biopipen 0.27.6__py3-none-any.whl → 0.27.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of biopipen might be problematic. Click here for more details.

biopipen/__init__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "0.27.6"
1
+ __version__ = "0.27.7"
biopipen/core/filters.py CHANGED
@@ -235,8 +235,8 @@ def _render_fgsea(
235
235
  with Path(cont["dir"]).joinpath("fgsea.txt").open() as f:
236
236
  next(f) # skip header
237
237
  for line in f:
238
- pathway, _ = line.split("\t", 1)
239
- pathways.append(pathway)
238
+ items = line.strip().split("\t")
239
+ pathways.append((items[0], items[-1]))
240
240
  if len(pathways) >= n_pathways:
241
241
  break
242
242
 
@@ -263,6 +263,7 @@ def _render_fgsea(
263
263
  {
264
264
  "kind": "table",
265
265
  "src": str(Path(cont["dir"]).joinpath("fgsea.txt")),
266
+ "data": {"excluded": {"slug"}},
266
267
  }
267
268
  ],
268
269
  },
@@ -274,10 +275,10 @@ def _render_fgsea(
274
275
  "ui": "table_of_images",
275
276
  "contents": [
276
277
  {
277
- "src": str(Path(cont["dir"]) / f"fgsea_{pw.replace('/', '-')}.png"),
278
+ "src": str(Path(cont["dir"]) / f"fgsea_{slug}.png"),
278
279
  "title": pw,
279
280
  }
280
- for pw in pathways
281
+ for pw, slug in pathways
281
282
  ]
282
283
  },
283
284
  ]
biopipen/ns/scrna.py CHANGED
@@ -1241,7 +1241,7 @@ class TopExpressingGenes(Proc):
1241
1241
  }
1242
1242
 
1243
1243
 
1244
- class ExprImpution(Proc):
1244
+ class ExprImputation(Proc):
1245
1245
  """This process imputes the dropout values in scRNA-seq data.
1246
1246
 
1247
1247
  It takes the Seurat object as input and outputs the Seurat object with
@@ -1317,13 +1317,13 @@ class ExprImpution(Proc):
1317
1317
  },
1318
1318
  "alra_args": {},
1319
1319
  }
1320
- script = "file://../scripts/scrna/ExprImpution.R"
1320
+ script = "file://../scripts/scrna/ExprImputation.R"
1321
1321
 
1322
1322
 
1323
1323
  class SCImpute(Proc):
1324
1324
  """Impute the dropout values in scRNA-seq data.
1325
1325
 
1326
- Deprecated. Use `ExprImpution` instead.
1326
+ Deprecated. Use `ExprImputation` instead.
1327
1327
 
1328
1328
  Input:
1329
1329
  infile: The input file for imputation
@@ -566,8 +566,8 @@ class ScrnaMetabolicLandscape(ProcGroup):
566
566
  input_data = lambda ch: tibble(
567
567
  srtobj=ch.iloc[:, 0],
568
568
  metafile=[None],
569
- mutaters=[self.opts.mutaters],
570
569
  )
570
+ envs = {"mutaters": self.opts.mutaters}
571
571
 
572
572
  return MetabolicSeuratMetadataMutater
573
573
 
@@ -577,10 +577,10 @@ class ScrnaMetabolicLandscape(ProcGroup):
577
577
  if self.opts.noimpute:
578
578
  return self.p_mutater
579
579
 
580
- from .scrna import ExprImpution
580
+ from .scrna import ExprImputation
581
581
 
582
582
  @annotate.format_doc(indent=3)
583
- class MetabolicExprImpution(ExprImpution):
583
+ class MetabolicExprImputation(ExprImputation):
584
584
  """{{Summary}}
585
585
 
586
586
  You can turn off the imputation by setting the `noimpute` option
@@ -588,7 +588,7 @@ class ScrnaMetabolicLandscape(ProcGroup):
588
588
  """
589
589
  requires = self.p_mutater
590
590
 
591
- return MetabolicExprImpution
591
+ return MetabolicExprImputation
592
592
 
593
593
  @ProcGroup.add_proc
594
594
  def p_pathway_activity(self) -> Type[Proc]:
@@ -0,0 +1,7 @@
1
+ {% if envs.tool == "rmagic" %}
2
+ {% include biopipen_dir + "/scripts/scrna/ExprImputation-rmagic.R" %}
3
+ {% elif envs.tool == "scimpute" %}
4
+ {% include biopipen_dir + "/scripts/scrna/ExprImputation-scimpute.R" %}
5
+ {% elif envs.tool == "alra" %}
6
+ {% include biopipen_dir + "/scripts/scrna/ExprImputation-alra.R" %}
7
+ {% endif %}
@@ -50,8 +50,18 @@ do_one_group <- function(obj, features, group, outputdir, h1) {
50
50
  classes[classes != group] <- "_REST"
51
51
  classes[classes == group] <- groupname
52
52
  if (any(table(classes) < 5)) {
53
- msg <- paste("Group", group, "has less than 5 cells, or only 5 cells left.")
53
+ msg <- paste(" Skipped. One of the groups has less than 5 cells.")
54
54
  log_warn(msg)
55
+ # write a warning.txt to odir with the message and table(classes)
56
+ write(paste0(msg, "\n\n"), file = file.path(odir, "warning.txt"))
57
+ write.table(
58
+ table(classes),
59
+ file = file.path(odir, "warning.txt"),
60
+ sep = "\t",
61
+ quote = FALSE,
62
+ row.names = FALSE,
63
+ append = TRUE
64
+ )
55
65
  return(
56
66
  list(
57
67
  list(kind = "error", content = msg),
@@ -84,14 +84,18 @@ do_one_comparison <- function(
84
84
 
85
85
  odir = file.path(groupdir, paste0(subset_prefix, compname))
86
86
  dir.create(odir, showWarnings = FALSE)
87
- if (ncol(exprs_case) < 3 || ncol(exprs_control) < 3) {
88
- log_warn(" Skip (not enough cells)")
89
- add_report(
87
+ if (ncol(exprs_case) < 5 || ncol(exprs_control) < 5) {
88
+ log_warn(" Skipped (not enough cells).")
89
+ wfile <- file.path(odir, "warning.txt")
90
+ write("Skipped (not enough cells)\n\n", file = wfile)
91
+ write(paste0("n_cells (Case):", ncol(exprs_case)), file = wfile, append = TRUE)
92
+ write(paste0("n_cells (Control):", ncol(exprs_control)), file = wfile, append = TRUE)
93
+
94
+ return(list(
90
95
  list(kind = "error", content = "Not enough cells"),
91
96
  h1 = groupname,
92
97
  h2 = compname
93
- )
94
- return (NULL)
98
+ ))
95
99
  }
96
100
  if (fgsea) {
97
101
  ranks = prerank(
biopipen/utils/gsea.R CHANGED
@@ -2,11 +2,36 @@ library(ggplot2)
2
2
  library(dplyr)
3
3
  library(tibble)
4
4
 
5
- .slugify <- function(x, non_alphanum_replace="-", collapse_replace=TRUE, tolower=FALSE) {
6
- x <- gsub("[^[:alnum:]_]", non_alphanum_replace, x)
7
- if(collapse_replace) x <- gsub(paste0(non_alphanum_replace, "+"), non_alphanum_replace, x)
8
- if(tolower) x <- tolower(x)
9
- x
5
+ if (!exists("slugify")) {
6
+ slugify <- function(x, non_alphanum_replace="-", collapse_replace=TRUE, tolower=FALSE) {
7
+ subs <- list(
8
+ "š"="s", "œ"="oe", "ž"="z", "ß"="ss", "þ"="y", "à"="a", "á"="a", "â"="a",
9
+ "ã"="a", "ä"="a", "å"="a", "æ"="ae", "ç"="c", "è"="e", "é"="e", "ê"="e",
10
+ "ë"="e", "ì"="i", "í"="i", "î"="i", "ï"="i", "ð"="d", "ñ"="n", "ò"="o",
11
+ "ó"="o", "ô"="o", "õ"="o", "ö"="o", "ø"="oe", "ù"="u", "ú"="u", "û"="u",
12
+ "ü"="u", "ý"="y", "ÿ"="y", "ğ"="g", "ı"="i", "ij"="ij", "ľ"="l", "ň"="n",
13
+ "ř"="r", "ş"="s", "ť"="t", "ų"="u", "ů"="u", "ý"="y", "ź"="z", "ż"="z",
14
+ "ſ"="s", "α"="a", "β"="b", "γ"="g", "δ"="d", "ε"="e", "ζ"="z", "η"="h",
15
+ "θ"="th", "ι"="i", "κ"="k", "λ"="l", "μ"="m", "ν"="n", "ξ"="x", "ο"="o",
16
+ "π"="p", "ρ"="r", "σ"="s", "τ"="t", "υ"="u", "φ"="ph", "χ"="ch", "ψ"="ps",
17
+ "ω"="o", "ά"="a", "έ"="e", "ή"="h", "ί"="i", "ό"="o", "ύ"="u", "ώ"="o",
18
+ "ϐ"="b", "ϑ"="th", "ϒ"="y", "ϕ"="ph", "ϖ"="p", "Ϛ"="st", "ϛ"="st", "Ϝ"="f",
19
+ "ϝ"="f", "Ϟ"="k", "ϟ"="k", "Ϡ"="k", "ϡ"="k", "ϰ"="k", "ϱ"="r", "ϲ"="s",
20
+ "ϳ"="j", "ϴ"="th", "ϵ"="e", "϶"="p"
21
+ )
22
+ # replace latin and greek characters to the closest english character
23
+ for (k in names(subs)) {
24
+ x <- gsub(k, subs[[k]], x)
25
+ }
26
+ x <- gsub("[^[:alnum:]_]", non_alphanum_replace, x)
27
+ if(collapse_replace) x <- gsub(
28
+ paste0(gsub("([][{}()+*^$|\\\\?.])", "\\\\\\1", non_alphanum_replace), "+"),
29
+ non_alphanum_replace,
30
+ x
31
+ )
32
+ if(tolower) x <- tolower(x)
33
+ x
34
+ }
10
35
  }
11
36
 
12
37
  localizeGmtfile <- function(gmturl, cachedir = tempdir()) {
@@ -25,7 +50,12 @@ localizeGmtfile <- function(gmturl, cachedir = tempdir()) {
25
50
  if (nrow(items) == 0) {
26
51
  stop(paste0("Empty GMT file: ", gmtfile, ", from ", gmturl))
27
52
  }
28
- if (nchar(items$V2[1]) < nchar(items$V1[1]) && nchar(items$V2[1]) > 0) {
53
+ if (
54
+ is.character(items$V2[1]) &&
55
+ nchar(items$V2[1]) < nchar(items$V1[1]) &&
56
+ nchar(items$V2[1]) > 0 &&
57
+ is.na(suppressWarnings(as.numeric(items$V2[1])))
58
+ ) {
29
59
  warning(paste0(
30
60
  "The second column is shorter, switching the first and second columns in GMT file ",
31
61
  gmtfile,
@@ -153,7 +183,8 @@ runFGSEA = function(
153
183
 
154
184
  write.table(
155
185
  gsea_res %>%
156
- mutate(leadingEdge = sapply(leadingEdge, function(x) paste(x, collapse=","))),
186
+ mutate(leadingEdge = sapply(leadingEdge, function(x) paste(x, collapse=",")),
187
+ slug = sapply(pathway, slugify)),
157
188
  file = file.path(outdir, "fgsea.txt"),
158
189
  row.names = FALSE,
159
190
  col.names = TRUE,
@@ -172,16 +203,16 @@ runFGSEA = function(
172
203
 
173
204
  tablefig = file.path(outdir, "gsea_table.png")
174
205
  png(tablefig, res=100, width=1000, height=200 + 40 * length(topPathways))
175
- plotGseaTable(
206
+ print(plotGseaTable(
176
207
  envs$pathways[topPathways],
177
208
  ranks,
178
209
  gsea_res,
179
210
  gseaParam = if (!is.null(envs$gseaParam)) envs$gseaParam else 1
180
- )
211
+ ))
181
212
  dev.off()
182
213
 
183
214
  for (pathway in topPathways) {
184
- enrfig = file.path(outdir, paste0("fgsea_", .slugify(pathway), ".png"))
215
+ enrfig = file.path(outdir, paste0("fgsea_", slugify(pathway), ".png"))
185
216
  png(enrfig, res=100, width=1000, height=800)
186
217
  print(plotEnrichment(
187
218
  envs$pathways[[pathway]],
biopipen/utils/misc.R CHANGED
@@ -33,6 +33,7 @@ bQuote <- function(x) {
33
33
  }
34
34
 
35
35
  #' Slugify a string
36
+ #' Remember also update the one in gsea.R
36
37
  #' @param x A string
37
38
  #' @param non_alphanum_replace Replace non-alphanumeric characters
38
39
  #' @param collapse_replace Collapse consecutive non-alphanumeric character replacements
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: biopipen
3
- Version: 0.27.6
3
+ Version: 0.27.7
4
4
  Summary: Bioinformatics processes/pipelines that can be run from `pipen run`
5
5
  License: MIT
6
6
  Author: pwwang
@@ -1,9 +1,9 @@
1
- biopipen/__init__.py,sha256=BwKhBzWMdVser1JHOUEX0Aa2nBqgua67wsNi17fRle0,23
1
+ biopipen/__init__.py,sha256=2q8A1v0my4JKqq2Mun4r1CJc3a3hPBoWgXjeUKWcOpQ,23
2
2
  biopipen/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  biopipen/core/config.py,sha256=edK5xnDhM8j27srDzsxubi934NMrglLoKrdcC8qsEPk,1069
4
4
  biopipen/core/config.toml,sha256=20RCI30Peee1EQdfb_UbV3Hf74XUPndJnYZlUThytsw,1781
5
5
  biopipen/core/defaults.py,sha256=yPeehPLk_OYCf71IgRVCWuQRxLAMixDF81Ium0HtPKI,344
6
- biopipen/core/filters.py,sha256=HLrjXGsvvjRtTWIAmg_f4IMymWaRD769HlDwsCTh170,12424
6
+ biopipen/core/filters.py,sha256=-OIzS5F_yNZ0Nk5Ci16BepPWqLOGBmYVqX3W98RSK9Y,12488
7
7
  biopipen/core/proc.py,sha256=60lUP3PcUAaKbDETo9N5PEIoeOYrLgcSmuytmrhcx8g,912
8
8
  biopipen/core/testing.py,sha256=lZ_R5ZbYPO2NPuLHdbzg6HbD_f4j8paVVbyeUqwg6FE,3411
9
9
  biopipen/ns/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -21,8 +21,8 @@ biopipen/ns/gsea.py,sha256=EsNRAPYsagaV2KYgr4Jv0KCnZGqayM209v4yOGGTIOI,7423
21
21
  biopipen/ns/misc.py,sha256=fzn0pXvdghMkQhu-e3MMapPNMyO6IAJbtTzVU3GbFa0,3246
22
22
  biopipen/ns/plot.py,sha256=fzJAKKl4a_tsVkLREGCQTFVHP049m33LdWgeYRb6v7M,5483
23
23
  biopipen/ns/rnaseq.py,sha256=bKAa6friFWof4yDTWZQahm1MS-lrdetO1GqDKdfxXYc,7708
24
- biopipen/ns/scrna.py,sha256=7Gs1xxQoGM3TKxaQvbgKNyMDEsgatFopImzC-RcOEoA,103946
25
- biopipen/ns/scrna_metabolic_landscape.py,sha256=EhOtHQyoH-jRpzDoOI_06UbjEg6mhvbDEHKhek01bPk,28334
24
+ biopipen/ns/scrna.py,sha256=qpMBKqkn_Cx6clpiNUpZjxGZIBzL3zPvO4m_Lxt4O0o,103952
25
+ biopipen/ns/scrna_metabolic_landscape.py,sha256=6AhaynGG3lNRi96N2tReVT46BJMuEwooSSd2irBoN80,28347
26
26
  biopipen/ns/snp.py,sha256=EQ2FS0trQ7YThPmBVTpS66lc2OSfgQ6lCh6WnyP-C2g,5499
27
27
  biopipen/ns/stats.py,sha256=yJ6C1CXF84T7DDs9mgufqUOr89Rl6kybE5ji8Vnx6cw,13693
28
28
  biopipen/ns/tcgamaf.py,sha256=AFbUJIxiMSvsVY3RcHgjRFuMnNh2DG3Mr5slLNEyz6o,1455
@@ -126,10 +126,10 @@ biopipen/scripts/scrna/CellTypeAnnotation-sctype.R,sha256=1nKRtzhVoJ9y0yMg1sgI6u
126
126
  biopipen/scripts/scrna/CellTypeAnnotation.R,sha256=OwLM_G4D7TG4HhIJjQxgIQM92X86lsWp9MVyXTTkLSc,618
127
127
  biopipen/scripts/scrna/CellsDistribution.R,sha256=isDr5-EWvOeWwVZdjOSsdX3QUpEaDvQFulIYawqFaQc,18854
128
128
  biopipen/scripts/scrna/DimPlots.R,sha256=-mXOTMnpPxvR30XLjwcohFfFx7xTqWKKiICwJiD6yEo,1554
129
- biopipen/scripts/scrna/ExprImpution-alra.R,sha256=w3W1txJcdWg52-SETY2Z0lO7maDNfiMjBYIGN587YW0,843
130
- biopipen/scripts/scrna/ExprImpution-rmagic.R,sha256=jYIfqZpnvjKJkvItLnemPVtUApHBYQi1_L8rHVbEe1M,735
131
- biopipen/scripts/scrna/ExprImpution-scimpute.R,sha256=mg40qCUW7-nP5oHPvARq7dmtoahM0GRFWXQpum0BXVk,1082
132
- biopipen/scripts/scrna/ExprImpution.R,sha256=7768ezrr59xUZDXq8lO9jj2XhnkSsx-xxBmOD9_DO7c,313
129
+ biopipen/scripts/scrna/ExprImputation-alra.R,sha256=w3W1txJcdWg52-SETY2Z0lO7maDNfiMjBYIGN587YW0,843
130
+ biopipen/scripts/scrna/ExprImputation-rmagic.R,sha256=jYIfqZpnvjKJkvItLnemPVtUApHBYQi1_L8rHVbEe1M,735
131
+ biopipen/scripts/scrna/ExprImputation-scimpute.R,sha256=mg40qCUW7-nP5oHPvARq7dmtoahM0GRFWXQpum0BXVk,1082
132
+ biopipen/scripts/scrna/ExprImputation.R,sha256=GcdZJpkDpq88hRQjtLZY5-byp8V43stEFm5T-pQbU6A,319
133
133
  biopipen/scripts/scrna/MarkersFinder.R,sha256=M7fHTbHHErZ9JbLmjDkx-6yVIay0_h0MkvgFegnqL44,22918
134
134
  biopipen/scripts/scrna/MetaMarkers.R,sha256=9ve1X0TrDzS_ZEW6HtU3n8R-uPx7q-hYMMNFVDSE8wQ,11272
135
135
  biopipen/scripts/scrna/ModuleScoreCalculator.R,sha256=JSHd-_-KiFqW8avCGxgU4T-C5BtDr2u0kwIvEu2lFIg,4188
@@ -157,8 +157,8 @@ biopipen/scripts/scrna/Subset10X.R,sha256=T2nJBTwOe12AIKC2FZsMSv6xx3s-67CYZokpz5
157
157
  biopipen/scripts/scrna/TopExpressingGenes.R,sha256=kXMCYHVytgVgO_Uq66fKKFCFV2PPXE8VREy_0yYPLpU,7475
158
158
  biopipen/scripts/scrna/celltypist-wrapper.py,sha256=f5M8f4rU5nC7l17RS0YVmUPpLLz4D6PIcgWtA77UExM,1722
159
159
  biopipen/scripts/scrna/sctype.R,sha256=NaUJkABwF5G1UVm1CCtcMbwLSj94Mo24mbYCKFqo1Bw,6524
160
- biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R,sha256=nSBNn1BMwqoApTqmvzLeRhFu2JW_mNhOXICxmBYIP6E,4813
161
- biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R,sha256=ic8Fy8QqYDGh_izmvZVJ3KL66podg_CSF5ITL3FZsvo,5196
160
+ biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R,sha256=sOnHSH0Ld-tXSIXJPnXLYgRtEru5M0g3HRxbrHWQ_0U,5170
161
+ biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R,sha256=RPSxEHWk50Fyw5YPBVVGeWwd55Hi0zjbipLuM5O4tjs,5465
162
162
  biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R,sha256=95DLX1Rz0tobOuDZ8V9YdGgO0KiNthhccoeeOK21tno,16216
163
163
  biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R,sha256=rQ9iwGh9FNRZlJJzM4QItdyXmebfzLAq05ZAjb1kGUw,9831
164
164
  biopipen/scripts/snp/MatrixEQTL.R,sha256=zOR_mhn_sUXuxqgV82TPvDp-E1i5aJVA45QixyRP8no,5930
@@ -230,9 +230,9 @@ biopipen/utils/caching.R,sha256=qANQqH8p-VpvD8V4VSoqSfp0TFr4esujC7x3OFZsJMw,1687
230
230
  biopipen/utils/common_docstrs.py,sha256=Ow-g-yS5P7DEO37cP1X-xioRbYWygfQHxIuLIaDdrjs,6288
231
231
  biopipen/utils/gene.R,sha256=BzAwlLA8hO12vF-3t6IwEuTEeLa_jBll4zm_5qe3qoE,1243
232
232
  biopipen/utils/gene.py,sha256=qE_BqTayrJWxRdniffhcz6OhZcw9GUoOrj2EtFWH9Gw,2246
233
- biopipen/utils/gsea.R,sha256=2sN3AM0XjLWbTv6cB3JHCBWjuhmD4wEjPaaBY7wkhCI,7542
233
+ biopipen/utils/gsea.R,sha256=BUr4pwfo7ZyinOyNa4O4dDxA1c50qWb3lpph374Yw_A,9239
234
234
  biopipen/utils/io.R,sha256=jIYdqdn0iRWfQYAZa5CjXi3fikqmYvPPLIXhobRe8sw,537
235
- biopipen/utils/misc.R,sha256=jXusPDCxSIaYRq_qm4khUsu9nyMhbpBVcj8BVn4j8Ic,10629
235
+ biopipen/utils/misc.R,sha256=Y9J8gZDuPPYFxYNQtDEvKAk5j-K8j_-n0DunYvu_Hv8,10671
236
236
  biopipen/utils/misc.py,sha256=KJziAFY4Kl-0ZsO93vteY9gRLZg9BSYig-TDocHY36k,3601
237
237
  biopipen/utils/mutate_helpers.R,sha256=Bqy6Oi4rrPEPJw0Jq32bVAwwBfZv7JJL9jFcK5x-cek,17649
238
238
  biopipen/utils/plot.R,sha256=pzl37PomNeUZPxohHZ2w93j3Fc4T0Qrc62FF-9MTKdw,4417
@@ -240,7 +240,7 @@ biopipen/utils/reference.py,sha256=6bPSwQa-GiDfr7xLR9a5T64Ey40y24yn3QfQ5wDFZkU,4
240
240
  biopipen/utils/rnaseq.R,sha256=Ro2B2dG-Z2oVaT5tkwp9RHBz4dp_RF-JcizlM5GYXFs,1298
241
241
  biopipen/utils/single_cell.R,sha256=pJjYP8bIZpNAtTQ32rOXhZxaM1Y-6D-xUcK3pql9tbk,4316
242
242
  biopipen/utils/vcf.py,sha256=ajXs0M_QghEctlvUlSRjWQIABVF02wPdYd-0LP4mIsU,9377
243
- biopipen-0.27.6.dist-info/METADATA,sha256=t7ROsmFyR6-E4YXGAwiuNxRjZz5IX6_H7mT1rs9OSfE,882
244
- biopipen-0.27.6.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
245
- biopipen-0.27.6.dist-info/entry_points.txt,sha256=wu70aoBcv1UahVbB_5237MY-9M9_mzqmWjDD-oi3yz0,621
246
- biopipen-0.27.6.dist-info/RECORD,,
243
+ biopipen-0.27.7.dist-info/METADATA,sha256=uIwtisFh-OLK9tI5oR7psOVDH_lSUIT8Dy6iWzgmyyE,882
244
+ biopipen-0.27.7.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
245
+ biopipen-0.27.7.dist-info/entry_points.txt,sha256=wu70aoBcv1UahVbB_5237MY-9M9_mzqmWjDD-oi3yz0,621
246
+ biopipen-0.27.7.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- {% if envs.tool == "rmagic" %}
2
- {% include biopipen_dir + "/scripts/scrna/ExprImpution-rmagic.R" %}
3
- {% elif envs.tool == "scimpute" %}
4
- {% include biopipen_dir + "/scripts/scrna/ExprImpution-scimpute.R" %}
5
- {% elif envs.tool == "alra" %}
6
- {% include biopipen_dir + "/scripts/scrna/ExprImpution-alra.R" %}
7
- {% endif %}