biopipen 0.27.2__py3-none-any.whl → 0.27.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of biopipen might be problematic. Click here for more details.

biopipen/__init__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "0.27.2"
1
+ __version__ = "0.27.4"
biopipen/ns/delim.py CHANGED
@@ -113,7 +113,7 @@ class SampleInfo(Proc):
113
113
  "exclude_cols": None,
114
114
  "defaults": {
115
115
  "on": "Sample",
116
- "distinct": None,
116
+ # "distinct": None,
117
117
  "group": None,
118
118
  "na_group": False,
119
119
  "each": None,
biopipen/ns/plot.py CHANGED
@@ -114,3 +114,39 @@ class Heatmap(Proc):
114
114
  "globals": "",
115
115
  }
116
116
  script = "file://../scripts/plot/Heatmap.R"
117
+
118
+
119
+ class ROC(Proc):
120
+ """Plot ROC curve using [`plotROC`](https://cran.r-project.org/web/packages/plotROC/vignettes/examples.html).
121
+
122
+ Input:
123
+ infile: The input file for data, tab-separated.
124
+ The first column should be ids of the records (this is optional if `envs.noids` is True).
125
+ The second column should be the labels of the records (1 for positive, 0 for negative).
126
+ If they are not binary, you can specify the positive label by `envs.pos_label`.
127
+ From the third column, it should be the scores of the different models.
128
+
129
+ Output:
130
+ outfile: The output figure file
131
+
132
+ Envs:
133
+ noids: Whether the input file has ids (first column) or not.
134
+ pos_label: The positive label.
135
+ ci: Whether to use `geom_rocci()` instead of `geom_roc()`.
136
+ devpars: The parameters for `png()`
137
+ args: Additional arguments for `geom_roc()` or `geom_rocci()` if `envs.ci` is True.
138
+ style_roc: Arguments for `style_roc()`
139
+ """ # noqa: E501
140
+ input = "infile:file"
141
+ output = "outfile:file:{{in.infile | stem}}.roc.png"
142
+ lang = config.lang.rscript
143
+ envs = {
144
+ "noids": False,
145
+ "pos_label": 1,
146
+ "ci": False,
147
+ "devpars": {"res": 100, "width": 750, "height": 600},
148
+ "args": {"labels": False},
149
+ "style_roc": {},
150
+ "show_auc": True,
151
+ }
152
+ script = "file://../scripts/plot/ROC.R"
biopipen/ns/scrna.py CHANGED
@@ -201,6 +201,13 @@ class SeuratPreparing(Proc):
201
201
  - scvi: Same as `scVIIntegration`.
202
202
  - <more>: See <https://satijalab.org/seurat/reference/integratelayers>
203
203
 
204
+ DoubletFinder (ns): Arguments to run [`DoubletFinder`](https://github.com/chris-mcginnis-ucsf/DoubletFinder).
205
+ See also <https://demultiplexing-doublet-detecting-docs.readthedocs.io/en/latest/DoubletFinder.html>.
206
+ To disable `DoubletFinder`, set `envs.DoubletFinder` to `None` or `False`; or set `pcs` to `0`.
207
+ - PCs (type=int): Number of PCs to use for 'doubletFinder' function.
208
+ - doublets (type=float): Number of expected doublets as a proportion of the pool size.
209
+ - pN (type=float): Number of doublets to simulate as a proportion of the pool size.
210
+
204
211
  Requires:
205
212
  r-seurat:
206
213
  - check: {{proc.lang}} <(echo "library(Seurat)")
@@ -227,6 +234,7 @@ class SeuratPreparing(Proc):
227
234
  "min_cells": 5,
228
235
  },
229
236
  "IntegrateLayers": {"method": "harmony"},
237
+ "DoubletFinder": {"PCs": 0, "pN": 0.25, "doublets": 0.075},
230
238
  }
231
239
  script = "file://../scripts/scrna/SeuratPreparing.R"
232
240
  plugin_opts = {
@@ -405,7 +413,7 @@ class SeuratClusterStats(Proc):
405
413
  nCells_All = { }
406
414
  ```
407
415
 
408
- ![nCells_All](https://pwwang.github.io/immunopipe/processes/images/SeuratClusterStats_nCells_All.png){: width="80%" }
416
+ ![nCells_All](https://pwwang.github.io/immunopipe/latest/processes/images/SeuratClusterStats_nCells_All.png){: width="80%" }
409
417
 
410
418
  ### Number of cells in each cluster by groups
411
419
 
@@ -414,7 +422,7 @@ class SeuratClusterStats(Proc):
414
422
  nCells_Sample = { group-by = "Sample" }
415
423
  ```
416
424
 
417
- ![nCells_Sample](https://pwwang.github.io/immunopipe/processes/images/SeuratClusterStats_nCells_Sample.png){: width="80%" }
425
+ ![nCells_Sample](https://pwwang.github.io/immunopipe/latest/processes/images/SeuratClusterStats_nCells_Sample.png){: width="80%" }
418
426
 
419
427
  ### Violin plots for the gene expressions
420
428
 
@@ -427,8 +435,8 @@ class SeuratClusterStats(Proc):
427
435
  vlnplots_1 = { features = ["FOXP3", "IL2RA"], pt-size = 0, kind = "vln" }
428
436
  ```
429
437
 
430
- ![vlnplots](https://pwwang.github.io/immunopipe/processes/images/SeuratClusterStats_vlnplots.png){: width="80%" }
431
- ![vlnplots_1](https://pwwang.github.io/immunopipe/processes/images/SeuratClusterStats_vlnplots_1.png){: width="80%" }
438
+ ![vlnplots](https://pwwang.github.io/immunopipe/latest/processes/images/SeuratClusterStats_vlnplots.png){: width="80%" }
439
+ ![vlnplots_1](https://pwwang.github.io/immunopipe/latest/processes/images/SeuratClusterStats_vlnplots_1.png){: width="80%" }
432
440
 
433
441
  ### Dimension reduction plot with labels
434
442
 
@@ -439,7 +447,7 @@ class SeuratClusterStats(Proc):
439
447
  repel = true
440
448
  ```
441
449
 
442
- ![dimplots](https://pwwang.github.io/immunopipe/processes/images/SeuratClusterStats_dimplots.png){: width="80%" }
450
+ ![dimplots](https://pwwang.github.io/immunopipe/latest/processes/images/SeuratClusterStats_dimplots.png){: width="80%" }
443
451
 
444
452
  Input:
445
453
  srtobj: The seurat object loaded by `SeuratClustering`
@@ -849,7 +857,7 @@ class CellsDistribution(Proc):
849
857
  group_order = [ "Tumor", "Normal" ]
850
858
  ```
851
859
 
852
- ![CellsDistribution_example](https://pwwang.github.io/immunopipe/processes/images/CellsDistribution_example.png)
860
+ ![CellsDistribution_example](https://pwwang.github.io/immunopipe/latest/processes/images/CellsDistribution_example.png)
853
861
 
854
862
  Input:
855
863
  srtobj: The seurat object in RDS format
@@ -1862,7 +1870,7 @@ class RadarPlots(Proc):
1862
1870
 
1863
1871
  Then we will have a radar plots like this:
1864
1872
 
1865
- ![Radar plots](https://pwwang.github.io/immunopipe/processes/images/RadarPlots-default.png)
1873
+ ![Radar plots](https://pwwang.github.io/immunopipe/latest/processes/images/RadarPlots-default.png)
1866
1874
 
1867
1875
  We can use `each` to separate the cells into different cases:
1868
1876
 
@@ -1874,7 +1882,7 @@ class RadarPlots(Proc):
1874
1882
 
1875
1883
  Then we will have two radar plots, one for `Pre` and one for `Post`:
1876
1884
 
1877
- ![Radar plots](https://pwwang.github.io/immunopipe/processes/images/RadarPlots-each.png)
1885
+ ![Radar plots](https://pwwang.github.io/immunopipe/latest/processes/images/RadarPlots-each.png)
1878
1886
 
1879
1887
  Using `cluster_order` to change the order of the clusters and show only the first 3 clusters:
1880
1888
 
@@ -1885,7 +1893,7 @@ class RadarPlots(Proc):
1885
1893
  breaks = [0, 50, 100] # also change the breaks
1886
1894
  ```
1887
1895
 
1888
- ![Radar plots cluster_order](https://pwwang.github.io/immunopipe/processes/images/RadarPlots-cluster_order.png)
1896
+ ![Radar plots cluster_order](https://pwwang.github.io/immunopipe/latest/processes/images/RadarPlots-cluster_order.png)
1889
1897
 
1890
1898
 
1891
1899
  /// Attention
@@ -22,11 +22,11 @@ class MetabolicPathwayActivity(Proc):
22
22
  For each subset, a heatmap and a violin plot will be generated.
23
23
  The heatmap shows the pathway activities for each group and each metabolic pathway
24
24
 
25
- ![MetabolicPathwayActivity_heatmap](https://pwwang.github.io/immunopipe/processes/images/MetabolicPathwayActivity_heatmap.png){: width="80%"}
25
+ ![MetabolicPathwayActivity_heatmap](https://pwwang.github.io/immunopipe/latest/processes/images/MetabolicPathwayActivity_heatmap.png){: width="80%"}
26
26
 
27
27
  The violin plot shows the distribution of the pathway activities for each group
28
28
 
29
- ![MetabolicPathwayActivity_violin](https://pwwang.github.io/immunopipe/processes/images/MetabolicPathwayActivity_violin.png){: width="45%"}
29
+ ![MetabolicPathwayActivity_violin](https://pwwang.github.io/immunopipe/latest/processes/images/MetabolicPathwayActivity_violin.png){: width="45%"}
30
30
 
31
31
  Envs:
32
32
  ntimes (type=int): Number of times to do the permutation
@@ -294,7 +294,7 @@ class MetabolicPathwayHeterogeneity(Proc):
294
294
  The heterogeneity can be reflected by the NES values and the p-values in
295
295
  different groups for the metabolic pathways.
296
296
 
297
- ![MetabolicPathwayHeterogeneity](https://pwwang.github.io/immunopipe/processes/images/MetabolicPathwayHeterogeneity.png)
297
+ ![MetabolicPathwayHeterogeneity](https://pwwang.github.io/immunopipe/latest/processes/images/MetabolicPathwayHeterogeneity.png)
298
298
 
299
299
 
300
300
  Envs:
biopipen/ns/snp.py CHANGED
@@ -71,3 +71,68 @@ class PlinkSimulation(Proc):
71
71
  "sample_prefix": None,
72
72
  }
73
73
  script = "file://../scripts/snp/PlinkSimulation.py"
74
+
75
+
76
+ class MatrixEQTL(Proc):
77
+ """Run Matrix eQTL
78
+
79
+ See also <https://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/>
80
+
81
+ Input:
82
+ geno: Genotype matrix file with rows representing SNPs and columns
83
+ representing samples.
84
+ expr: Expression matrix file with rows representing genes and columns
85
+ representing samples.
86
+ cov: Covariate matrix file with rows representing covariates and columns
87
+ representing samples.
88
+
89
+ Output:
90
+ alleqtls: Matrix eQTL output file
91
+ cisqtls: The cis-eQTL file if `snppos` and `genepos` are provided.
92
+ Otherwise it'll be empty.
93
+
94
+ Envs:
95
+ model (choice): The model to use.
96
+ - `linear`: Linear model
97
+ - `modelLINEAR`: Same as `linear`
98
+ - `anova`: ANOVA model
99
+ - `modelANOVA`: Same as `anova`
100
+ pval (type=float): P-value threshold for eQTLs
101
+ transp (type=float): P-value threshold for trans-eQTLs.
102
+ If cis-eQTLs are not enabled (`snppos` and `genepos` are not set),
103
+ this defaults to 1e-5.
104
+ If cis-eQTLs are enabled, this defaults to `None`, which will disable
105
+ trans-eQTL analysis.
106
+ fdr (flag): Do FDR calculation or not (save memory if not).
107
+ snppos: The path of the SNP position file.
108
+ It could be a BED, GFF, VCF or a tab-delimited file with
109
+ `snp`, `chr`, `pos` as the first 3 columns.
110
+ genepos: The path of the gene position file.
111
+ It could be a BED or GFF file.
112
+ dist (type=int): Distance threshold for cis-eQTLs.
113
+ transpose_geno (flag): If set, the genotype matrix (`in.geno`)
114
+ will be transposed.
115
+ transpose_expr (flag): If set, the expression matrix (`in.expr`)
116
+ will be transposed.
117
+ transpose_cov (flag): If set, the covariate matrix (`in.cov`)
118
+ will be transposed.
119
+ """
120
+ input = "geno:file, expr:file, cov:file"
121
+ output = [
122
+ "alleqtls:file:{{in.geno | stem}}.alleqtls.txt",
123
+ "cisqtls:file:{{in.geno | stem}}.cisqtls.txt",
124
+ ]
125
+ lang = config.lang.rscript
126
+ envs = {
127
+ "model": "linear",
128
+ "pval": 1e-3,
129
+ "transp": None,
130
+ "fdr": False,
131
+ "snppos": None,
132
+ "genepos": config.ref.refgene,
133
+ "dist": 250000,
134
+ "transpose_geno": False,
135
+ "transpose_expr": False,
136
+ "transpose_cov": False,
137
+ }
138
+ script = "file://../scripts/snp/MatrixEQTL.R"
biopipen/ns/tcr.py CHANGED
@@ -923,7 +923,7 @@ class CloneResidency(Proc):
923
923
 
924
924
  - Residency plots showing the residency of clones in the two groups
925
925
 
926
- ![CloneResidency_residency](https://pwwang.github.io/immunopipe/processes/images/CloneResidency.png)
926
+ ![CloneResidency_residency](https://pwwang.github.io/immunopipe/latest/processes/images/CloneResidency.png)
927
927
 
928
928
  The points in the plot are jittered to avoid overplotting. The x-axis is the residency in the first group and
929
929
  the y-axis is the residency in the second group. The size of the points are relative to the normalized size of
@@ -943,7 +943,7 @@ class CloneResidency(Proc):
943
943
 
944
944
  - Venn diagrams showing the overlap of the clones in the two groups
945
945
 
946
- ![CloneResidency_venn](https://pwwang.github.io/immunopipe/processes/images/CloneResidency_venn.png){: width="60%"}
946
+ ![CloneResidency_venn](https://pwwang.github.io/immunopipe/latest/processes/images/CloneResidency_venn.png){: width="60%"}
947
947
 
948
948
  Input:
949
949
  immdata: The data loaded by `immunarch::repLoad()`
@@ -1259,7 +1259,7 @@ class TCRClusterStats(Proc):
1259
1259
  by = "Sample"
1260
1260
  ```
1261
1261
 
1262
- ![Cluster_size](https://pwwang.github.io/immunopipe/processes/images/TCRClusteringStats_cluster_size.png){: width="80%"}
1262
+ ![Cluster_size](https://pwwang.github.io/immunopipe/latest/processes/images/TCRClusteringStats_cluster_size.png){: width="80%"}
1263
1263
 
1264
1264
  ### Shared clusters
1265
1265
 
@@ -1269,7 +1269,7 @@ class TCRClusterStats(Proc):
1269
1269
  heatmap_meta = ["region"]
1270
1270
  ```
1271
1271
 
1272
- ![Shared_clusters](https://pwwang.github.io/immunopipe/processes/images/TCRClusteringStats_shared_clusters.png){: width="80%"}
1272
+ ![Shared_clusters](https://pwwang.github.io/immunopipe/latest/processes/images/TCRClusteringStats_shared_clusters.png){: width="80%"}
1273
1273
 
1274
1274
  ### Sample diversity
1275
1275
 
@@ -1278,11 +1278,11 @@ class TCRClusterStats(Proc):
1278
1278
  method = "gini"
1279
1279
  ```
1280
1280
 
1281
- ![Sample_diversity](https://pwwang.github.io/immunopipe/processes/images/TCRClusteringStats_sample_diversity.png){: width="80%"}
1281
+ ![Sample_diversity](https://pwwang.github.io/immunopipe/latest/processes/images/TCRClusteringStats_sample_diversity.png){: width="80%"}
1282
1282
 
1283
1283
  Compared to the sample diversity using TCR clones:
1284
1284
 
1285
- ![Sample_diversity](https://pwwang.github.io/immunopipe/processes/images/Immunarch_sample_diversity.png){: width="80%"}
1285
+ ![Sample_diversity](https://pwwang.github.io/immunopipe/latest/processes/images/Immunarch_sample_diversity.png){: width="80%"}
1286
1286
 
1287
1287
  Input:
1288
1288
  immfile: The immunarch object with TCR clusters attached
@@ -113,14 +113,14 @@ for (name in names(stats)) {
113
113
  if (stat$plot == "boxplot" || stat$plot == "box") {
114
114
  p <- ggplot(data, aes(x=!!group, y=!!sym(stat$on), fill=!!group)) +
115
115
  geom_boxplot(position = "dodge") +
116
- scale_fill_biopipen() +
116
+ scale_fill_biopipen(alpha = .6) +
117
117
  xlab("")
118
118
  } else if (stat$plot == "violin" ||
119
119
  stat$plot == "violinplot" ||
120
120
  stat$plot == "vlnplot") {
121
121
  p <- ggplot(data, aes(x = !!group, y = !!sym(stat$on), fill=!!group)) +
122
122
  geom_violin(position = "dodge") +
123
- scale_fill_biopipen() +
123
+ scale_fill_biopipen(alpha = .6) +
124
124
  xlab("")
125
125
  } else if (
126
126
  (grepl("violin", stat$plot) || grepl("vln", stat$plot)) &&
@@ -129,12 +129,12 @@ for (name in names(stats)) {
129
129
  p <- ggplot(data, aes(x = !!group, y = !!sym(stat$on), fill = !!group)) +
130
130
  geom_violin(position = "dodge") +
131
131
  geom_boxplot(width = 0.1, position = position_dodge(0.9), fill="white") +
132
- scale_fill_biopipen() +
132
+ scale_fill_biopipen(alpha = .6) +
133
133
  xlab("")
134
134
  } else if (stat$plot == "histogram" || stat$plot == "hist") {
135
135
  p <- ggplot(data, aes(x = !!sym(stat$on), fill = !!group)) +
136
136
  geom_histogram(bins = 10, position = "dodge", alpha = 0.8, color = "white") +
137
- scale_fill_biopipen()
137
+ scale_fill_biopipen(alpha = .6)
138
138
  } else if (stat$plot == "pie" || stat$plot == "piechart") {
139
139
  if (is.null(stat$each)) {
140
140
  data <- data %>% distinct(!!group, .keep_all = TRUE)
@@ -157,7 +157,7 @@ for (name in names(stats)) {
157
157
  fill="#EEEEEE",
158
158
  size=4
159
159
  ) +
160
- scale_fill_biopipen(name = group) +
160
+ scale_fill_biopipen(alpha = .6, name = group) +
161
161
  ggtitle(paste0("# ", stat$on))
162
162
  } else if (stat$plot == "bar" || stat$plot == "barplot") {
163
163
  if (is.null(stat$each)) {
@@ -169,7 +169,7 @@ for (name in names(stats)) {
169
169
  data,
170
170
  aes(x = !!group, y = !!sym(count_on), fill = !!group)) +
171
171
  geom_bar(stat = "identity") +
172
- scale_fill_biopipen() +
172
+ scale_fill_biopipen(alpha = .6) +
173
173
  ylab(paste0("# ", stat$on))
174
174
  } else {
175
175
  stop("Unknown plot type: ", stat$plot)
@@ -0,0 +1,88 @@
1
+
2
+ source("{{biopipen_dir}}/utils/misc.R")
3
+
4
+ library(rlang)
5
+ library(ggplot2)
6
+ library(plotROC)
7
+
8
+ infile <- {{in.infile | r}}
9
+ outfile <- {{out.outfile | r}}
10
+ joboutdir <- {{job.outdir | r}}
11
+ noids <- {{envs.noids | r}}
12
+ pos_label <- {{envs.pos_label | r}}
13
+ ci <- {{envs.ci | r}}
14
+ devpars <- {{envs.devpars | r}}
15
+ show_auc <- {{envs.show_auc | r}}
16
+ args <- {{envs.args | r: todot="-"}}
17
+ style_roc_args <- {{envs.style_roc | r: todot="-"}}
18
+ if (!is.null(style_roc_args$theme)) {
19
+ style_roc_args$theme <- eval(parse(text=style_roc_args$theme))
20
+ }
21
+
22
+ data <- read.table(infile, header=TRUE, sep="\t", row.names = NULL, check.names = FALSE, stringsAsFactors=FALSE)
23
+ if (!noids) {
24
+ data <- data[, -1]
25
+ }
26
+
27
+ # Normalize the first column (labels) into 0 and 1.
28
+ # If they are not 0/1, use pos_label to determine the positive class.
29
+ label_col <- colnames(data)[1]
30
+ if (is.character(data[[label_col]])) {
31
+ data[[label_col]] <- as.numeric(data[[label_col]] == pos_label)
32
+ }
33
+
34
+ models <- colnames(data)[2:ncol(data)]
35
+
36
+ if (length(models) > 1) {
37
+ # pivot longer the models, and put the model names into the column 'model'
38
+ data <- melt_roc(data, label_col, colnames(data)[2:ncol(data)])
39
+ } else {
40
+ data <- data.frame(
41
+ D = data[[label_col]],
42
+ M = data[[models]],
43
+ name = rep(models, nrow(data))
44
+ )
45
+ }
46
+
47
+ # Plot the ROC curve
48
+ p <- ggplot(data, aes(d = D, m = M, color = name))
49
+
50
+ if (isTRUE(ci)) {
51
+ p <- p + do.call(geom_rocci, args)
52
+ } else {
53
+ p <- p + do.call(geom_roc, args)
54
+ }
55
+
56
+ p <- p + do.call(style_roc, style_roc_args)
57
+ p <- p + scale_color_biopipen()
58
+
59
+ if (length(models) > 1) {
60
+ p <- p + theme(legend.title = element_blank())
61
+ } else {
62
+ p <- p + theme(legend.position = "none")
63
+ }
64
+
65
+ aucs = calc_auc(p)
66
+ write.table(aucs, file=file.path(joboutdir, "aucs.tsv"), sep="\t", quote=FALSE, row.names=FALSE)
67
+
68
+ if (show_auc) {
69
+ aucs = split(aucs$AUC, aucs$name)
70
+ if (length(aucs) > 1) {
71
+ # Add AUC values to the legend items
72
+ p <- p +
73
+ scale_color_manual(
74
+ values = pal_biopipen()(length(models)),
75
+ labels = sapply(models, function(m) paste(m, " (AUC =", round(aucs[[m]], 2), ")")),
76
+ breaks = models)
77
+ } else {
78
+ p <- p +
79
+ geom_text(
80
+ x = 0.8, y = 0.2, label = paste("AUC =", round(unlist(aucs), 2)),
81
+ color = "black", size = 4)
82
+ }
83
+ }
84
+
85
+ devpars$filename <- outfile
86
+ do.call(png, devpars)
87
+ print(p)
88
+ dev.off()
@@ -120,7 +120,7 @@ expand_each <- function(name, case) {
120
120
  pull(case$each) %>% na.omit() %>% unique() %>% as.vector()
121
121
  }
122
122
  for (each in eachs) {
123
- by <- make.names(paste0(".", name, "_", case$each,"_", each))
123
+ by <- make.names(paste0("..", name, "_", case$each,"_", each))
124
124
  srtobj@meta.data <<- srtobj@meta.data %>% mutate(
125
125
  !!sym(by) := if_else(
126
126
  !!sym(case$each) == each,
@@ -364,6 +364,16 @@ add_case_report <- function(info, sigmarkers, siggenes) {
364
364
  }
365
365
  }
366
366
 
367
+ ensure_sobj <- function(expr, allow_empty) {
368
+ tryCatch({ expr }, error = function(e) {
369
+ if (allow_empty) {
370
+ log_warn(" Ignoring this case: {e$message}")
371
+ return(NULL)
372
+ } else {
373
+ stop(e)
374
+ }
375
+ })
376
+ }
367
377
 
368
378
  do_case_findall <- function(casename) {
369
379
  # casename
@@ -382,10 +392,17 @@ do_case_findall <- function(casename) {
382
392
  # args$min.cells.group <- args$min.cells.group %||% 1
383
393
  # args$min.cells.feature <- args$min.cells.feature %||% 1
384
394
  # args$min.pct <- args$min.pct %||% 0
395
+ allow_empty = startsWith(case$group.by, "..")
385
396
  if (!is.null(case$subset)) {
386
- args$object <- srtobj %>% filter(!!parse_expr(case$subset) & !is.na(!!sym(case$group.by)))
397
+ args$object <- ensure_sobj({
398
+ srtobj %>% filter(!!parse_expr(case$subset) & !is.na(!!sym(case$group.by)))
399
+ }, allow_empty)
400
+ if (is.null(args$object)) { return() }
387
401
  } else {
388
- args$object <- srtobj %>% filter(!is.na(!!sym(case$group.by)))
402
+ args$object <- ensure_sobj({
403
+ srtobj %>% filter(!is.na(!!sym(case$group.by)))
404
+ }, allow_empty)
405
+ if (is.null(args$object)) { return() }
389
406
  }
390
407
  Idents(args$object) <- case$group.by
391
408
 
@@ -486,11 +503,19 @@ do_case <- function(casename) {
486
503
  # sigmarkers
487
504
  # rest
488
505
  args <- case$rest
506
+ allow_empty = startsWith(case$group.by, "..")
489
507
  if (!is.null(case$subset)) {
490
- args$object <- srtobj %>% filter(!!parse_expr(case$subset) & !is.na(!!sym(case$group.by)))
508
+ args$object <- ensure_sobj({
509
+ srtobj %>% filter(!!parse_expr(case$subset) & !is.na(!!sym(case$group.by)))
510
+ }, allow_empty)
511
+ if (is.null(args$object)) { return() }
491
512
  } else {
492
- args$object <- srtobj %>% filter(!is.na(!!sym(case$group.by)))
513
+ args$object <- ensure_sobj({
514
+ srtobj %>% filter(!is.na(!!sym(case$group.by)))
515
+ }, allow_empty)
516
+ if (is.null(args$object)) { return() }
493
517
  }
518
+
494
519
  args$assay <- case$assay
495
520
  args$group.by <- case$group.by
496
521
  args$ident.1 <- case$ident.1
@@ -76,7 +76,7 @@ expand_each <- function(name, case) {
76
76
  pull(case$each) %>% unique() %>% na.omit()
77
77
  }
78
78
  for (each in eachs) {
79
- by = make.names(paste0(".", name, "_", case$each, "_", each))
79
+ by = make.names(paste0("..", name, "_", case$each, "_", each))
80
80
  idents <- case$idents
81
81
  if (is.null(idents) || length(idents) == 0) {
82
82
  srtobj@meta.data = srtobj@meta.data %>%
@@ -169,17 +169,31 @@ do_enrich <- function(info, markers, sig) {
169
169
  }
170
170
  }
171
171
 
172
+ ensure_sobj <- function(expr, allow_empty) {
173
+ tryCatch({ expr }, error = function(e) {
174
+ if (allow_empty) {
175
+ log_warn(" Ignoring this case: {e$message}")
176
+ return(NULL)
177
+ } else {
178
+ stop(e)
179
+ }
180
+ })
181
+ }
182
+
172
183
  do_case <- function(casename) {
173
184
  log_info("- Dealing with case: {casename} ...")
174
185
  info <- casename_info(casename, cases, outdir, create = TRUE)
175
186
  case <- cases[[casename]]
187
+ allow_empty = startsWith(case$group_by, "..")
176
188
 
177
189
  if (sum(!is.na(srtobj@meta.data[[case$group_by]])) == 0) {
178
190
  msg = "Not enough cells to run tests."
179
191
  } else {
180
- sobj <- srtobj %>% filter(!is.na(!!sym(case$group_by)))
192
+ sobj <- ensure_sobj({ srtobj %>% filter(!is.na(!!sym(case$group_by))) }, allow_empty)
193
+ if (is.null(sobj)) { return() }
181
194
  if (!is.null(case$subset)) {
182
- sobj <- srtobj %>% filter(!is.na(!!sym(case$group_by)), !!parse_expr(case$subset))
195
+ sobj <- ensure_sobj({ sobj %>% filter(!!parse_expr(case$subset)) }, allow_empty)
196
+ if (is.null(sobj)) { return() }
183
197
  }
184
198
  df <- tryCatch({
185
199
  GetAssayData(sobj, layer = "data")
@@ -72,7 +72,7 @@ expand_each <- function(name, case) {
72
72
  pull(case$each) %>% na.omit() %>% unique() %>% as.vector()
73
73
  }
74
74
  for (each in eachs) {
75
- by <- make.names(paste0(".", name, "_", case$each,"_", each))
75
+ by <- make.names(paste0("..", name, "_", case$each,"_", each))
76
76
  srtobj@meta.data <<- srtobj@meta.data %>%
77
77
  mutate(!!sym(by) := if_else(
78
78
  !!sym(case$each) == each,
@@ -97,18 +97,35 @@ log_info("- Expanding cases...")
97
97
  cases <- expand_cases(cases, defaults, expand_each)
98
98
 
99
99
 
100
+ ensure_sobj <- function(expr, allow_empty) {
101
+ tryCatch({ expr }, error = function(e) {
102
+ if (allow_empty) {
103
+ log_warn(" Ignoring this case: {e$message}")
104
+ return(NULL)
105
+ } else {
106
+ stop(e)
107
+ }
108
+ })
109
+ }
110
+
111
+
100
112
  do_case <- function(name, case) {
101
113
  log_info("- Handling case: {name} ...")
102
114
  info <- casename_info(name, cases, outdir, create = TRUE)
103
115
 
116
+ allow_empty = startsWith(case$group.by, "..")
104
117
  # prepare expression matrix
105
118
  log_info(" Preparing expression matrix...")
106
- sobj <- srtobj %>% filter(!is.na(!!sym(case$group.by)))
119
+ sobj <- ensure_sobj({ srtobj %>% filter(!is.na(!!sym(case$group.by))) }, allow_empty)
120
+ if (is.null(sobj)) { return() }
121
+
107
122
  if (!is.null(case$subset)) {
108
- sobj <- sobj %>% filter(!!!parse_exprs(case$subset))
123
+ sobj <- ensure_sobj({ sobj %>% filter(!!!parse_exprs(case$subset)) }, allow_empty)
124
+ if (is.null(sobj)) { return() }
109
125
  }
110
126
  if (!is.null(case$ident.2)) {
111
- sobj <- sobj %>% filter(!!sym(case$group.by) %in% c(case$ident.1, case$ident.2))
127
+ sobj <- ensure_sobj({ sobj %>% filter(!!sym(case$group.by) %in% c(case$ident.1, case$ident.2)) }, allow_empty)
128
+ if (is.null(sobj)) { return() }
112
129
  }
113
130
 
114
131
  allclasses <- sobj@meta.data[, case$group.by, drop = TRUE]
@@ -13,6 +13,7 @@ envs = {{envs | r: todot = "-", skip = 1}}
13
13
 
14
14
  set.seed(8525)
15
15
  options(future.globals.maxSize = 80000 * 1024^2)
16
+ options(future.rng.onMisuse="ignore")
16
17
  options(Seurat.object.assay.version = "v5")
17
18
  plan(strategy = "multicore", workers = envs$ncores)
18
19
 
@@ -342,7 +343,7 @@ RunPCAArgs$object <- sobj
342
343
  sobj <- do_call(RunPCA, RunPCAArgs)
343
344
 
344
345
  if (!envs$no_integration) {
345
- log_info("- Running IntegrateLayers ...")
346
+ log_info("- Running IntegrateLayers (method = {envs$IntegrateLayers$method}) ...")
346
347
  IntegrateLayersArgs <- envs$IntegrateLayers
347
348
  method <- IntegrateLayersArgs$method
348
349
  if (!is.null(IntegrateLayersArgs$reference) && is.character(IntegrateLayersArgs$reference)) {
@@ -383,6 +384,117 @@ if (!envs$use_sct) {
383
384
  sobj <- JoinLayers(sobj)
384
385
  }
385
386
 
387
+ if (!is.null(envs$DoubletFinder) && is.list(envs$DoubletFinder) && envs$DoubletFinder$PCs > 0) {
388
+ library(DoubletFinder)
389
+
390
+ log_info("Running DoubletFinder ...")
391
+ log_info("- Preparing Seurat object ...")
392
+ # More controls from envs?
393
+ sobj <- FindNeighbors(sobj, dims = 1:envs$DoubletFinder$PCs)
394
+ sobj <- FindClusters(sobj)
395
+
396
+ log_info("- pK Indentification ...")
397
+ sweep.res.list <- paramSweep(
398
+ sobj,
399
+ PCs = 1:envs$DoubletFinder$PCs,
400
+ sct = envs$use_sct,
401
+ num.cores = envs$ncores
402
+ )
403
+ sweep.stats <- summarizeSweep(sweep.res.list, GT = FALSE)
404
+ bcmvn <- find.pK(sweep.stats)
405
+
406
+ bcmvn$Selected <- bcmvn$pK == bcmvn$pK[which.max(bcmvn$BCmetric)[1]]
407
+ plot <- ggplot(bcmvn, aes(x = pK, y = BCmetric, color = Selected)) +
408
+ geom_point() +
409
+ # rotate x axis labels
410
+ theme(axis.text.x = element_text(angle = 90, hjust = 1))
411
+ ggsave(plot, filename = file.path(plotsdir, "pK_BCmetric.png"))
412
+
413
+ pK <- bcmvn$pK[which.max(bcmvn$BCmetric)[1]]
414
+ pK <- as.numeric(as.character(pK))
415
+ pN <- envs$DoubletFinder$pN
416
+ log_info("- Homotypic Doublet Proportion Estimate ...")
417
+ homotypic.prop <- modelHomotypic(Idents(sobj))
418
+ nExp_poi <- round(nrow(sobj@meta.data) * envs$DoubletFinder$doublets)
419
+ nExp_poi.adj <- round(nExp_poi * (1 - homotypic.prop))
420
+
421
+ log_info("- Running DoubletFinder ...")
422
+ sobj <- doubletFinder(
423
+ sobj,
424
+ PCs = 1:envs$DoubletFinder$PCs,
425
+ pN = pN,
426
+ pK = pK,
427
+ nExp = nExp_poi.adj,
428
+ reuse.pANN = FALSE,
429
+ sct = envs$use_sct
430
+ )
431
+ pANN_col <- paste0("pANN_", pN, "_", pK)
432
+ pANN_col <- colnames(sobj@meta.data)[grepl(pANN_col, colnames(sobj@meta.data))]
433
+ DF_col <- paste0("DF.classifications_", pN, "_", pK)
434
+ DF_col <- colnames(sobj@meta.data)[grepl(DF_col, colnames(sobj@meta.data))]
435
+ doublets <- as.data.frame(
436
+ cbind(
437
+ colnames(sobj),
438
+ sobj@meta.data[, pANN_col],
439
+ sobj@meta.data[, DF_col]
440
+ )
441
+ )
442
+ colnames(doublets) <- c("Barcode","DoubletFinder_score","DoubletFinder_DropletType")
443
+ write.table(
444
+ doublets,
445
+ file.path(joboutdir, "DoubletFinder_doublets_singlets.txt"),
446
+ row.names = FALSE,
447
+ quote = FALSE,
448
+ sep = "\t"
449
+ )
450
+
451
+ summary <- as.data.frame(table(doublets$DoubletFinder_DropletType))
452
+ colnames(summary) <- c("Classification", "Droplet_N")
453
+ write.table(
454
+ summary,
455
+ file.path(joboutdir, "DoubletFinder_summary.txt"),
456
+ row.names = FALSE,
457
+ quote = FALSE,
458
+ sep = "\t"
459
+ )
460
+
461
+ # Do a dimplot
462
+ log_info("- Plotting dimension reduction ...")
463
+ dimp <- DimPlot(
464
+ sobj, group.by = DF_col, order = "Doublet",
465
+ cols = c("#333333", "#FF3333"), pt.size = 0.8, alpha = 0.5)
466
+ ggsave(dimp, filename = file.path(plotsdir, "DoubletFinder_dimplot.png"))
467
+
468
+ log_info("- Filtering doublets ...")
469
+ sobj <- subset(sobj, cells = doublets$Barcode[doublets$DoubletFinder_DropletType == "Singlet"])
470
+
471
+ add_report(
472
+ list(
473
+ kind = "descr",
474
+ content = "The table contains the number of cells classified as singlets and doublets."
475
+ ),
476
+ list(
477
+ kind = "table",
478
+ data = list(path = file.path(joboutdir, "DoubletFinder_summary.txt"))
479
+ ),
480
+ h1 = "DoubletFinder Results",
481
+ h2 = "The DoubletFinder Summary"
482
+ )
483
+ add_report(
484
+ list(
485
+ name = "pK vs BCmetric",
486
+ src = file.path(plotsdir, "pK_BCmetric.png")
487
+ ),
488
+ list(
489
+ name = "Dimension Reduction Plot",
490
+ src = file.path(plotsdir, "DoubletFinder_dimplot.png")
491
+ ),
492
+ ui = "table_of_images",
493
+ h1 = "DoubletFinder Results",
494
+ h2 = "Plots"
495
+ )
496
+ }
497
+
386
498
  log_info("Saving filtered seurat object ...")
387
499
  saveRDS(sobj, rdsfile)
388
500
 
@@ -0,0 +1,157 @@
1
+ source("{{biopipen_dir}}/utils/misc.R")
2
+ library(rlang)
3
+ library(MatrixEQTL)
4
+
5
+ snpfile = {{in.geno | r}}
6
+ expfile = {{in.expr | r}}
7
+ covfile = {{in.cov | r}}
8
+ joboutdir = {{job.outdir | r}}
9
+ alleqtl = {{out.alleqtls | r}}
10
+ outfile = {{out.cisqtls | r}}
11
+
12
+ model = {{envs.model | r}}
13
+ pval = {{envs.pval | r}}
14
+ transp = {{envs.transp | r}}
15
+ fdr = {{envs.fdr | r}}
16
+ snppos = {{envs.snppos | r}}
17
+ genepos = {{envs.genepos | r}}
18
+ dist = {{envs.dist | r}}
19
+
20
+ transpose_geno = {{envs.transpose_geno | r}}
21
+ transpose_expr = {{envs.transpose_expr | r}}
22
+ transpose_cov = {{envs.transpose_cov | r}}
23
+
24
+ arg_match(model, c("modelANOVA", "modelLINEAR", "linear", "anova"))
25
+ if (model == "linear") model = "modelLINEAR"
26
+ if (model == "anova") model = "modelANOVA"
27
+ model = get(model)
28
+
29
+ trans_enabled = !is.null(transp)
30
+ cis_enabled = !is.null(snppos) && !is.null(genepos) && dist > 0
31
+
32
+ # if trans is disabled, all files needed for cis should be provided
33
+ if (!trans_enabled && !cis_enabled) {
34
+ log_warn("Using `envs.transp = 1e-5` since cis-eQTL is disabled.")
35
+ trans_enabled <- TRUE
36
+ transp <- 1e-5
37
+ }
38
+
39
+ transpose_file <- function(file) {
40
+ out <- file.path(joboutdir, paste0(
41
+ tools::file_path_sans_ext(basename(file)),
42
+ ".transposed.",
43
+ tools::file_ext(file))
44
+ )
45
+ data <- read.table(file, header=TRUE, stringsAsFactors=FALSE, row.names=1, sep="\t", quote="", check.names=FALSE)
46
+ write.table(t(data), file=out, sep="\t", quote=FALSE, row.names=TRUE, col.names=TRUE)
47
+ out
48
+ }
49
+
50
+ if (transpose_geno) snpfile = transpose_file(snpfile)
51
+ if (transpose_expr) expfile = transpose_file(expfile)
52
+ if (transpose_cov) covfile = transpose_file(covfile)
53
+
54
+ snps = SlicedData$new();
55
+ snps$fileDelimiter = "\t"; # the TAB character
56
+ snps$fileOmitCharacters = "NA"; # denote missing values;
57
+ snps$fileSkipRows = 1; # one row of column labels
58
+ snps$fileSkipColumns = 1; # one column of row labels
59
+ snps$fileSliceSize = 10000; # read file in pieces of 2,000 rows
60
+ snps$LoadFile( snpfile );
61
+
62
+ gene = SlicedData$new();
63
+ gene$fileDelimiter = "\t"; # the TAB character
64
+ gene$fileOmitCharacters = "NA"; # denote missing values;
65
+ gene$fileSkipRows = 1; # one row of column labels
66
+ gene$fileSkipColumns = 1; # one column of row labels
67
+ gene$fileSliceSize = 10000; # read file in pieces of 2,000 rows
68
+ gene$LoadFile( expfile );
69
+
70
+ cvrt = SlicedData$new();
71
+ if (!is.null(covfile) && file.exists(covfile)) {
72
+ covmatrix = t(read.table.inopts(covfile, list(cnames=TRUE, rnames=TRUE)))
73
+ cvrt$CreateFromMatrix( as.matrix(covmatrix) )
74
+ }
75
+
76
+ engine_params = list()
77
+ engine_params$snps = snps
78
+ engine_params$gene = gene
79
+ engine_params$cvrt = cvrt
80
+ engine_params$output_file_name = ifelse(trans_enabled, alleqtl, NULL)
81
+ engine_params$pvOutputThreshold = ifelse(trans_enabled, transp, 0)
82
+ engine_params$useModel = model
83
+ engine_params$errorCovariance = numeric()
84
+ engine_params$verbose = TRUE
85
+ engine_params$noFDRsaveMemory = !fdr
86
+
87
+ noq = function(s) {
88
+ gsub('^\"|\"$', "", s)
89
+ }
90
+
91
+ if (cis_enabled) {
92
+ if (endsWith(snppos, ".bed")) {
93
+ snppos_data = read.table.inopts(snppos,
94
+ list(cnames=FALSE, rnames=FALSE))
95
+ snppos_data = snppos_data[, c(4, 1, 2)]
96
+ colnames(snppos_data) = c("snp", "chr", "pos")
97
+ } else if (endsWith(snppos, ".gff") || endsWith(snppos, ".gtf")) {
98
+ snppos_data = read.table.inopts(snppos,
99
+ list(cnames=FALSE, rnames=FALSE));
100
+ snppos_data = snppos_data[, c(9, 1, 4)]
101
+ colnames(snppos_data) = c("snp", "chr", "pos")
102
+ snppos_data$snp = unlist(lapply(snppos_data$snp, function(x) {
103
+ for (s in unlist(strsplit(x, '; ', fixed=T))) {
104
+ if (startsWith(s, "snp_id "))
105
+ return(noq(substring(s, 8)))
106
+ else if (startsWith(s, "rs_id "))
107
+ return(noq(substring(s, 7)))
108
+ else if (startsWith(s, "rs "))
109
+ return(noq(substring(s, 4)))
110
+ }
111
+ }))
112
+ } else if (endsWith(snppos, ".vcf") || endsWith(snppos, ".vcf.gz")) {
113
+ snppos_data = read.table.inopts(snppos,
114
+ list(cnames=FALSE, rnames=FALSE))
115
+ snppos_data = snppos_data[, c(3, 1, 2)]
116
+ colnames(snppos_data) = c("snp", "chr", "pos")
117
+ } else {
118
+ snppos_data = read.table.inopts(snppos, list(cnames=TRUE))
119
+ colnames(snppos_data) = c("snp", "chr", "pos")
120
+ }
121
+
122
+ if (endsWith(genepos, ".bed")) {
123
+ genepos_data = read.table.inopts(genepos,
124
+ list(cnames=FALSE, rnames=FALSE))
125
+ genepos_data = genepos_data[, c(4, 1:3)]
126
+ colnames(genepos_data) = c("geneid", "chr", "s1", "s2")
127
+ } else if (endsWith(genepos, ".gff") || endsWith(genepos, ".gtf")) {
128
+ genepos_data = read.table.inopts(genepos,
129
+ list(cnames=FALSE, rnames=FALSE))
130
+ genepos_data = genepos_data[, c(9, 1, 4, 5)]
131
+ colnames(genepos_data) = c("geneid", "chr", "s1", "s2")
132
+ genepos_data$geneid = noquote(unlist(lapply(genepos_data$geneid, function(x) {
133
+ for (s in unlist(strsplit(x, '; ', fixed=T))) {
134
+ if (startsWith(s, "gene_id "))
135
+ return(noq(substring(s, 9)))
136
+ }
137
+ })))
138
+ } else {
139
+ genepos_data = read.table(genepos, header = TRUE, stringsAsFactors = FALSE);
140
+ colnames(genepos_data) = c("geneid", "chr", "s1", "s2")
141
+ }
142
+
143
+ engine_params$output_file_name.cis = outfile
144
+ engine_params$pvOutputThreshold.cis = pval
145
+ engine_params$cisDist = dist
146
+ engine_params$snpspos = snppos_data
147
+ engine_params$genepos = genepos_data
148
+ do_call(Matrix_eQTL_main, engine_params)
149
+ } else {
150
+ do_call(Matrix_eQTL_engine, engine_params)
151
+ file.create(outfile)
152
+ }
153
+
154
+ if (pval == 0) {
155
+ if (!file.exists(outfile)) file.create(outfile)
156
+ if (!file.exists(alleqtl)) file.create(alleqtl)
157
+ }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: biopipen
3
- Version: 0.27.2
3
+ Version: 0.27.4
4
4
  Summary: Bioinformatics processes/pipelines that can be run from `pipen run`
5
5
  License: MIT
6
6
  Author: pwwang
@@ -17,6 +17,6 @@ Requires-Dist: datar[pandas] (>=0.15.6,<0.16.0)
17
17
  Requires-Dist: pipen-board[report] (>=0.15,<0.16)
18
18
  Requires-Dist: pipen-cli-run (>=0.13,<0.14)
19
19
  Requires-Dist: pipen-filters (>=0.12,<0.13)
20
- Requires-Dist: pipen-poplog (>=0.1,<0.2)
20
+ Requires-Dist: pipen-poplog (>=0.1.2,<0.2.0)
21
21
  Requires-Dist: pipen-runinfo (>=0.6,<0.7) ; extra == "runinfo"
22
22
  Requires-Dist: pipen-verbose (>=0.11,<0.12)
@@ -1,4 +1,4 @@
1
- biopipen/__init__.py,sha256=_CerHyxnUJ2hU0sB7noT3JBjjI0ohEM5boAPBoFxOg4,23
1
+ biopipen/__init__.py,sha256=FRehirBY8kLByuBXp81U_RUAg8WYLFropNPtg2RpV2w,23
2
2
  biopipen/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  biopipen/core/config.py,sha256=edK5xnDhM8j27srDzsxubi934NMrglLoKrdcC8qsEPk,1069
4
4
  biopipen/core/config.toml,sha256=20RCI30Peee1EQdfb_UbV3Hf74XUPndJnYZlUThytsw,1781
@@ -15,18 +15,18 @@ biopipen/ns/cellranger_pipeline.py,sha256=D6gvIeasHjDCdro7f4wjomxRYTtsJT77Ld47Xz
15
15
  biopipen/ns/cnv.py,sha256=vq6dZfEOyuVuqg3nP6FQtNmQ-JocpBJMX9IYlZ0OPD0,6803
16
16
  biopipen/ns/cnvkit.py,sha256=5mA2Q8-YDs4g1HoxtpB_NWnyZYwEThNr3s3wlubLQrQ,31130
17
17
  biopipen/ns/cnvkit_pipeline.py,sha256=2fJLn70L2jJ81ZMNdnU84Sf3HoKA2CSnHuDzLGR8jmw,36854
18
- biopipen/ns/delim.py,sha256=cmGy82_Cjyf1anBPSzqEUcZCzZqMLdNY-w5uJLE-H6c,5610
18
+ biopipen/ns/delim.py,sha256=fejsh4KW1TG5oMZzAC238LvQhBz7brXkfl3BHfnLK5M,5612
19
19
  biopipen/ns/gene.py,sha256=Q5FzRByfnRITXRNRZR65ApG09FRyiihRC3TcIXxufzE,2228
20
20
  biopipen/ns/gsea.py,sha256=EsNRAPYsagaV2KYgr4Jv0KCnZGqayM209v4yOGGTIOI,7423
21
21
  biopipen/ns/misc.py,sha256=fzn0pXvdghMkQhu-e3MMapPNMyO6IAJbtTzVU3GbFa0,3246
22
- biopipen/ns/plot.py,sha256=yguxmErUOH-hOM10JfuI_sXw2p49XF8yGR_gXfbd5yQ,4066
22
+ biopipen/ns/plot.py,sha256=fzJAKKl4a_tsVkLREGCQTFVHP049m33LdWgeYRb6v7M,5483
23
23
  biopipen/ns/rnaseq.py,sha256=bKAa6friFWof4yDTWZQahm1MS-lrdetO1GqDKdfxXYc,7708
24
- biopipen/ns/scrna.py,sha256=eLCXGyVcgq3vQ-br5SFHHmfIVPaJN4kSFxtCiJiYamg,102716
25
- biopipen/ns/scrna_metabolic_landscape.py,sha256=9s1NvH3aMaNDXyfwy9TdzGcSP_lIW4JqhLgknNZcIKE,28313
26
- biopipen/ns/snp.py,sha256=Nq20NJzQ9YiqE9mhtCUH6dfs7528o1e4N-j9PewjAsQ,3016
24
+ biopipen/ns/scrna.py,sha256=u0p2eVqB2T7vpg-19NN0277QKChTsv9yxM6xQA6pJHg,103464
25
+ biopipen/ns/scrna_metabolic_landscape.py,sha256=EhOtHQyoH-jRpzDoOI_06UbjEg6mhvbDEHKhek01bPk,28334
26
+ biopipen/ns/snp.py,sha256=EQ2FS0trQ7YThPmBVTpS66lc2OSfgQ6lCh6WnyP-C2g,5499
27
27
  biopipen/ns/stats.py,sha256=yJ6C1CXF84T7DDs9mgufqUOr89Rl6kybE5ji8Vnx6cw,13693
28
28
  biopipen/ns/tcgamaf.py,sha256=AFbUJIxiMSvsVY3RcHgjRFuMnNh2DG3Mr5slLNEyz6o,1455
29
- biopipen/ns/tcr.py,sha256=5bMnxhbeB08UrAw8YSh2BkA3AUFeoOajhE6DhHt74K4,87863
29
+ biopipen/ns/tcr.py,sha256=7F_FulZ3UGouuvgH_ylZwJybr_310f9BTz_kouO1SjY,87905
30
30
  biopipen/ns/vcf.py,sha256=cdkKroii0_nl_bSP2cnO09qESUAhHqu6btOiTSKS79Y,15314
31
31
  biopipen/ns/web.py,sha256=3zucrDo-IVsSnIvlw-deoScuxqWa6OMTm8Vo-R4E44Q,2224
32
32
  biopipen/reports/bam/CNAClinic.svelte,sha256=D4IxQcgDCPQZMbXog-aZP5iJEQTK2N4i0C60e_iXyfs,213
@@ -102,7 +102,7 @@ biopipen/scripts/cnvkit/CNVkitScatter.py,sha256=7DhTiXPHEHbdXn0VFcDOR-wTP6sks08N
102
102
  biopipen/scripts/cnvkit/CNVkitSegment.py,sha256=q5iGAjY6-yIehPcJpi3hX6EuGre0YgWTPkG_d5LEV48,1629
103
103
  biopipen/scripts/cnvkit/guess_baits.py,sha256=7OCMtSMHIJWWZv9qEYVXnB0N4hU_JaGEesKdkr6tvJc,10586
104
104
  biopipen/scripts/delim/RowsBinder.R,sha256=yp960u7Ui_jFCL8WDvODa-0vhJvyLo64ll35PzXYUbI,1444
105
- biopipen/scripts/delim/SampleInfo.R,sha256=aYMaQR6klV8rVshqkaML9mnVpCfuGTvd_D5iUbPRzJA,6335
105
+ biopipen/scripts/delim/SampleInfo.R,sha256=1EYlqoVpIEl9l2eBaCLETuI_Ma3HjihS9tRbGmOPiBk,6397
106
106
  biopipen/scripts/gene/GeneNameConversion.py,sha256=2RveardTsLv2K1XSj3G0ERYLiln9bcR74bjkRdKcChc,1880
107
107
  biopipen/scripts/gsea/Enrichr.R,sha256=tr4vInlVIeiGXumh22ARuTQmy0-Qq869RiX7d7ERqCg,661
108
108
  biopipen/scripts/gsea/FGSEA.R,sha256=RLqDgrqnYEacHfzEEuZ3d29lxNqWehigOnGuu248SRg,1483
@@ -111,6 +111,7 @@ biopipen/scripts/gsea/PreRank.R,sha256=onZK1FQa6yDO0Fz4juy56XQjpzyw3zBdZv7edY9ac
111
111
  biopipen/scripts/misc/Config2File.py,sha256=NUio0uOEuZtUBpuByDSItYu9Kwu5mosb4pdPq5-QAmE,440
112
112
  biopipen/scripts/misc/Str2File.py,sha256=99oQNxChxChNJ9vmD77b48cu-r_P_heSpx7A5wi3qTE,212
113
113
  biopipen/scripts/plot/Heatmap.R,sha256=4v_oRME8ZiwczIlBIp-OP_YPWLAvBKzbHiwNBCZ0Xog,1982
114
+ biopipen/scripts/plot/ROC.R,sha256=Cr-mHQx6c748fQYkOWO2xIKWwiVAUxGuxn6lYEhNH78,2430
114
115
  biopipen/scripts/plot/VennDiagram.R,sha256=GVc-kyHqnXrbXZvy-evcxI1XGtlLSChBiVnMjPywNMA,731
115
116
  biopipen/scripts/rnaseq/Simulation-ESCO.R,sha256=68cEHDdJclX8P8Q7ey9yBOfK09M_kxlL6zgYXsEL2Rs,6378
116
117
  biopipen/scripts/rnaseq/Simulation-RUVcorr.R,sha256=6C6Ke5RLF0fC2V9WQPoFEdqoDabCnhslZBIyB6zhIxc,1155
@@ -129,12 +130,12 @@ biopipen/scripts/scrna/ExprImpution-alra.R,sha256=w3W1txJcdWg52-SETY2Z0lO7maDNfi
129
130
  biopipen/scripts/scrna/ExprImpution-rmagic.R,sha256=jYIfqZpnvjKJkvItLnemPVtUApHBYQi1_L8rHVbEe1M,735
130
131
  biopipen/scripts/scrna/ExprImpution-scimpute.R,sha256=mg40qCUW7-nP5oHPvARq7dmtoahM0GRFWXQpum0BXVk,1082
131
132
  biopipen/scripts/scrna/ExprImpution.R,sha256=7768ezrr59xUZDXq8lO9jj2XhnkSsx-xxBmOD9_DO7c,313
132
- biopipen/scripts/scrna/MarkersFinder.R,sha256=TvLVozCsgL_R-EMW7SbkCRdpchxt9k7Ewwz5nb3TOYo,22172
133
- biopipen/scripts/scrna/MetaMarkers.R,sha256=J__ZZ4K4P-Jdty1lZhRldu4rAErLxMtDZkRUlOqZea4,10852
133
+ biopipen/scripts/scrna/MarkersFinder.R,sha256=M7fHTbHHErZ9JbLmjDkx-6yVIay0_h0MkvgFegnqL44,22918
134
+ biopipen/scripts/scrna/MetaMarkers.R,sha256=9ve1X0TrDzS_ZEW6HtU3n8R-uPx7q-hYMMNFVDSE8wQ,11272
134
135
  biopipen/scripts/scrna/ModuleScoreCalculator.R,sha256=JSHd-_-KiFqW8avCGxgU4T-C5BtDr2u0kwIvEu2lFIg,4188
135
136
  biopipen/scripts/scrna/RadarPlots.R,sha256=TGPUTUcHOHgd9rsNtLYT-N6WHiFNDBZsiIoqkyAJh0A,13020
136
137
  biopipen/scripts/scrna/SCImpute.R,sha256=dSJOHhmJ3x_72LBRXT72dbCti5oiB85CJ-OjWtqONbk,2958
137
- biopipen/scripts/scrna/ScFGSEA.R,sha256=M6YeqUNa_0bq1qmL8dutQR3o5v2jy_gICCLaWw5c3A4,5738
138
+ biopipen/scripts/scrna/ScFGSEA.R,sha256=2UCTCIydVkPGvn7WP-_fcE7857iKKDxY56-j-ruyO8o,6254
138
139
  biopipen/scripts/scrna/Seurat2AnnData.R,sha256=qz4u-B5J3GMwttubnNnByJXreziFbrP5Mak0L0q7eG0,1557
139
140
  biopipen/scripts/scrna/SeuratClusterStats-dimplots.R,sha256=gViDgQ8NorYD64iK0FgcODOrDOw0tExZmhuPRuLNp4g,2354
140
141
  biopipen/scripts/scrna/SeuratClusterStats-features.R,sha256=SaKTJloP1fttRXZQeb2ApX0ej7al13wOoEYkthSk13k,15489
@@ -147,7 +148,7 @@ biopipen/scripts/scrna/SeuratFilter.R,sha256=BrYK0MLdaTtQvInMaQsmOt7oH_hlks0M1zy
147
148
  biopipen/scripts/scrna/SeuratLoading.R,sha256=ekWKnHIqtQb3kHVQiVymAHXXqiUxs6KKefjZKjaykmk,900
148
149
  biopipen/scripts/scrna/SeuratMap2Ref.R,sha256=Xn3VnvKqShuC0Ju05380wjuLVSdW0uWVzntdxjme244,4359
149
150
  biopipen/scripts/scrna/SeuratMetadataMutater.R,sha256=Pp4GsF3hZ6ZC2vroC3LSBmVa4B1p2L3hbh981yaAIeQ,1093
150
- biopipen/scripts/scrna/SeuratPreparing.R,sha256=cgXWon2it6g4y-yrYk_zhivViOX8ZVf36u3wb9lKtj0,13133
151
+ biopipen/scripts/scrna/SeuratPreparing.R,sha256=c_aBM0mugBNyYJ5OjNVDR_Cj0sGqkiJZXCOk3pesFDk,16990
151
152
  biopipen/scripts/scrna/SeuratSplit.R,sha256=vdK11V39_Uo_NaOh76QWCtxObGaEr5Ynxqq0hTiSvsU,754
152
153
  biopipen/scripts/scrna/SeuratSubClustering.R,sha256=L1SwKhNNKvsQGrcj0ZjScW9BLuvdO2pg7U48Ospsot8,6096
153
154
  biopipen/scripts/scrna/SeuratSubset.R,sha256=yVA11NVE2FSSw-DhxQcJRapns0tNNHdyDYi5epO6SKM,1776
@@ -160,6 +161,7 @@ biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R,sha256=b77yG5FeRs
160
161
  biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R,sha256=ic8Fy8QqYDGh_izmvZVJ3KL66podg_CSF5ITL3FZsvo,5196
161
162
  biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R,sha256=95DLX1Rz0tobOuDZ8V9YdGgO0KiNthhccoeeOK21tno,16216
162
163
  biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R,sha256=rQ9iwGh9FNRZlJJzM4QItdyXmebfzLAq05ZAjb1kGUw,9831
164
+ biopipen/scripts/snp/MatrixEQTL.R,sha256=zOR_mhn_sUXuxqgV82TPvDp-E1i5aJVA45QixyRP8no,5930
163
165
  biopipen/scripts/snp/PlinkSimulation.py,sha256=mSSoGGG6sbEPBcUGdHgbebUrg4DiHeyNyc7jLPjV5pY,4169
164
166
  biopipen/scripts/stats/ChowTest.R,sha256=4p7NULmfOZSfeBSQ04els0h3cXOK5yeCJJ4-gEBPOGk,3617
165
167
  biopipen/scripts/stats/DiffCoexpr.R,sha256=5hQDV2_7bKdKUsOGMZUa0GS5rc7kFspxonNyFEPmtbc,4516
@@ -238,7 +240,7 @@ biopipen/utils/reference.py,sha256=6bPSwQa-GiDfr7xLR9a5T64Ey40y24yn3QfQ5wDFZkU,4
238
240
  biopipen/utils/rnaseq.R,sha256=Ro2B2dG-Z2oVaT5tkwp9RHBz4dp_RF-JcizlM5GYXFs,1298
239
241
  biopipen/utils/single_cell.R,sha256=pJjYP8bIZpNAtTQ32rOXhZxaM1Y-6D-xUcK3pql9tbk,4316
240
242
  biopipen/utils/vcf.py,sha256=ajXs0M_QghEctlvUlSRjWQIABVF02wPdYd-0LP4mIsU,9377
241
- biopipen-0.27.2.dist-info/METADATA,sha256=G3Cij0e6iDpAZ87kUeVZabL8MHa689YLGzIFIjaLmG4,878
242
- biopipen-0.27.2.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
243
- biopipen-0.27.2.dist-info/entry_points.txt,sha256=wu70aoBcv1UahVbB_5237MY-9M9_mzqmWjDD-oi3yz0,621
244
- biopipen-0.27.2.dist-info/RECORD,,
243
+ biopipen-0.27.4.dist-info/METADATA,sha256=jBHr-0G03oeihg4W1XgeY5gVb4rI-4chXNOt6wWhbJE,882
244
+ biopipen-0.27.4.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
245
+ biopipen-0.27.4.dist-info/entry_points.txt,sha256=wu70aoBcv1UahVbB_5237MY-9M9_mzqmWjDD-oi3yz0,621
246
+ biopipen-0.27.4.dist-info/RECORD,,