biopipen 0.23.7__py3-none-any.whl → 0.24.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of biopipen might be problematic. Click here for more details.

@@ -134,7 +134,9 @@ if (has_VJ) {
134
134
  file.path(tessa_dir, "tcr_vj.txt")
135
135
  )
136
136
  }
137
- log_info(paste("- ", cmd_encoder))
137
+ print("Running:")
138
+ print(cmd_encoder)
139
+ log_debug(paste("- ", cmd_encoder))
138
140
 
139
141
  rc <- system(cmd_encoder)
140
142
  if (rc != 0) {
@@ -0,0 +1,142 @@
1
+ library(immunarch)
2
+
3
+ vis.immunr_gini <- function(.data, .by = NA, .meta = NA,
4
+ .errorbars = c(0.025, 0.975), .errorbars.off = FALSE,
5
+ .points = TRUE, .test = TRUE, .signif.label.size = 3.5,
6
+ .legend = NA, .plot.type = "bar", ...) {
7
+ # repDiversity(..., .method = "gini") generates a matrix
8
+ .data = data.frame(Sample = rownames(.data), Value = .data[, 1])
9
+ if (.plot.type == "bar") {
10
+ vis_bar(
11
+ .data = .data, .by = .by, .meta = .meta,
12
+ .errorbars = .errorbars, .errorbars.off = .errorbars.off, .stack = FALSE,
13
+ .points = .points, .test = .test, .signif.label.size = .signif.label.size,
14
+ .defgroupby = "Sample", .grouping.var = "Group",
15
+ .labs = c(NA, "Gini coefficient"),
16
+ .title = "Gini coefficient", .subtitle = "Sample diversity estimation using the Gini coefficient",
17
+ .legend = .legend, .leg.title = NA
18
+ )
19
+ } else {
20
+ vis_box(
21
+ .data = .data, .by = .by, .meta = .meta, .test = .test,
22
+ .points = .points, .signif.label.size = .signif.label.size,
23
+ .defgroupby = "Sample", .grouping.var = "Group",
24
+ .labs = c(NA, "Gini coefficient"),
25
+ .title = "Gini coefficient", .subtitle = "Sample diversity estimation using the Gini coefficient",
26
+ .legend = .legend, .leg.title = NA, .melt = FALSE
27
+ )
28
+ }
29
+ }
30
+
31
+ vis.immunr_div <- function(.data, .by = NA, .meta = NA,
32
+ .errorbars = c(0.025, 0.975), .errorbars.off = FALSE,
33
+ .points = TRUE, .test = TRUE, .signif.label.size = 3.5,
34
+ .legend = NA, .plot.type = "bar", ...) {
35
+ # repDiversity(..., .method = "gini") generates a matrix
36
+ if (.plot.type == "bar") {
37
+ immunarch:::vis.immunr_div(.data = .data,.by = .by, .meta = .meta,
38
+ .errorbars = .errorbars, .errorbars.off = .errorbars.off, .stack = FALSE,
39
+ .points = .points, .test = .test, .signif.label.size = .signif.label.size,
40
+ .legend = .legend)
41
+ } else {
42
+ vis_box(
43
+ .data = .data, .by = .by, .meta = .meta, .test = .test,
44
+ .points = .points, .signif.label.size = .signif.label.size,
45
+ .defgroupby = "Sample", .grouping.var = "Group",
46
+ .labs = c(NA, "Effective number of clonoypes"),
47
+ .title = "True diversity", .subtitle = "Sample diversity estimation using the true diversity index",
48
+ .legend = NA, .leg.title = NA, .melt = FALSE
49
+ )
50
+ }
51
+ }
52
+
53
+ vis.immunr_chao1 <- function(.data, .by = NA, .meta = NA,
54
+ .errorbars = c(0.025, 0.975), .errorbars.off = FALSE,
55
+ .points = TRUE, .test = TRUE, .signif.label.size = 3.5,
56
+ .legend = NA, .plot.type = "bar", ...) {
57
+ # repDiversity(..., .method = "gini") generates a matrix
58
+ if (.plot.type == "bar") {
59
+ immunarch:::vis.immunr_chao1(.data = .data,.by = .by, .meta = .meta,
60
+ .errorbars = .errorbars, .errorbars.off = .errorbars.off, .stack = FALSE,
61
+ .points = .points, .test = .test, .signif.label.size = .signif.label.size,
62
+ .legend = .legend)
63
+ } else {
64
+ .data <- data.frame(Sample = row.names(.data), Value = .data[, 1])
65
+ vis_box(
66
+ .data = .data, .by = .by, .meta = .meta, .test = .test,
67
+ .points = .points, .signif.label.size = .signif.label.size,
68
+ .defgroupby = "Sample", .grouping.var = "Group",
69
+ .labs = c(NA, "Chao1"),
70
+ .title = "Chao1", .subtitle = "Sample diversity estimation using Chao1",
71
+ .legend = NA, .leg.title = NA, .melt = FALSE
72
+ )
73
+ }
74
+ }
75
+
76
+ vis.immunr_ginisimp <- function(.data, .by = NA, .meta = NA,
77
+ .errorbars = c(0.025, 0.975), .errorbars.off = FALSE,
78
+ .points = TRUE, .test = TRUE, .signif.label.size = 3.5,
79
+ .legend = NA, .plot.type = "bar", ...) {
80
+ # repDiversity(..., .method = "gini") generates a matrix
81
+ if (.plot.type == "bar") {
82
+ immunarch:::vis.immunr_ginisimp(.data = .data,.by = .by, .meta = .meta,
83
+ .errorbars = .errorbars, .errorbars.off = .errorbars.off, .stack = FALSE,
84
+ .points = .points, .test = .test, .signif.label.size = .signif.label.size,
85
+ .legend = .legend)
86
+ } else {
87
+ vis_box(
88
+ .data = .data, .by = .by, .meta = .meta, .test = .test,
89
+ .points = .points, .signif.label.size = .signif.label.size,
90
+ .defgroupby = "Sample", .grouping.var = "Group",
91
+ .labs = c(NA, "Gini-Simpson index"),
92
+ .title = "Gini-Simpson index", .subtitle = "Sample diversity estimation using the Gini-Simpson index",
93
+ .legend = .legend, .leg.title = NA, .melt = FALSE
94
+ )
95
+ }
96
+ }
97
+
98
+ vis.immunr_invsimp <- function(.data, .by = NA, .meta = NA,
99
+ .errorbars = c(0.025, 0.975), .errorbars.off = FALSE,
100
+ .points = TRUE, .test = TRUE, .signif.label.size = 3.5,
101
+ .legend = NA, .plot.type = "bar", ...) {
102
+ # repDiversity(..., .method = "gini") generates a matrix
103
+ if (.plot.type == "bar") {
104
+ immunarch:::vis.immunr_invsimp(.data = .data,.by = .by, .meta = .meta,
105
+ .errorbars = .errorbars, .errorbars.off = .errorbars.off, .stack = FALSE,
106
+ .points = .points, .test = .test, .signif.label.size = .signif.label.size,
107
+ .legend = .legend)
108
+ } else {
109
+ vis_box(
110
+ .data = .data, .by = .by, .meta = .meta, .test = .test,
111
+ .points = .points, .signif.label.size = .signif.label.size,
112
+ .defgroupby = "Sample", .grouping.var = "Group",
113
+ .labs = c(NA, "Inverse Simpson index"),
114
+ .title = "Inverse Simpson index", .subtitle = "Sample diversity estimation using the inverse Simpson index",
115
+ .legend = .legend, .leg.title = NA, .melt = FALSE
116
+ )
117
+ }
118
+ }
119
+
120
+ vis.immunr_dxx <- function(.data, .by = NA, .meta = NA,
121
+ .errorbars = c(0.025, 0.975), .errorbars.off = FALSE,
122
+ .points = TRUE, .test = TRUE, .signif.label.size = 3.5,
123
+ .legend = NA, .plot.type = "bar", ...) {
124
+ # repDiversity(..., .method = "gini") generates a matrix
125
+ if (.plot.type == "bar") {
126
+ immunarch:::vis.immunr_dxx(.data = .data,.by = .by, .meta = .meta,
127
+ .errorbars = .errorbars, .errorbars.off = .errorbars.off, .stack = FALSE,
128
+ .points = .points, .test = .test, .signif.label.size = .signif.label.size,
129
+ .legend = .legend)
130
+ } else {
131
+ perc_value <- round(.data[1, 2][1])
132
+ .data <- data.frame(Sample = row.names(.data), Value = .data[, 1])
133
+ vis_box(
134
+ .data = .data, .by = .by, .meta = .meta, .test = .test,
135
+ .points = .points, .signif.label.size = .signif.label.size,
136
+ .defgroupby = "Sample", .grouping.var = "Group",
137
+ .labs = c(NA, paste0("D", perc_value)),
138
+ .title = paste0("D", perc_value, " diversity index"), .subtitle = paste0("Number of clonotypes occupying the ", perc_value, "% of repertoires"),
139
+ .legend = .legend, .leg.title = NA, .melt = FALSE
140
+ )
141
+ }
142
+ }
@@ -0,0 +1,44 @@
1
+ library(digest)
2
+
3
+ #' Get signatures and cached data
4
+ #'
5
+ #' @param x An object to infer signature from
6
+ #' @param kind A string indicating the kind of the object
7
+ #' Used as part of the filename of the cached file
8
+ #' @param cache_dir A string indicating the directory to store cached files
9
+ #'
10
+ #' @return A list containing the signature, digested signature and cached data
11
+ get_cached <- function(x, kind, cache_dir) {
12
+ if (is.null(cache_dir) || isFALSE(cache_dir)) {
13
+ return(list(sig = NULL, dig = NULL, data = NULL))
14
+ }
15
+ # Get signature of an object
16
+ sig <- capture.output(str(x))
17
+ dig <- digest::digest(sig, algo = "md5")
18
+ dig <- substr(dig, 1, 8)
19
+ cached_file <- file.path(cache_dir, paste0(dig, ".", kind, ".RDS"))
20
+ if (!file.exists(cached_file)) {
21
+ return(list(sig = sig, dig = dig, data = NULL))
22
+ }
23
+
24
+ list(sig = sig, dig = dig, data = readRDS(cached_file))
25
+ }
26
+
27
+ #' Save an object to cache
28
+ #'
29
+ #' @param to_cache An list to cache,
30
+ #' including the signature, digested signature and data
31
+ #' @param kind A string indicating the kind of the object
32
+ #' Used as part of the filename of the cached file
33
+ #' @param cache_dir A string indicating the directory to store cached files
34
+ save_to_cache <- function(to_cache, kind, cache_dir) {
35
+ if (is.null(cache_dir) || isFALSE(cache_dir)) { return() }
36
+ dig <- to_cache$dig
37
+ sig <- to_cache$sig
38
+ data <- to_cache$data
39
+ # Save an object to cache
40
+ sig_file <- file.path(cache_dir, paste0(dig, ".", kind , ".signature.txt"))
41
+ writeLines(c(as.character(Sys.time()), "", sig), sig_file)
42
+ cached_file <- file.path(cache_dir, paste0(dig, ".", kind, ".RDS"))
43
+ saveRDS(data, cached_file)
44
+ }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: biopipen
3
- Version: 0.23.7
3
+ Version: 0.24.0
4
4
  Summary: Bioinformatics processes/pipelines that can be run from `pipen run`
5
5
  License: MIT
6
6
  Author: pwwang
@@ -14,9 +14,10 @@ Classifier: Programming Language :: Python :: 3.10
14
14
  Classifier: Programming Language :: Python :: 3.11
15
15
  Classifier: Programming Language :: Python :: 3.12
16
16
  Provides-Extra: runinfo
17
- Requires-Dist: datar[pandas] (>=0.15.2,<0.16.0)
18
- Requires-Dist: pipen-board[report] (>=0.13,<0.14)
19
- Requires-Dist: pipen-cli-run (>=0.11,<0.12)
20
- Requires-Dist: pipen-filters (>=0.10,<0.11)
21
- Requires-Dist: pipen-runinfo (>=0.4,<0.5) ; extra == "runinfo"
22
- Requires-Dist: pipen-verbose (>=0.9,<0.10)
17
+ Requires-Dist: datar[pandas] (>=0.15.3,<0.16.0)
18
+ Requires-Dist: pipen-board[report] (>=0.14,<0.15)
19
+ Requires-Dist: pipen-cli-run (>=0.12,<0.13)
20
+ Requires-Dist: pipen-filters (>=0.11,<0.12)
21
+ Requires-Dist: pipen-poplog (>=0.0.2,<0.0.3)
22
+ Requires-Dist: pipen-runinfo (>=0.5,<0.6) ; extra == "runinfo"
23
+ Requires-Dist: pipen-verbose (>=0.10,<0.11)
@@ -1,16 +1,16 @@
1
- biopipen/__init__.py,sha256=cC_HEsX6d06QmpjNLfRezzJvL501PPwiQYXWDM2_2UI,23
1
+ biopipen/__init__.py,sha256=DxtMZD542lg_xb6icrE2d5JOY8oUi-v34i2Ar63ddvs,23
2
2
  biopipen/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  biopipen/core/config.py,sha256=edK5xnDhM8j27srDzsxubi934NMrglLoKrdcC8qsEPk,1069
4
4
  biopipen/core/config.toml,sha256=Rn7Cta7WsMtmQkKGC4h9d5dU_STaIVBgR8UliiGgL6o,1757
5
5
  biopipen/core/defaults.py,sha256=yPeehPLk_OYCf71IgRVCWuQRxLAMixDF81Ium0HtPKI,344
6
6
  biopipen/core/filters.py,sha256=HLrjXGsvvjRtTWIAmg_f4IMymWaRD769HlDwsCTh170,12424
7
- biopipen/core/proc.py,sha256=7TsjBM7EEtMMB-w4jbxV_CSRY8J970gM8320Ga1YeHU,717
7
+ biopipen/core/proc.py,sha256=60lUP3PcUAaKbDETo9N5PEIoeOYrLgcSmuytmrhcx8g,912
8
8
  biopipen/core/testing.py,sha256=5vR15kkCjfXM7Bx0HBzabNLtDLAEX4uU94TskCkPni8,1447
9
9
  biopipen/ns/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  biopipen/ns/bam.py,sha256=5AsYrB0mtr_mH6mCL6gjJ5rC4NywpjFkpFjUrBGp7Fk,9301
11
11
  biopipen/ns/bcftools.py,sha256=puCDfIL-1z6cz2y1Rlz-ESNIr8xJgeIjEQ440qicCvM,3467
12
12
  biopipen/ns/bed.py,sha256=UN38qUChDeE-ipuSBY8RVLwvJqM2wxSRmlhOiDo4JG0,5395
13
- biopipen/ns/cellranger.py,sha256=0A6pCpBLg1zKm2Ve2cXvGvNNK4lMqdsek2iTer5X_TI,3679
13
+ biopipen/ns/cellranger.py,sha256=vwyPNaiRIFMp1e8kSJ1UNsE9ZcUykNniakKE-BqZR60,3681
14
14
  biopipen/ns/cnv.py,sha256=vq6dZfEOyuVuqg3nP6FQtNmQ-JocpBJMX9IYlZ0OPD0,6803
15
15
  biopipen/ns/cnvkit.py,sha256=5mA2Q8-YDs4g1HoxtpB_NWnyZYwEThNr3s3wlubLQrQ,31130
16
16
  biopipen/ns/cnvkit_pipeline.py,sha256=2fJLn70L2jJ81ZMNdnU84Sf3HoKA2CSnHuDzLGR8jmw,36854
@@ -20,10 +20,10 @@ biopipen/ns/gsea.py,sha256=EsNRAPYsagaV2KYgr4Jv0KCnZGqayM209v4yOGGTIOI,7423
20
20
  biopipen/ns/misc.py,sha256=fzn0pXvdghMkQhu-e3MMapPNMyO6IAJbtTzVU3GbFa0,3246
21
21
  biopipen/ns/plot.py,sha256=yguxmErUOH-hOM10JfuI_sXw2p49XF8yGR_gXfbd5yQ,4066
22
22
  biopipen/ns/rnaseq.py,sha256=l4vFeRasGhkexopGTM_VfSyIFewOxg-9L5niFzhWUNA,565
23
- biopipen/ns/scrna.py,sha256=42cM6n7rNy8sze9Lhl90RNkpxWT5w6LKPDrGsAK_Y7U,95808
23
+ biopipen/ns/scrna.py,sha256=A3OcbCQzbOanPqn7_ZVeGvMpTAPDM24KM8ZFUUsWs6g,95467
24
24
  biopipen/ns/scrna_metabolic_landscape.py,sha256=9s1NvH3aMaNDXyfwy9TdzGcSP_lIW4JqhLgknNZcIKE,28313
25
25
  biopipen/ns/tcgamaf.py,sha256=AFbUJIxiMSvsVY3RcHgjRFuMnNh2DG3Mr5slLNEyz6o,1455
26
- biopipen/ns/tcr.py,sha256=IcP1uD8U9XD6UbOgdjA_Lk5PK6r4R84Gi7511uvXoy8,84411
26
+ biopipen/ns/tcr.py,sha256=Pl6flJsgzcjExc3x9Eg_uiNkQprqmUTqKtmImM66zNY,84411
27
27
  biopipen/ns/vcf.py,sha256=cdkKroii0_nl_bSP2cnO09qESUAhHqu6btOiTSKS79Y,15314
28
28
  biopipen/ns/web.py,sha256=3zucrDo-IVsSnIvlw-deoScuxqWa6OMTm8Vo-R4E44Q,2224
29
29
  biopipen/reports/bam/CNAClinic.svelte,sha256=D4IxQcgDCPQZMbXog-aZP5iJEQTK2N4i0C60e_iXyfs,213
@@ -124,29 +124,29 @@ biopipen/scripts/scrna/MetaMarkers.R,sha256=kgjk65EmewZ1uh8AoiENDLmNFe4lzmYvssJe
124
124
  biopipen/scripts/scrna/ModuleScoreCalculator.R,sha256=JSHd-_-KiFqW8avCGxgU4T-C5BtDr2u0kwIvEu2lFIg,4188
125
125
  biopipen/scripts/scrna/RadarPlots.R,sha256=iR4JKtO2b3hGfqv_KAI7BR9tq02EAYfKeqp7tzAicKs,14808
126
126
  biopipen/scripts/scrna/SCImpute.R,sha256=dSJOHhmJ3x_72LBRXT72dbCti5oiB85CJ-OjWtqONbk,2958
127
- biopipen/scripts/scrna/ScFGSEA.R,sha256=2nJN1AAe55SyR-jwVj5ds2pyt32fTIn548zjvEB4Jt0,7332
127
+ biopipen/scripts/scrna/ScFGSEA.R,sha256=E6Rx-0TjplP_nptDCE-LqMyipsOFaMU3hM7FjjFFFDY,7538
128
128
  biopipen/scripts/scrna/SeuratClusterStats-dimplots.R,sha256=pZKv1SnSNEGXDeE0_2VYp0GAikYitohW2FR5YGKjs8Q,2351
129
129
  biopipen/scripts/scrna/SeuratClusterStats-features.R,sha256=SaKTJloP1fttRXZQeb2ApX0ej7al13wOoEYkthSk13k,15489
130
130
  biopipen/scripts/scrna/SeuratClusterStats-hists.R,sha256=GTZfs1yOkuoMUM1Zb19i_My8B8b1Qtve8je55pU_w-g,5054
131
131
  biopipen/scripts/scrna/SeuratClusterStats-ngenes.R,sha256=GVKIXFNS_syCuSN8oxoBkjxxAeI5LdSxh-qLVkUsbDA,2146
132
132
  biopipen/scripts/scrna/SeuratClusterStats-stats.R,sha256=CE9989SaO75_KYEEVqivEbUoTcUOtiTkRGWLNtWzxI8,6450
133
133
  biopipen/scripts/scrna/SeuratClusterStats.R,sha256=PeXa3r2VTo0Q1rdXpSfAOIbYSJAcA8WUNM-tJkNUcPg,1284
134
- biopipen/scripts/scrna/SeuratClustering.R,sha256=Q3XGg0Rq1xqswyQSsj8AmarmiT9ZFdoolXy2g9ibiTo,5185
134
+ biopipen/scripts/scrna/SeuratClustering.R,sha256=kAvQq3RV86_KSv9NlUtUeQrPKkbhSsnv6Q4DoiTu8M0,6403
135
135
  biopipen/scripts/scrna/SeuratFilter.R,sha256=BrYK0MLdaTtQvInMaQsmOt7oH_hlks0M1zykkJtg2lM,509
136
136
  biopipen/scripts/scrna/SeuratLoading.R,sha256=ekWKnHIqtQb3kHVQiVymAHXXqiUxs6KKefjZKjaykmk,900
137
137
  biopipen/scripts/scrna/SeuratMap2Ref.R,sha256=tisYmoSaCX8Kl8y6euuuUroWdDsJ2NGI27J5AWr9Niw,4392
138
138
  biopipen/scripts/scrna/SeuratMetadataMutater.R,sha256=Pp4GsF3hZ6ZC2vroC3LSBmVa4B1p2L3hbh981yaAIeQ,1093
139
- biopipen/scripts/scrna/SeuratPreparing.R,sha256=3X2-yCjNdYVMFNozRU38RxhNBOL-lPo9Za1qUT7V5wI,12227
139
+ biopipen/scripts/scrna/SeuratPreparing.R,sha256=KNrBPibqANhCsCctOGCOMPLTjDDd-iDRpMSCXkPuUQU,12994
140
140
  biopipen/scripts/scrna/SeuratSplit.R,sha256=vdK11V39_Uo_NaOh76QWCtxObGaEr5Ynxqq0hTiSvsU,754
141
- biopipen/scripts/scrna/SeuratSubClustering.R,sha256=6b1J98YYK2gwJ_qkpuvYIdlj6uWxJA8IpUXvaCjgC_U,6334
141
+ biopipen/scripts/scrna/SeuratSubClustering.R,sha256=L1SwKhNNKvsQGrcj0ZjScW9BLuvdO2pg7U48Ospsot8,6096
142
142
  biopipen/scripts/scrna/SeuratSubset.R,sha256=yVA11NVE2FSSw-DhxQcJRapns0tNNHdyDYi5epO6SKM,1776
143
143
  biopipen/scripts/scrna/SeuratTo10X.R,sha256=T2nJBTwOe12AIKC2FZsMSv6xx3s-67CYZokpz5wshqY,2679
144
144
  biopipen/scripts/scrna/TopExpressingGenes.R,sha256=m1BEpDfrzD9rJ2wEwA355GMqBq8Wfc_PzCjtLavB68Q,7754
145
145
  biopipen/scripts/scrna/Write10X.R,sha256=OMhXvJwvaH-aWsMpijKrvXQVabc1qUu5ZEwiLAhkDeY,285
146
146
  biopipen/scripts/scrna/sctype.R,sha256=NaUJkABwF5G1UVm1CCtcMbwLSj94Mo24mbYCKFqo1Bw,6524
147
147
  biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R,sha256=UbNoyspFB8166VgbkkFyTS6tkA-7ybylfvO50eqNnBU,4841
148
- biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R,sha256=dpyzIZU78zLHPLIEg9mAz8mK4XazxVuUm2CN33HGPpw,5233
149
- biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R,sha256=_iTOOByaaXyolMN8_IMY2qcEcC_EAZGCPoHyrOqiTKI,16245
148
+ biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R,sha256=Kv69CkVm67K3w5EEcPQr7SlaWFpPwqTI0DVSUn62Rj0,5230
149
+ biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R,sha256=95DLX1Rz0tobOuDZ8V9YdGgO0KiNthhccoeeOK21tno,16216
150
150
  biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R,sha256=0MIRrUjCtTDkUiL6GfKbtjC7bLlt50AGWFv4fl4e72k,9856
151
151
  biopipen/scripts/tcgamaf/Maf2Vcf.py,sha256=Cxh7fiSNCxWDTfIJqZDOOnaSrw-85S_fH2U-PWY03hc,704
152
152
  biopipen/scripts/tcgamaf/MafAddChr.py,sha256=V10HMisl12O3ZfXuRmFNdy5p-3mr43WCvy0GHxSpwfA,494
@@ -159,24 +159,24 @@ biopipen/scripts/tcr/GIANA/GIANA.py,sha256=0qLhgCWxT8K-4JvORA03CzBPTT5pd4Di5B_Dg
159
159
  biopipen/scripts/tcr/GIANA/GIANA4.py,sha256=Z7Q3cUr1Pvmy4CFADN0P7i9g1-HbzWROMqk5HvL_F1Q,45762
160
160
  biopipen/scripts/tcr/GIANA/Imgt_Human_TRBV.fasta,sha256=XUwDPXJxVH5O9Q0gCL6EILKXEwVyiAZXm4VS2vkPcnQ,15371
161
161
  biopipen/scripts/tcr/GIANA/query.py,sha256=5NWSEDNrJomMt48tzLGpRwJTZB0zQxvMVTilyG8osX8,7298
162
- biopipen/scripts/tcr/Immunarch-basic.R,sha256=lPmh8Il3bEvOHEpb4FN4BokRsq6cS2h47cT15YBv6fg,3194
163
- biopipen/scripts/tcr/Immunarch-clonality.R,sha256=ZPOSPNAVamHyM6yskx2MVAMNw051yuTaZllj3mUwxEM,3927
164
- biopipen/scripts/tcr/Immunarch-diversity.R,sha256=Wk7b7435r4y4g3ItReTEAleHHfRXZtabRi3nNtqfo4A,27597
165
- biopipen/scripts/tcr/Immunarch-geneusage.R,sha256=30gJdMfe36enjIsn-tJayrU8YAowS_4EtVm5cj6FxUQ,6885
166
- biopipen/scripts/tcr/Immunarch-kmer.R,sha256=VmuXKI9AplyAj2NUnGV7utjgyu-ZuKRnry2ghf-9eQ0,6302
167
- biopipen/scripts/tcr/Immunarch-overlap.R,sha256=6RxXTjGhWzUC_1BxojMFrbrTq2PI_EAo9vpWxxbIs_o,7536
168
- biopipen/scripts/tcr/Immunarch-spectratyping.R,sha256=ICmCbsUDvwYjwL9kTiTEqQ7Fpmy7t7_GAJ5VTU9IeOU,2977
169
- biopipen/scripts/tcr/Immunarch-tracking.R,sha256=j1w36v1YuzohW1Nd14m90wRtjzpJSD6OM5KbF_wVxcY,4443
170
- biopipen/scripts/tcr/Immunarch-vjjunc.R,sha256=EfM6ZlNeIAZKm-6_pqmaosiZ_zCxI-0slRlxI6qz6p4,4514
171
- biopipen/scripts/tcr/Immunarch.R,sha256=L8rGJ4GODQ-anB8aIVmlPqRK01FBLhw6_ANT_4L6jhU,3030
162
+ biopipen/scripts/tcr/Immunarch-basic.R,sha256=g64RXmiPw73vbnwrKoRaNs1d3O6mRV9uhcAFkBV0g3U,3121
163
+ biopipen/scripts/tcr/Immunarch-clonality.R,sha256=48rbPCWka4eNEy-fjM0BlKDkMYdG2zlB8Sly1B4xdUI,3858
164
+ biopipen/scripts/tcr/Immunarch-diversity.R,sha256=BDIhh1lbiaAEm-AQO0nb0mBmtQBA9yG_AP6N6zW8QOc,28330
165
+ biopipen/scripts/tcr/Immunarch-geneusage.R,sha256=c0C8-KtKI2q6O9xZ9f5COefQbPlshT2hz1f36qpnW34,6817
166
+ biopipen/scripts/tcr/Immunarch-kmer.R,sha256=4BUDiclarawetjUdBmrCTfHZOTjRpE5TDxDGI_CtYds,6229
167
+ biopipen/scripts/tcr/Immunarch-overlap.R,sha256=GVt-qJPtd6NEe5njAqNStf2AP6pLkv7Ittw0YT_qdNY,7465
168
+ biopipen/scripts/tcr/Immunarch-spectratyping.R,sha256=6_DOKzEbUJzQix7R4hSc4DxWCHXiBgZwR8yyttS0h7c,2912
169
+ biopipen/scripts/tcr/Immunarch-tracking.R,sha256=0tiywpGhd3H0REp4xrhOlkWzJM4ntrQjrVesHbEWT40,4374
170
+ biopipen/scripts/tcr/Immunarch-vjjunc.R,sha256=gnLYaUS9uhwTcTqqba2ZmsepuBWcAw3pr1q3FUFQJFs,4451
171
+ biopipen/scripts/tcr/Immunarch.R,sha256=DjSLeEkB01inDS6iSCnQqQhRBJ20IbZn55nefL0gmQU,3054
172
172
  biopipen/scripts/tcr/Immunarch2VDJtools.R,sha256=QB9ILGbnsfoWaRANK6ceb14wpSWy8F1V1EdEmfIqiks,706
173
173
  biopipen/scripts/tcr/ImmunarchFilter.R,sha256=o25O36FwH_0w6F8DFQ0SfpcwDzlzaGefXqr9ESrvb4k,3974
174
- biopipen/scripts/tcr/ImmunarchLoading.R,sha256=uYbjINYIrfa4dGw7ByiKUus5SXx06FgKkJjHnWOJvWA,5662
174
+ biopipen/scripts/tcr/ImmunarchLoading.R,sha256=l_l-gojiCKI_MWgIUe2zG5boVtNipBv4rACRJEcrnFE,5734
175
175
  biopipen/scripts/tcr/ImmunarchSplitIdents.R,sha256=FGCeGV0uSmFU91lKkldUAeV4A2m3hHw5X4GNi8ffGzI,1873
176
176
  biopipen/scripts/tcr/SampleDiversity.R,sha256=jQ1OU3b8vswD8tZhLt3fkcqJKrl2bhQX0giHM2rXz3Y,2643
177
177
  biopipen/scripts/tcr/TCRClusterStats.R,sha256=3YxIfsTBbFFI6fBTU3gM60bGuVv52PmL7bs16_WciGw,12089
178
- biopipen/scripts/tcr/TCRClustering.R,sha256=bW9cwVZCRlFIqO03LsUKu6qk6xZ_WxarHDUcnl_diT8,8592
179
- biopipen/scripts/tcr/TESSA.R,sha256=oh2P0RB4WoG-UA1wVafrb5RQDLndKq7I69kBbykHxMw,6784
178
+ biopipen/scripts/tcr/TCRClustering.R,sha256=-BWbDqvDBEpfVaxrVvzVHK5bm6FCOFmGHydg1c3EgAM,8747
179
+ biopipen/scripts/tcr/TESSA.R,sha256=bfOixWLZy8yi0MzXncP67KjtCukwXEzsK5fCdMzB5VM,6822
180
180
  biopipen/scripts/tcr/TESSA_source/Atchley_factors.csv,sha256=SumqDOqP67P54uM7Cuc5_O_rySTWcGo7eX3psMSPX9s,763
181
181
  biopipen/scripts/tcr/TESSA_source/BriseisEncoder.py,sha256=z4_Q_6StymffuUGGjHP1-B3aTsXtamKao5Q1-Kg9has,6831
182
182
  biopipen/scripts/tcr/TESSA_source/MCMC_control.R,sha256=93Nnz0IG8KfFnVscZDvmBp1qccZoSoG_jIVpOWBQLHE,2911
@@ -188,6 +188,7 @@ biopipen/scripts/tcr/TESSA_source/real_data.R,sha256=tg3BbiTpRVQWBRZStnzkC2jI1PC
188
188
  biopipen/scripts/tcr/TESSA_source/update.R,sha256=kVrf6zgIkhhiQ2O55XGmxm_DGBKSpcShFgkyPNQIet0,6661
189
189
  biopipen/scripts/tcr/TESSA_source/utility.R,sha256=6qbkMV7yp4bgQe718QiASQUAgOE2euiLgAXOeSqrvHQ,374
190
190
  biopipen/scripts/tcr/VJUsage.R,sha256=LjHEbAHW3WriCYiM9-T6Esd4jc6pnoiSxBKTN_YA490,437
191
+ biopipen/scripts/tcr/immunarch-patched.R,sha256=6OAaV6arDVSI409VHuh1oMCuxlMQp-EaM-kkF-sTlCI,7007
191
192
  biopipen/scripts/tcr/vdjtools-patch.sh,sha256=rL5qp2S18CrpqduKkeR1HVmmuWhCVJOMKJXvWiKdYIc,566
192
193
  biopipen/scripts/vcf/TruvariBench.sh,sha256=80yLQ73OzSgsJ4ltzgpcWxYvvX1hFnCG8YSBhhhRQ9Y,765
193
194
  biopipen/scripts/vcf/TruvariBenchSummary.R,sha256=YlcD9qLtK3aeW3XeLx8pXTe7yOkbaYJyLHb2TYijm8A,1474
@@ -205,6 +206,7 @@ biopipen/scripts/vcf/VcfSplitSamples.py,sha256=GraKi7WluzDAvVVGljwd3Yif6MriniF8s
205
206
  biopipen/scripts/web/Download.py,sha256=WKC_t5ZEeJoKFyY9XwksHARcMbKmHMcxNEUDLMGJ0Cc,924
206
207
  biopipen/scripts/web/DownloadList.py,sha256=cZvdi3LVzlATiTvAXe0uuDDXGqB5jcR2zHrMLCEb2U8,1130
207
208
  biopipen/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
209
+ biopipen/utils/caching.R,sha256=qANQqH8p-VpvD8V4VSoqSfp0TFr4esujC7x3OFZsJMw,1687
208
210
  biopipen/utils/common_docstrs.py,sha256=ro9dUXeHMXBaqb-hTafwrG6xW5IOBEeiUM2_REjFoCo,5842
209
211
  biopipen/utils/gene.R,sha256=BzAwlLA8hO12vF-3t6IwEuTEeLa_jBll4zm_5qe3qoE,1243
210
212
  biopipen/utils/gene.py,sha256=qE_BqTayrJWxRdniffhcz6OhZcw9GUoOrj2EtFWH9Gw,2246
@@ -218,7 +220,7 @@ biopipen/utils/reference.py,sha256=6bPSwQa-GiDfr7xLR9a5T64Ey40y24yn3QfQ5wDFZkU,4
218
220
  biopipen/utils/rnaseq.R,sha256=Ro2B2dG-Z2oVaT5tkwp9RHBz4dp_RF-JcizlM5GYXFs,1298
219
221
  biopipen/utils/single_cell.R,sha256=bKduqOQjSC8BtZJuwfUShR49omoEMbB57n3Gi6dYlqA,4147
220
222
  biopipen/utils/vcf.py,sha256=ajXs0M_QghEctlvUlSRjWQIABVF02wPdYd-0LP4mIsU,9377
221
- biopipen-0.23.7.dist-info/METADATA,sha256=3y-jNYKvsvX_BQuJEnxQ1nhoCvl0L3KwfLI3ll-fHbI,886
222
- biopipen-0.23.7.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
223
- biopipen-0.23.7.dist-info/entry_points.txt,sha256=16Apdku3RFwghe1nb0JR7eVo4IzLae6hCWjU1VxYUn0,525
224
- biopipen-0.23.7.dist-info/RECORD,,
223
+ biopipen-0.24.0.dist-info/METADATA,sha256=DNnxF-VG418LTtxJbvpZ9ebR8R7fgOaTb2mgFo9IBO8,932
224
+ biopipen-0.24.0.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
225
+ biopipen-0.24.0.dist-info/entry_points.txt,sha256=16Apdku3RFwghe1nb0JR7eVo4IzLae6hCWjU1VxYUn0,525
226
+ biopipen-0.24.0.dist-info/RECORD,,