biopipen 0.27.7__py3-none-any.whl → 0.27.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of biopipen might be problematic. Click here for more details.
- biopipen/__init__.py +1 -1
- biopipen/ns/scrna.py +27 -4
- biopipen/scripts/scrna/SeuratClusterStats-stats.R +1 -1
- biopipen/scripts/scrna/SeuratMap2Ref.R +174 -28
- {biopipen-0.27.7.dist-info → biopipen-0.27.8.dist-info}/METADATA +1 -1
- {biopipen-0.27.7.dist-info → biopipen-0.27.8.dist-info}/RECORD +8 -8
- {biopipen-0.27.7.dist-info → biopipen-0.27.8.dist-info}/WHEEL +0 -0
- {biopipen-0.27.7.dist-info → biopipen-0.27.8.dist-info}/entry_points.txt +0 -0
biopipen/__init__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "0.27.
|
|
1
|
+
__version__ = "0.27.8"
|
biopipen/ns/scrna.py
CHANGED
|
@@ -1769,13 +1769,18 @@ class SeuratMap2Ref(Proc):
|
|
|
1769
1769
|
sobjfile: The seurat object
|
|
1770
1770
|
|
|
1771
1771
|
Output:
|
|
1772
|
-
outfile: The rds file of seurat object with cell type annotated
|
|
1772
|
+
outfile: The rds file of seurat object with cell type annotated.
|
|
1773
|
+
Note that the reduction name will be `ref.umap` for the mapping.
|
|
1774
|
+
To visualize the mapping, you should use `ref.umap` as the reduction name.
|
|
1773
1775
|
|
|
1774
1776
|
Envs:
|
|
1775
1777
|
ncores (type=int;order=-100): Number of cores to use.
|
|
1776
|
-
|
|
1778
|
+
When `split_by` is used, this will be the number of cores for each object to map to the reference.
|
|
1779
|
+
When `split_by` is not used, this is used in `future::plan(strategy = "multicore", workers = <ncores>)`
|
|
1777
1780
|
to parallelize some Seurat procedures.
|
|
1778
|
-
See also: <https://satijalab.org/seurat/
|
|
1781
|
+
See also: <https://satijalab.org/seurat/archive/v3.0/future_vignette.html>
|
|
1782
|
+
mutaters (type=json): The mutaters to mutate the metadata.
|
|
1783
|
+
This is helpful when we want to create new columns for `split_by`.
|
|
1779
1784
|
use: A column name of metadata from the reference
|
|
1780
1785
|
(e.g. `celltype.l1`, `celltype.l2`) to transfer to the query as the
|
|
1781
1786
|
cell types (ident) for downstream analysis. This field is required.
|
|
@@ -1787,16 +1792,29 @@ class SeuratMap2Ref(Proc):
|
|
|
1787
1792
|
`Seurat::LoadH5Seurat()`.
|
|
1788
1793
|
The file type is determined by the extension. `.rds` or `.RDS` for
|
|
1789
1794
|
RDS file, `.h5seurat` or `.h5` for h5seurat file.
|
|
1795
|
+
refnorm (choice): Normalization method the reference used. The same method will be used for the query.
|
|
1796
|
+
- NormalizeData: Using [`NormalizeData`](https://satijalab.org/seurat/reference/normalizedata).
|
|
1797
|
+
- SCTransform: Using [`SCTransform`](https://satijalab.org/seurat/reference/sctransform).
|
|
1798
|
+
- auto: Automatically detect the normalization method.
|
|
1799
|
+
If the default assay of reference is `SCT`, then `SCTransform` will be used.
|
|
1800
|
+
split_by: The column name in metadata to split the query into multiple objects.
|
|
1801
|
+
This helps when the original query is too large to process.
|
|
1790
1802
|
SCTransform (ns): Arguments for [`SCTransform()`](https://satijalab.org/seurat/reference/sctransform)
|
|
1791
1803
|
- do-correct-umi (flag): Place corrected UMI matrix in assay counts layer?
|
|
1792
1804
|
- do-scale (flag): Whether to scale residuals to have unit variance?
|
|
1793
1805
|
- do-center (flag): Whether to center residuals to have mean zero?
|
|
1794
1806
|
- <more>: See <https://satijalab.org/seurat/reference/sctransform>.
|
|
1795
1807
|
Note that the hyphen (`-`) will be transformed into `.` for the keys.
|
|
1808
|
+
NormalizeData (ns): Arguments for [`NormalizeData()`](https://satijalab.org/seurat/reference/normalizedata)
|
|
1809
|
+
- normalization-method: Normalization method.
|
|
1810
|
+
- <more>: See <https://satijalab.org/seurat/reference/normalizedata>.
|
|
1811
|
+
Note that the hyphen (`-`) will be transformed into `.` for the keys.
|
|
1796
1812
|
FindTransferAnchors (ns): Arguments for [`FindTransferAnchors()`](https://satijalab.org/seurat/reference/findtransferanchors)
|
|
1797
1813
|
- normalization-method (choice): Name of normalization method used.
|
|
1798
1814
|
- LogNormalize: Log-normalize the data matrix
|
|
1799
1815
|
- SCT: Scale data using the SCTransform method
|
|
1816
|
+
- auto: Automatically detect the normalization method.
|
|
1817
|
+
See `envs.refnorm`.
|
|
1800
1818
|
- reference-reduction: Name of dimensional reduction to use from the reference if running the pcaproject workflow.
|
|
1801
1819
|
Optionally enables reuse of precomputed reference dimensional reduction.
|
|
1802
1820
|
- <more>: See <https://satijalab.org/seurat/reference/findtransferanchors>.
|
|
@@ -1822,14 +1840,19 @@ class SeuratMap2Ref(Proc):
|
|
|
1822
1840
|
"ncores": config.misc.ncores,
|
|
1823
1841
|
"use": None,
|
|
1824
1842
|
"ident": "seurat_clusters",
|
|
1843
|
+
"mutaters": {},
|
|
1825
1844
|
"ref": None,
|
|
1845
|
+
"refnorm": "auto",
|
|
1846
|
+
"split_by": None,
|
|
1826
1847
|
"SCTransform": {
|
|
1827
1848
|
"do-correct-umi": False,
|
|
1828
1849
|
"do-scale": False,
|
|
1829
1850
|
"do-center": True,
|
|
1830
1851
|
},
|
|
1852
|
+
"NormalizeData": {
|
|
1853
|
+
"normalization-method": "LogNormalize",
|
|
1854
|
+
},
|
|
1831
1855
|
"FindTransferAnchors": {
|
|
1832
|
-
"normalization-method": "SCT",
|
|
1833
1856
|
"reference-reduction": "spca",
|
|
1834
1857
|
},
|
|
1835
1858
|
"MapQuery": {
|
|
@@ -38,7 +38,7 @@ do_one_stats = function(name) {
|
|
|
38
38
|
df_cells = df_cells %>% filter(!!rlang::parse_expr(case$subset))
|
|
39
39
|
}
|
|
40
40
|
|
|
41
|
-
select_cols = c(case$ident, case$group.by, case$split.by)
|
|
41
|
+
select_cols = unique(c(case$ident, case$group.by, case$split.by))
|
|
42
42
|
if (!is.null(case$split.by)) {
|
|
43
43
|
plot_df = do_call(rbind, lapply(group_split(
|
|
44
44
|
df_cells %>% select(all_of(select_cols)),
|
|
@@ -1,5 +1,6 @@
|
|
|
1
1
|
source("{{biopipen_dir}}/utils/misc.R")
|
|
2
2
|
|
|
3
|
+
library(parallel)
|
|
3
4
|
library(Seurat)
|
|
4
5
|
library(SeuratDisk)
|
|
5
6
|
library(rlang)
|
|
@@ -12,8 +13,12 @@ outfile = {{out.outfile | r}}
|
|
|
12
13
|
use = {{envs.use | r}}
|
|
13
14
|
ident = {{envs.ident | r}}
|
|
14
15
|
ref = {{envs.ref | r}}
|
|
16
|
+
refnorm = {{envs.refnorm | r}}
|
|
15
17
|
ncores = {{envs.ncores | r}}
|
|
18
|
+
split_by = {{envs.split_by | r}}
|
|
19
|
+
mutaters = {{envs.mutaters | r}}
|
|
16
20
|
sctransform_args = {{envs.SCTransform | r: todot="-"}}
|
|
21
|
+
normalizedata_args = {{envs.NormalizeData | r: todot="-"}}
|
|
17
22
|
findtransferanchors_args = {{envs.FindTransferAnchors | r: todot="-"}}
|
|
18
23
|
mappingscore_args = {{envs.MappingScore | r: todot="-"}}
|
|
19
24
|
mapquery_args = {{envs.MapQuery | r: todot="-"}}
|
|
@@ -34,8 +39,10 @@ if (is.null(mapquery_args$refdata) || length(mapquery_args$refdata) == 0) {
|
|
|
34
39
|
mapquery_args$refdata[[use]] = use
|
|
35
40
|
|
|
36
41
|
outdir = dirname(outfile)
|
|
37
|
-
|
|
38
|
-
|
|
42
|
+
if (is.null(split_by)) {
|
|
43
|
+
options(future.globals.maxSize = 80000 * 1024^2)
|
|
44
|
+
future::plan(strategy = "multicore", workers = ncores)
|
|
45
|
+
}
|
|
39
46
|
|
|
40
47
|
.expand_dims = function(args, name = "dims") {
|
|
41
48
|
# Expand dims from 30 to 1:30
|
|
@@ -56,52 +63,191 @@ if (endsWith(ref, ".rds") || endsWith(ref, ".RDS")) {
|
|
|
56
63
|
reference = LoadH5Seurat(ref)
|
|
57
64
|
}
|
|
58
65
|
|
|
66
|
+
if (refnorm == "auto" && DefaultAssay(reference) == "SCT") {
|
|
67
|
+
refnorm = "SCTransform"
|
|
68
|
+
}
|
|
69
|
+
log_info(" Normalization method used: {refnorm}")
|
|
70
|
+
if (refnorm == "SCTransform") {
|
|
71
|
+
findtransferanchors_args$normalization.method = "SCT"
|
|
72
|
+
} else if (refnorm == "NormalizeData") {
|
|
73
|
+
findtransferanchors_args$normalization.method = "LogNormalize"
|
|
74
|
+
} else {
|
|
75
|
+
stop("Unknown normalization method: {refnorm}")
|
|
76
|
+
}
|
|
77
|
+
|
|
59
78
|
# Load Seurat object
|
|
60
79
|
log_info("- Loading Seurat object")
|
|
61
80
|
sobj = readRDS(sobjfile)
|
|
62
81
|
|
|
82
|
+
if (!is.null(mutaters) && length(mutaters) > 0) {
|
|
83
|
+
log_info("- Applying mutaters")
|
|
84
|
+
sobj@meta.data <- sobj@meta.data %>% mutate(!!!lapply(mutaters, parse_expr))
|
|
85
|
+
}
|
|
86
|
+
|
|
87
|
+
if (!is.null(split_by)) {
|
|
88
|
+
# check if each split has more than 100 cells
|
|
89
|
+
cellno = table(sobj@meta.data[[split_by]])
|
|
90
|
+
cellno = cellno[cellno < 100]
|
|
91
|
+
if (length(cellno) > 0) {
|
|
92
|
+
# stop and print the splits with # cells
|
|
93
|
+
stop(paste0(
|
|
94
|
+
"The following splits have less than 100 cells: \n",
|
|
95
|
+
paste0("- ", names(cellno), ": ", cellno, collapse = "\n"),
|
|
96
|
+
"\n\n",
|
|
97
|
+
"You can use `envs.mutaters` to merge these splits and use `newsplit` as `envs.split_by`: \n",
|
|
98
|
+
"> mutaters = {\n",
|
|
99
|
+
"> newsplit = \"if_else(oldsplit %in% c('split1', 'split2'), 'mergedsplit', oldsplit)\"\n",
|
|
100
|
+
"> }\n"
|
|
101
|
+
))
|
|
102
|
+
}
|
|
103
|
+
sobj = SplitObject(sobj, split.by = split_by)
|
|
104
|
+
}
|
|
105
|
+
|
|
63
106
|
# Normalize data
|
|
64
107
|
log_info("- Normalizing data")
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
108
|
+
if (refnorm == "SCTransform") {
|
|
109
|
+
log_info(" Using SCTransform normalization")
|
|
110
|
+
sctransform_args$residual.features = rownames(x = reference)
|
|
111
|
+
if (is.null(split_by)) {
|
|
112
|
+
sctransform_args$object = sobj
|
|
113
|
+
query = do_call(SCTransform, sctransform_args)
|
|
114
|
+
} else {
|
|
115
|
+
query = mclapply(
|
|
116
|
+
X = sobj,
|
|
117
|
+
FUN = function(x) {
|
|
118
|
+
sctransform_args$object = x
|
|
119
|
+
do_call(SCTransform, sctransform_args)
|
|
120
|
+
},
|
|
121
|
+
mc.cores = ncores
|
|
122
|
+
)
|
|
123
|
+
if (any(unlist(lapply(query, class)) == "try-error")) {
|
|
124
|
+
stop(paste0("\nmclapply (SCTransform) error:", query))
|
|
125
|
+
}
|
|
126
|
+
}
|
|
127
|
+
} else {
|
|
128
|
+
log_info(" Using NormalizeData normalization")
|
|
129
|
+
if (is.null(split_by)) {
|
|
130
|
+
normalizedata_args$object = sobj
|
|
131
|
+
query = do_call(NormalizeData, normalizedata_args)
|
|
132
|
+
} else {
|
|
133
|
+
query = mclapply(
|
|
134
|
+
X = sobj,
|
|
135
|
+
FUN = function(x) {
|
|
136
|
+
normalizedata_args$object = x
|
|
137
|
+
do_call(NormalizeData, normalizedata_args)
|
|
138
|
+
},
|
|
139
|
+
mc.cores = ncores
|
|
140
|
+
)
|
|
141
|
+
if (any(unlist(lapply(query, class)) == "try-error")) {
|
|
142
|
+
stop(paste0("\nmclapply (NormalizeData) error:", query))
|
|
143
|
+
}
|
|
144
|
+
}
|
|
145
|
+
}
|
|
68
146
|
|
|
69
147
|
# Find anchors between query and reference
|
|
70
148
|
log_info("- Finding anchors")
|
|
71
149
|
findtransferanchors_args$reference = reference
|
|
72
|
-
|
|
73
|
-
|
|
150
|
+
if (is.null(split_by)) {
|
|
151
|
+
findtransferanchors_args$query = query
|
|
152
|
+
anchors = do_call(FindTransferAnchors, findtransferanchors_args)
|
|
153
|
+
} else {
|
|
154
|
+
anchors = mclapply(
|
|
155
|
+
X = query,
|
|
156
|
+
FUN = function(x) {
|
|
157
|
+
findtransferanchors_args$query = x
|
|
158
|
+
do_call(FindTransferAnchors, findtransferanchors_args)
|
|
159
|
+
},
|
|
160
|
+
mc.cores = ncores
|
|
161
|
+
)
|
|
162
|
+
if (any(unlist(lapply(anchors, class)) == "try-error")) {
|
|
163
|
+
stop(paste0("\nmclapply (FindTransferAnchors) error:", anchors))
|
|
164
|
+
}
|
|
165
|
+
}
|
|
74
166
|
|
|
75
167
|
# Map query to reference
|
|
76
168
|
log_info("- Mapping query to reference")
|
|
77
169
|
mapquery_args$reference = reference
|
|
78
|
-
|
|
79
|
-
mapquery_args$
|
|
80
|
-
|
|
170
|
+
if (is.null(split_by)) {
|
|
171
|
+
mapquery_args$query = query
|
|
172
|
+
mapquery_args$anchorset = anchors
|
|
173
|
+
query = do_call(MapQuery, mapquery_args)
|
|
174
|
+
} else {
|
|
175
|
+
query = mclapply(
|
|
176
|
+
X = seq_along(query),
|
|
177
|
+
FUN = function(i) {
|
|
178
|
+
mapquery_args$query = query[[i]]
|
|
179
|
+
mapquery_args$anchorset = anchors[[i]]
|
|
180
|
+
do_call(MapQuery, mapquery_args)
|
|
181
|
+
},
|
|
182
|
+
mc.cores = ncores
|
|
183
|
+
)
|
|
184
|
+
if (any(unlist(lapply(query, class)) == "try-error")) {
|
|
185
|
+
stop(paste0("\nmclapply (MapQuery) error:", query))
|
|
186
|
+
}
|
|
187
|
+
}
|
|
81
188
|
|
|
82
189
|
# Calculating mapping score
|
|
83
190
|
log_info("- Calculating mapping score")
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
191
|
+
mappingscore_sob_msg = paste0(
|
|
192
|
+
"While calculating mapping score, the following error was encountered: \n",
|
|
193
|
+
"subscript out of bounds. \n\n",
|
|
194
|
+
"You may want to try a smaller `ndim` (default: 50) in `envs.MappingScore`."
|
|
195
|
+
)
|
|
196
|
+
if (is.null(split_by)) {
|
|
197
|
+
mappingscore_args$anchors = anchors
|
|
198
|
+
mappingscore = tryCatch({
|
|
199
|
+
do_call(MappingScore, mappingscore_args)
|
|
200
|
+
}, error = function(e) {
|
|
201
|
+
if (e$message == "subscript out of bounds") stop(mappingscore_sob_msg)
|
|
202
|
+
stop(e)
|
|
203
|
+
})
|
|
204
|
+
} else {
|
|
205
|
+
mappingscore = mclapply(
|
|
206
|
+
X = seq_along(query),
|
|
207
|
+
FUN = function(i) {
|
|
208
|
+
mappingscore_args$anchors = anchors[[i]]
|
|
209
|
+
tryCatch({
|
|
210
|
+
do_call(MappingScore, mappingscore_args)
|
|
211
|
+
}, error = function(e) {
|
|
212
|
+
if (e$message == "subscript out of bounds") stop(mappingscore_sob_msg)
|
|
213
|
+
stop(e)
|
|
214
|
+
})
|
|
215
|
+
},
|
|
216
|
+
mc.cores = ncores
|
|
217
|
+
)
|
|
218
|
+
if (any(unlist(lapply(mappingscore, class)) == "try-error")) {
|
|
219
|
+
stop(paste0("\nmclapply (MappingScore) error:", mappingscore))
|
|
94
220
|
}
|
|
95
|
-
|
|
96
|
-
})
|
|
221
|
+
}
|
|
97
222
|
|
|
98
223
|
# Calculate mapping score and add to metadata
|
|
99
|
-
log_info("-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
224
|
+
log_info("- Adding mapping score to metadata")
|
|
225
|
+
if (is.null(split_by)) {
|
|
226
|
+
query = AddMetaData(
|
|
227
|
+
object = query,
|
|
228
|
+
metadata = mappingscore,
|
|
229
|
+
col.name = "mapping.score"
|
|
230
|
+
)
|
|
231
|
+
} else {
|
|
232
|
+
query = mclapply(
|
|
233
|
+
X = seq_along(query),
|
|
234
|
+
FUN = function(i) {
|
|
235
|
+
AddMetaData(
|
|
236
|
+
object = query[[i]],
|
|
237
|
+
metadata = mappingscore[[i]],
|
|
238
|
+
col.name = "mapping.score"
|
|
239
|
+
)
|
|
240
|
+
},
|
|
241
|
+
mc.cores = ncores
|
|
242
|
+
)
|
|
243
|
+
if (any(unlist(lapply(query, class)) == "try-error")) {
|
|
244
|
+
stop(paste0("\nmclapply (AddMetaData) error:", query))
|
|
245
|
+
}
|
|
246
|
+
|
|
247
|
+
# Combine the results
|
|
248
|
+
log_info("- Merging the results")
|
|
249
|
+
query = merge(query[[1]], query[2:length(query)], merge.dr = "ref.umap")
|
|
250
|
+
}
|
|
105
251
|
|
|
106
252
|
# Add the alias to the metadata for the clusters
|
|
107
253
|
log_info("- Adding ident to metadata and set as ident")
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
biopipen/__init__.py,sha256=
|
|
1
|
+
biopipen/__init__.py,sha256=tTYofCNMPRiC5Qs7KVRV32NVPrdQ2HjfgoMDf4fChsQ,23
|
|
2
2
|
biopipen/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
3
|
biopipen/core/config.py,sha256=edK5xnDhM8j27srDzsxubi934NMrglLoKrdcC8qsEPk,1069
|
|
4
4
|
biopipen/core/config.toml,sha256=20RCI30Peee1EQdfb_UbV3Hf74XUPndJnYZlUThytsw,1781
|
|
@@ -21,7 +21,7 @@ biopipen/ns/gsea.py,sha256=EsNRAPYsagaV2KYgr4Jv0KCnZGqayM209v4yOGGTIOI,7423
|
|
|
21
21
|
biopipen/ns/misc.py,sha256=fzn0pXvdghMkQhu-e3MMapPNMyO6IAJbtTzVU3GbFa0,3246
|
|
22
22
|
biopipen/ns/plot.py,sha256=fzJAKKl4a_tsVkLREGCQTFVHP049m33LdWgeYRb6v7M,5483
|
|
23
23
|
biopipen/ns/rnaseq.py,sha256=bKAa6friFWof4yDTWZQahm1MS-lrdetO1GqDKdfxXYc,7708
|
|
24
|
-
biopipen/ns/scrna.py,sha256=
|
|
24
|
+
biopipen/ns/scrna.py,sha256=KL5Eu0mnIITLLSHAIz_sgr4ssmEU6AuBDXwedqYU7BI,105633
|
|
25
25
|
biopipen/ns/scrna_metabolic_landscape.py,sha256=6AhaynGG3lNRi96N2tReVT46BJMuEwooSSd2irBoN80,28347
|
|
26
26
|
biopipen/ns/snp.py,sha256=EQ2FS0trQ7YThPmBVTpS66lc2OSfgQ6lCh6WnyP-C2g,5499
|
|
27
27
|
biopipen/ns/stats.py,sha256=yJ6C1CXF84T7DDs9mgufqUOr89Rl6kybE5ji8Vnx6cw,13693
|
|
@@ -141,12 +141,12 @@ biopipen/scripts/scrna/SeuratClusterStats-dimplots.R,sha256=gViDgQ8NorYD64iK0Fgc
|
|
|
141
141
|
biopipen/scripts/scrna/SeuratClusterStats-features.R,sha256=W7iYhaFsC5EMZLO50QukYPLYGK4bq9kQc1VT5FwvI68,15496
|
|
142
142
|
biopipen/scripts/scrna/SeuratClusterStats-hists.R,sha256=YhuD-GePjJPSkR0iLRgV_hiGHD_bnOIKp-LB6GCwquo,5037
|
|
143
143
|
biopipen/scripts/scrna/SeuratClusterStats-ngenes.R,sha256=GVKIXFNS_syCuSN8oxoBkjxxAeI5LdSxh-qLVkUsbDA,2146
|
|
144
|
-
biopipen/scripts/scrna/SeuratClusterStats-stats.R,sha256=
|
|
144
|
+
biopipen/scripts/scrna/SeuratClusterStats-stats.R,sha256=bBbvNCvV6dZLg9zvhh2nR48_53md5A5UEqrPXD00MZU,9263
|
|
145
145
|
biopipen/scripts/scrna/SeuratClusterStats.R,sha256=ouWoj7Q644uG3MUlT23AES8f74g38-jPtPhINSvoUas,1267
|
|
146
146
|
biopipen/scripts/scrna/SeuratClustering.R,sha256=kAvQq3RV86_KSv9NlUtUeQrPKkbhSsnv6Q4DoiTu8M0,6403
|
|
147
147
|
biopipen/scripts/scrna/SeuratFilter.R,sha256=BrYK0MLdaTtQvInMaQsmOt7oH_hlks0M1zykkJtg2lM,509
|
|
148
148
|
biopipen/scripts/scrna/SeuratLoading.R,sha256=ekWKnHIqtQb3kHVQiVymAHXXqiUxs6KKefjZKjaykmk,900
|
|
149
|
-
biopipen/scripts/scrna/SeuratMap2Ref.R,sha256=
|
|
149
|
+
biopipen/scripts/scrna/SeuratMap2Ref.R,sha256=_G8pG7NRV2GOFDzKBLY1nkXR0DO1c-6NkX990_hC8mk,9127
|
|
150
150
|
biopipen/scripts/scrna/SeuratMetadataMutater.R,sha256=Pp4GsF3hZ6ZC2vroC3LSBmVa4B1p2L3hbh981yaAIeQ,1093
|
|
151
151
|
biopipen/scripts/scrna/SeuratPreparing.R,sha256=t6GOcc9ZNwpRLeES7uBWja9RF6u6k5I_TXcdK4Ve7d0,18683
|
|
152
152
|
biopipen/scripts/scrna/SeuratSplit.R,sha256=vdK11V39_Uo_NaOh76QWCtxObGaEr5Ynxqq0hTiSvsU,754
|
|
@@ -240,7 +240,7 @@ biopipen/utils/reference.py,sha256=6bPSwQa-GiDfr7xLR9a5T64Ey40y24yn3QfQ5wDFZkU,4
|
|
|
240
240
|
biopipen/utils/rnaseq.R,sha256=Ro2B2dG-Z2oVaT5tkwp9RHBz4dp_RF-JcizlM5GYXFs,1298
|
|
241
241
|
biopipen/utils/single_cell.R,sha256=pJjYP8bIZpNAtTQ32rOXhZxaM1Y-6D-xUcK3pql9tbk,4316
|
|
242
242
|
biopipen/utils/vcf.py,sha256=ajXs0M_QghEctlvUlSRjWQIABVF02wPdYd-0LP4mIsU,9377
|
|
243
|
-
biopipen-0.27.
|
|
244
|
-
biopipen-0.27.
|
|
245
|
-
biopipen-0.27.
|
|
246
|
-
biopipen-0.27.
|
|
243
|
+
biopipen-0.27.8.dist-info/METADATA,sha256=3rTtE5ECOr8Y67BOOCAfleIqkVabeEstjmhzKwxUI-w,882
|
|
244
|
+
biopipen-0.27.8.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
|
245
|
+
biopipen-0.27.8.dist-info/entry_points.txt,sha256=wu70aoBcv1UahVbB_5237MY-9M9_mzqmWjDD-oi3yz0,621
|
|
246
|
+
biopipen-0.27.8.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|