlfile)) {
|
|
|
35
35
|
|
|
36
36
|
args <- args %||% list()
|
|
37
37
|
|
|
38
|
-
medanalysis
|
|
38
|
+
medanalysis <- function(i, total) {
|
|
39
|
+
casename <- names(cases)[i]
|
|
39
40
|
case <- cases[[casename]]
|
|
40
|
-
|
|
41
|
+
if (total < 50) {
|
|
42
|
+
log_info("- Case: ", casename)
|
|
43
|
+
} else if (total < 500) {
|
|
44
|
+
if (i %% 10 == 0) {
|
|
45
|
+
log_info("- Processing case {i}/{total} ...")
|
|
46
|
+
}
|
|
47
|
+
} else {
|
|
48
|
+
if (i %% 100 == 0) {
|
|
49
|
+
log_info("- Processing case {i}/{total} ...")
|
|
50
|
+
}
|
|
51
|
+
}
|
|
41
52
|
M <- case$M
|
|
42
53
|
Y <- case$Y
|
|
43
54
|
X <- case$X
|
|
@@ -85,7 +96,8 @@ medanalysis = function(casename) {
|
|
|
85
96
|
}
|
|
86
97
|
}
|
|
87
98
|
|
|
88
|
-
|
|
99
|
+
total <- length(cases)
|
|
100
|
+
out <- do_call(rbind, mclapply(1:total, medanalysis, total = total, mc.cores = ncores))
|
|
89
101
|
|
|
90
102
|
if (padj != "none") {
|
|
91
103
|
out$Padj <- p.adjust(out$Pval, method = padj)
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
biopipen/__init__.py,sha256=
|
|
1
|
+
biopipen/__init__.py,sha256=f5--I8wu8KDVcUAUM1dKof58bj59kV6atq2ccm3sqPs,23
|
|
2
2
|
biopipen/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
3
|
biopipen/core/config.py,sha256=edK5xnDhM8j27srDzsxubi934NMrglLoKrdcC8qsEPk,1069
|
|
4
4
|
biopipen/core/config.toml,sha256=IL31RfhuF-6V46lvLs1F-Z4SPmUuTvWzk5PN37Xjrqc,1907
|
|
@@ -143,15 +143,15 @@ biopipen/scripts/scrna/ExprImputation-alra.R,sha256=w3W1txJcdWg52-SETY2Z0lO7maDN
|
|
|
143
143
|
biopipen/scripts/scrna/ExprImputation-rmagic.R,sha256=jYIfqZpnvjKJkvItLnemPVtUApHBYQi1_L8rHVbEe1M,735
|
|
144
144
|
biopipen/scripts/scrna/ExprImputation-scimpute.R,sha256=mg40qCUW7-nP5oHPvARq7dmtoahM0GRFWXQpum0BXVk,1082
|
|
145
145
|
biopipen/scripts/scrna/ExprImputation.R,sha256=GcdZJpkDpq88hRQjtLZY5-byp8V43stEFm5T-pQbU6A,319
|
|
146
|
-
biopipen/scripts/scrna/MarkersFinder.R,sha256=
|
|
147
|
-
biopipen/scripts/scrna/MetaMarkers.R,sha256=
|
|
146
|
+
biopipen/scripts/scrna/MarkersFinder.R,sha256=6CjciBZsVUIjsEe_xpO0s5K-uy2kKa1c76Ks_lndX-g,22950
|
|
147
|
+
biopipen/scripts/scrna/MetaMarkers.R,sha256=xb1dt4N-ra26l6pWmL4Ieix0MB6QOU7CDcxufMZE3Xk,12064
|
|
148
148
|
biopipen/scripts/scrna/ModuleScoreCalculator.R,sha256=JSHd-_-KiFqW8avCGxgU4T-C5BtDr2u0kwIvEu2lFIg,4188
|
|
149
149
|
biopipen/scripts/scrna/RadarPlots.R,sha256=TGPUTUcHOHgd9rsNtLYT-N6WHiFNDBZsiIoqkyAJh0A,13020
|
|
150
150
|
biopipen/scripts/scrna/SCImpute.R,sha256=dSJOHhmJ3x_72LBRXT72dbCti5oiB85CJ-OjWtqONbk,2958
|
|
151
151
|
biopipen/scripts/scrna/ScFGSEA.R,sha256=2UCTCIydVkPGvn7WP-_fcE7857iKKDxY56-j-ruyO8o,6254
|
|
152
152
|
biopipen/scripts/scrna/Seurat2AnnData.R,sha256=qz4u-B5J3GMwttubnNnByJXreziFbrP5Mak0L0q7eG0,1557
|
|
153
153
|
biopipen/scripts/scrna/SeuratClusterStats-dimplots.R,sha256=gViDgQ8NorYD64iK0FgcODOrDOw0tExZmhuPRuLNp4g,2354
|
|
154
|
-
biopipen/scripts/scrna/SeuratClusterStats-features.R,sha256=
|
|
154
|
+
biopipen/scripts/scrna/SeuratClusterStats-features.R,sha256=Cg7fVdDnapS98ak9z2Ha77CLqBkNJ4IYX1q1ssfGNeU,15599
|
|
155
155
|
biopipen/scripts/scrna/SeuratClusterStats-hists.R,sha256=YhuD-GePjJPSkR0iLRgV_hiGHD_bnOIKp-LB6GCwquo,5037
|
|
156
156
|
biopipen/scripts/scrna/SeuratClusterStats-ngenes.R,sha256=GVKIXFNS_syCuSN8oxoBkjxxAeI5LdSxh-qLVkUsbDA,2146
|
|
157
157
|
biopipen/scripts/scrna/SeuratClusterStats-stats.R,sha256=bBbvNCvV6dZLg9zvhh2nR48_53md5A5UEqrPXD00MZU,9263
|
|
@@ -170,8 +170,8 @@ biopipen/scripts/scrna/Subset10X.R,sha256=T2nJBTwOe12AIKC2FZsMSv6xx3s-67CYZokpz5
|
|
|
170
170
|
biopipen/scripts/scrna/TopExpressingGenes.R,sha256=kXMCYHVytgVgO_Uq66fKKFCFV2PPXE8VREy_0yYPLpU,7475
|
|
171
171
|
biopipen/scripts/scrna/celltypist-wrapper.py,sha256=f5M8f4rU5nC7l17RS0YVmUPpLLz4D6PIcgWtA77UExM,1722
|
|
172
172
|
biopipen/scripts/scrna/sctype.R,sha256=NaUJkABwF5G1UVm1CCtcMbwLSj94Mo24mbYCKFqo1Bw,6524
|
|
173
|
-
biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R,sha256=
|
|
174
|
-
biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R,sha256=
|
|
173
|
+
biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R,sha256=EFUhI65cPEktZnZquzfVoJcBd_pNcT5jag5XOWHj-Os,5222
|
|
174
|
+
biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R,sha256=jeTuhWEn2ajL1ZmGpCBy7cBSd1d387P-YetnB6qjhxc,5502
|
|
175
175
|
biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R,sha256=95DLX1Rz0tobOuDZ8V9YdGgO0KiNthhccoeeOK21tno,16216
|
|
176
176
|
biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R,sha256=rQ9iwGh9FNRZlJJzM4QItdyXmebfzLAq05ZAjb1kGUw,9831
|
|
177
177
|
biopipen/scripts/snp/MatrixEQTL.R,sha256=QPnUW7Rk5UrAQLiBg9FdCItUC26RDBHf7UrfL66dMto,7202
|
|
@@ -188,7 +188,7 @@ biopipen/scripts/snp/PlinkUpdateName.py,sha256=sYyb0ek46wRQfclFfoJEhQyQ-zWsFd2xp
|
|
|
188
188
|
biopipen/scripts/stats/ChowTest.R,sha256=4p7NULmfOZSfeBSQ04els0h3cXOK5yeCJJ4-gEBPOGk,3617
|
|
189
189
|
biopipen/scripts/stats/DiffCoexpr.R,sha256=5hQDV2_7bKdKUsOGMZUa0GS5rc7kFspxonNyFEPmtbc,4516
|
|
190
190
|
biopipen/scripts/stats/LiquidAssoc.R,sha256=s-XJbFoOfH4eWSkxbbOSHZ1x16lY0Sdod_V1KvSkM8k,3727
|
|
191
|
-
biopipen/scripts/stats/Mediation.R,sha256=
|
|
191
|
+
biopipen/scripts/stats/Mediation.R,sha256=jf7ORVbbd9wtEOEJRLowKexQCkOhFmc4v5kkPsNqWpY,3160
|
|
192
192
|
biopipen/scripts/stats/MetaPvalue.R,sha256=fnqayZeHd61cP9PxZZAebg5lE7JQgFG5MElCct43S1M,4012
|
|
193
193
|
biopipen/scripts/stats/MetaPvalue1.R,sha256=falhaOeoa8E7ZbddXfGsSdim5P7eQvA7RFGD7XSrBUk,1733
|
|
194
194
|
biopipen/scripts/tcgamaf/Maf2Vcf.py,sha256=Cxh7fiSNCxWDTfIJqZDOOnaSrw-85S_fH2U-PWY03hc,704
|
|
@@ -269,7 +269,7 @@ biopipen/utils/reference.py,sha256=oi5evicLwHxF0KAIPNZohBeHJLJQNWFJH0cr2y5pgcg,5
|
|
|
269
269
|
biopipen/utils/rnaseq.R,sha256=Ro2B2dG-Z2oVaT5tkwp9RHBz4dp_RF-JcizlM5GYXFs,1298
|
|
270
270
|
biopipen/utils/single_cell.R,sha256=pJjYP8bIZpNAtTQ32rOXhZxaM1Y-6D-xUcK3pql9tbk,4316
|
|
271
271
|
biopipen/utils/vcf.py,sha256=ajXs0M_QghEctlvUlSRjWQIABVF02wPdYd-0LP4mIsU,9377
|
|
272
|
-
biopipen-0.29.
|
|
273
|
-
biopipen-0.29.
|
|
274
|
-
biopipen-0.29.
|
|
275
|
-
biopipen-0.29.
|
|
272
|
+
biopipen-0.29.2.dist-info/METADATA,sha256=9tT8IW-AiQXwRLIzbARle_vaYVL7h5f_wyEwq8ZAHA8,882
|
|
273
|
+
biopipen-0.29.2.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
|
274
|
+
biopipen-0.29.2.dist-info/entry_points.txt,sha256=69SbeMaF47Z2DS40yo-qDyoBKmMmumrNnsjEZMOioCE,625
|
|
275
|
+
biopipen-0.29.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|