biopipen 0.23.5__py3-none-any.whl → 0.23.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of biopipen might be problematic. Click here for more details.
- biopipen/__init__.py +1 -1
- biopipen/ns/scrna.py +7 -1
- biopipen/ns/scrna_metabolic_landscape.py +4 -1
- biopipen/scripts/scrna/SeuratClustering.R +1 -0
- biopipen/scripts/scrna/SeuratPreparing.R +13 -3
- biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R +1 -0
- biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R +1 -0
- biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R +1 -0
- biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R +1 -0
- biopipen/scripts/tcr/Immunarch-diversity.R +6 -0
- biopipen/utils/gsea.R +44 -3
- {biopipen-0.23.5.dist-info → biopipen-0.23.6.dist-info}/METADATA +1 -1
- {biopipen-0.23.5.dist-info → biopipen-0.23.6.dist-info}/RECORD +15 -15
- {biopipen-0.23.5.dist-info → biopipen-0.23.6.dist-info}/WHEEL +0 -0
- {biopipen-0.23.5.dist-info → biopipen-0.23.6.dist-info}/entry_points.txt +0 -0
biopipen/__init__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "0.23.
|
|
1
|
+
__version__ = "0.23.6"
|
biopipen/ns/scrna.py
CHANGED
|
@@ -77,6 +77,7 @@ class SeuratPreparing(Proc):
|
|
|
77
77
|
|
|
78
78
|
/// Note
|
|
79
79
|
When using `SCTransform`, the default Assay will be set to `SCT` in output, rather than `RNA`.
|
|
80
|
+
If you are using `cca` or `rpca` interation, the default assay will be `integrated`.
|
|
80
81
|
///
|
|
81
82
|
|
|
82
83
|
/// Note
|
|
@@ -771,6 +772,10 @@ class ModuleScoreCalculator(Proc):
|
|
|
771
772
|
>>> "Proliferation": {"features": "STMN1,TUBB"}
|
|
772
773
|
>>> }
|
|
773
774
|
|
|
775
|
+
For `CellCycle`, the columns `S.Score`, `G2M.Score` and `Phase` will
|
|
776
|
+
be added to the metadata. `S.Score` and `G2M.Score` are the cell cycle
|
|
777
|
+
scores for each cell, and `Phase` is the cell cycle phase for each cell.
|
|
778
|
+
|
|
774
779
|
You can also add Diffusion Components (DC) to the modules
|
|
775
780
|
>>> {"DC": {"features": 2, "kind": "diffmap"}}
|
|
776
781
|
will perform diffusion map as a reduction and add the first 2
|
|
@@ -1460,7 +1465,8 @@ class ScFGSEA(Proc):
|
|
|
1460
1465
|
each: The column name in metadata to separate the cells into different subsets to do the analysis.
|
|
1461
1466
|
section: The section name for the report. Worked only when `each` is not specified. Otherwise, the section name will be constructed from `each` and its value.
|
|
1462
1467
|
This allows different cases to be put into the same section in the report.
|
|
1463
|
-
gmtfile: The pathways in GMT format, with the gene names/ids in the same format as the seurat object
|
|
1468
|
+
gmtfile: The pathways in GMT format, with the gene names/ids in the same format as the seurat object.
|
|
1469
|
+
One could also use a URL to a GMT file. For example, from <https://download.baderlab.org/EM_Genesets/current_release/Human/symbol/Pathways/>.
|
|
1464
1470
|
method (choice): The method to do the preranking.
|
|
1465
1471
|
- signal_to_noise: Signal to noise.
|
|
1466
1472
|
The larger the differences of the means (scaled by the standard deviations);
|
|
@@ -402,7 +402,10 @@ class ScrnaMetabolicLandscape(ProcGroup):
|
|
|
402
402
|
If False, the values will be left as is.
|
|
403
403
|
gmtfile: The GMT file with the metabolic pathways. The gene names should
|
|
404
404
|
match the gene names in the gene list in RNAData or
|
|
405
|
-
the Seurat object
|
|
405
|
+
the Seurat object.
|
|
406
|
+
You can also provide a URL to the GMT file.
|
|
407
|
+
For example, from
|
|
408
|
+
<https://download.baderlab.org/EM_Genesets/current_release/Human/symbol/>.
|
|
406
409
|
grouping: defines the basic groups to investigate the metabolic activity
|
|
407
410
|
Typically the clusters.
|
|
408
411
|
grouping_prefix: Working as a prefix to group names
|
|
@@ -101,7 +101,6 @@ load_sample = function(sample) {
|
|
|
101
101
|
# filter the cells that don't have any gene expressions
|
|
102
102
|
cell_exprs = colSums(obj@assays$RNA)
|
|
103
103
|
obj = subset(obj, cells = names(cell_exprs[cell_exprs > 0]))
|
|
104
|
-
# obj = SCTransform(object=obj, return.only.var.genes=FALSE, verbose=FALSE)
|
|
105
104
|
obj = RenameCells(obj, add.cell.id = sample)
|
|
106
105
|
# Attach meta data
|
|
107
106
|
for (mname in names(mdata)) {
|
|
@@ -110,9 +109,15 @@ load_sample = function(sample) {
|
|
|
110
109
|
if (is.factor(mdt)) { mdt = levels(mdt)[mdt] }
|
|
111
110
|
obj[[mname]] = mdt
|
|
112
111
|
}
|
|
113
|
-
# obj_list[[sample]] = obj
|
|
114
112
|
|
|
115
|
-
|
|
113
|
+
if (isTRUE(envs$use_sct)) {
|
|
114
|
+
# so that we have data and scale.data layers on RNA assay
|
|
115
|
+
# useful for visualization in case some genes are not in
|
|
116
|
+
# the SCT assay
|
|
117
|
+
obj = NormalizeData(obj, verbose = FALSE)
|
|
118
|
+
obj = FindVariableFeatures(obj, verbose = FALSE)
|
|
119
|
+
obj = ScaleData(obj, verbose = FALSE)
|
|
120
|
+
}
|
|
116
121
|
obj
|
|
117
122
|
}
|
|
118
123
|
|
|
@@ -329,6 +334,11 @@ if (!envs$no_integration) {
|
|
|
329
334
|
IntegrateLayersArgs <- envs$IntegrateLayers
|
|
330
335
|
IntegrateLayersArgs$object <- sobj
|
|
331
336
|
method <- IntegrateLayersArgs$method
|
|
337
|
+
if (!is.null(IntegrateLayersArgs$reference) && is.character(IntegrateLayersArgs$reference)) {
|
|
338
|
+
log_info(" Using reference samples: {paste(IntegrateLayersArgs$reference, collapse = ', ')}")
|
|
339
|
+
IntegrateLayersArgs$reference <- match(IntegrateLayersArgs$reference, samples)
|
|
340
|
+
log_info(" Transferred to indices: {paste(IntegrateLayersArgs$reference, collapse = ', ')}")
|
|
341
|
+
}
|
|
332
342
|
if (method %in% c("CCA", "cca")) { method <- "CCAIntegration" } else
|
|
333
343
|
if (method %in% c("RPCA", "rpca")) { method <- "RPCAIntegration" } else
|
|
334
344
|
if (method %in% c("Harmony", "harmony")) { method <- "HarmonyIntegration" } else
|
|
@@ -647,6 +647,12 @@ run_div_case = function(casename) {
|
|
|
647
647
|
# Filter
|
|
648
648
|
if (!is.null(case$subset)) {
|
|
649
649
|
d = immdata_from_expanded(filter_expanded_immdata(exdata, case$subset))
|
|
650
|
+
if (nrow(d$meta) == 0) {
|
|
651
|
+
stop(paste0(
|
|
652
|
+
"No samples/cells left after filtering. ",
|
|
653
|
+
"Do you have the correct `subset` for case: ",
|
|
654
|
+
casename, "?"))
|
|
655
|
+
}
|
|
650
656
|
} else {
|
|
651
657
|
d = immdata
|
|
652
658
|
}
|
biopipen/utils/gsea.R
CHANGED
|
@@ -1,8 +1,48 @@
|
|
|
1
1
|
library(ggplot2)
|
|
2
2
|
library(dplyr)
|
|
3
3
|
library(tibble)
|
|
4
|
+
library(slugify)
|
|
4
5
|
|
|
5
|
-
|
|
6
|
+
|
|
7
|
+
localizeGmtfile <- function(gmturl, cachedir = tempdir()) {
|
|
8
|
+
# Download the GMT file and save it to cachedir
|
|
9
|
+
# Return the path to the GMT file
|
|
10
|
+
if (!startsWith(gmturl, "http") && !startsWith(gmturl, "ftp")) {
|
|
11
|
+
return(gmturl)
|
|
12
|
+
}
|
|
13
|
+
gmtfile = file.path(cachedir, basename(gmturl))
|
|
14
|
+
if (!file.exists(gmtfile)) {
|
|
15
|
+
download.file(gmturl, gmtfile)
|
|
16
|
+
items <- read.delim(gmtfile, header = FALSE, stringsAsFactors = FALSE, sep = "\t")
|
|
17
|
+
if (ncol(items) < 3) {
|
|
18
|
+
stop(paste0("Invalid GMT file: ", gmtfile, ", from ", gmturl))
|
|
19
|
+
}
|
|
20
|
+
if (nrow(items) == 0) {
|
|
21
|
+
stop(paste0("Empty GMT file: ", gmtfile, ", from ", gmturl))
|
|
22
|
+
}
|
|
23
|
+
if (nchar(items$V2[1]) < nchar(items$V1[1]) && nchar(items$V2[1]) > 0) {
|
|
24
|
+
warning(paste0(
|
|
25
|
+
"The second column is shorter, switching the first and second columns in GMT file ",
|
|
26
|
+
gmtfile,
|
|
27
|
+
" from ",
|
|
28
|
+
gmturl
|
|
29
|
+
))
|
|
30
|
+
items <- items[, c(2, 1, 3:ncol(items))]
|
|
31
|
+
write.table(
|
|
32
|
+
items,
|
|
33
|
+
gmtfile,
|
|
34
|
+
row.names = F,
|
|
35
|
+
col.names = F,
|
|
36
|
+
sep = "\t",
|
|
37
|
+
quote = F
|
|
38
|
+
)
|
|
39
|
+
}
|
|
40
|
+
}
|
|
41
|
+
return(gmtfile)
|
|
42
|
+
}
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
prerank <- function(
|
|
6
46
|
exprdata,
|
|
7
47
|
pos,
|
|
8
48
|
neg,
|
|
@@ -100,6 +140,7 @@ runFGSEA = function(
|
|
|
100
140
|
ranks = unlist(ranks)
|
|
101
141
|
}
|
|
102
142
|
|
|
143
|
+
gmtfile = localizeGmtfile(gmtfile)
|
|
103
144
|
envs$pathways = gmtPathways(gmtfile)
|
|
104
145
|
envs$stats = ranks
|
|
105
146
|
gsea_res = do.call(fgsea::fgsea, envs)
|
|
@@ -135,7 +176,7 @@ runFGSEA = function(
|
|
|
135
176
|
dev.off()
|
|
136
177
|
|
|
137
178
|
for (pathway in topPathways) {
|
|
138
|
-
enrfig = file.path(outdir, paste0("fgsea_",
|
|
179
|
+
enrfig = file.path(outdir, paste0("fgsea_", slugify(pathway), ".png"))
|
|
139
180
|
png(enrfig, res=100, width=1000, height=800)
|
|
140
181
|
print(plotEnrichment(
|
|
141
182
|
envs$pathways[[pathway]],
|
|
@@ -191,7 +232,7 @@ runGSEA = function(
|
|
|
191
232
|
|
|
192
233
|
envs$input.ds = gctfile
|
|
193
234
|
envs$input.cls = clsfile
|
|
194
|
-
envs$gs.db = gmtfile
|
|
235
|
+
envs$gs.db = localizeGmtfile(gmtfile)
|
|
195
236
|
envs$output.directory = outdir
|
|
196
237
|
|
|
197
238
|
do.call(GSEA, envs)
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
biopipen/__init__.py,sha256=
|
|
1
|
+
biopipen/__init__.py,sha256=9os9lpDN2FpOV8_or7nYXNev84mb1sZPOVtGXewiSXw,23
|
|
2
2
|
biopipen/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
3
|
biopipen/core/config.py,sha256=edK5xnDhM8j27srDzsxubi934NMrglLoKrdcC8qsEPk,1069
|
|
4
4
|
biopipen/core/config.toml,sha256=Rn7Cta7WsMtmQkKGC4h9d5dU_STaIVBgR8UliiGgL6o,1757
|
|
@@ -20,8 +20,8 @@ biopipen/ns/gsea.py,sha256=EsNRAPYsagaV2KYgr4Jv0KCnZGqayM209v4yOGGTIOI,7423
|
|
|
20
20
|
biopipen/ns/misc.py,sha256=fzn0pXvdghMkQhu-e3MMapPNMyO6IAJbtTzVU3GbFa0,3246
|
|
21
21
|
biopipen/ns/plot.py,sha256=yguxmErUOH-hOM10JfuI_sXw2p49XF8yGR_gXfbd5yQ,4066
|
|
22
22
|
biopipen/ns/rnaseq.py,sha256=l4vFeRasGhkexopGTM_VfSyIFewOxg-9L5niFzhWUNA,565
|
|
23
|
-
biopipen/ns/scrna.py,sha256=
|
|
24
|
-
biopipen/ns/scrna_metabolic_landscape.py,sha256=
|
|
23
|
+
biopipen/ns/scrna.py,sha256=42cM6n7rNy8sze9Lhl90RNkpxWT5w6LKPDrGsAK_Y7U,95808
|
|
24
|
+
biopipen/ns/scrna_metabolic_landscape.py,sha256=9s1NvH3aMaNDXyfwy9TdzGcSP_lIW4JqhLgknNZcIKE,28313
|
|
25
25
|
biopipen/ns/tcgamaf.py,sha256=AFbUJIxiMSvsVY3RcHgjRFuMnNh2DG3Mr5slLNEyz6o,1455
|
|
26
26
|
biopipen/ns/tcr.py,sha256=IcP1uD8U9XD6UbOgdjA_Lk5PK6r4R84Gi7511uvXoy8,84411
|
|
27
27
|
biopipen/ns/vcf.py,sha256=cdkKroii0_nl_bSP2cnO09qESUAhHqu6btOiTSKS79Y,15314
|
|
@@ -131,12 +131,12 @@ biopipen/scripts/scrna/SeuratClusterStats-hists.R,sha256=GTZfs1yOkuoMUM1Zb19i_My
|
|
|
131
131
|
biopipen/scripts/scrna/SeuratClusterStats-ngenes.R,sha256=GVKIXFNS_syCuSN8oxoBkjxxAeI5LdSxh-qLVkUsbDA,2146
|
|
132
132
|
biopipen/scripts/scrna/SeuratClusterStats-stats.R,sha256=CE9989SaO75_KYEEVqivEbUoTcUOtiTkRGWLNtWzxI8,6450
|
|
133
133
|
biopipen/scripts/scrna/SeuratClusterStats.R,sha256=PeXa3r2VTo0Q1rdXpSfAOIbYSJAcA8WUNM-tJkNUcPg,1284
|
|
134
|
-
biopipen/scripts/scrna/SeuratClustering.R,sha256=
|
|
134
|
+
biopipen/scripts/scrna/SeuratClustering.R,sha256=Q3XGg0Rq1xqswyQSsj8AmarmiT9ZFdoolXy2g9ibiTo,5185
|
|
135
135
|
biopipen/scripts/scrna/SeuratFilter.R,sha256=BrYK0MLdaTtQvInMaQsmOt7oH_hlks0M1zykkJtg2lM,509
|
|
136
136
|
biopipen/scripts/scrna/SeuratLoading.R,sha256=ekWKnHIqtQb3kHVQiVymAHXXqiUxs6KKefjZKjaykmk,900
|
|
137
137
|
biopipen/scripts/scrna/SeuratMap2Ref.R,sha256=tisYmoSaCX8Kl8y6euuuUroWdDsJ2NGI27J5AWr9Niw,4392
|
|
138
138
|
biopipen/scripts/scrna/SeuratMetadataMutater.R,sha256=Pp4GsF3hZ6ZC2vroC3LSBmVa4B1p2L3hbh981yaAIeQ,1093
|
|
139
|
-
biopipen/scripts/scrna/SeuratPreparing.R,sha256=
|
|
139
|
+
biopipen/scripts/scrna/SeuratPreparing.R,sha256=wdAjqD4tD0jTiiSlOHFVJHjPzJvNkQq4N2IxdjmDlcM,12213
|
|
140
140
|
biopipen/scripts/scrna/SeuratSplit.R,sha256=vdK11V39_Uo_NaOh76QWCtxObGaEr5Ynxqq0hTiSvsU,754
|
|
141
141
|
biopipen/scripts/scrna/SeuratSubClustering.R,sha256=6b1J98YYK2gwJ_qkpuvYIdlj6uWxJA8IpUXvaCjgC_U,6334
|
|
142
142
|
biopipen/scripts/scrna/SeuratSubset.R,sha256=yVA11NVE2FSSw-DhxQcJRapns0tNNHdyDYi5epO6SKM,1776
|
|
@@ -144,10 +144,10 @@ biopipen/scripts/scrna/SeuratTo10X.R,sha256=T2nJBTwOe12AIKC2FZsMSv6xx3s-67CYZokp
|
|
|
144
144
|
biopipen/scripts/scrna/TopExpressingGenes.R,sha256=m1BEpDfrzD9rJ2wEwA355GMqBq8Wfc_PzCjtLavB68Q,7754
|
|
145
145
|
biopipen/scripts/scrna/Write10X.R,sha256=OMhXvJwvaH-aWsMpijKrvXQVabc1qUu5ZEwiLAhkDeY,285
|
|
146
146
|
biopipen/scripts/scrna/sctype.R,sha256=NaUJkABwF5G1UVm1CCtcMbwLSj94Mo24mbYCKFqo1Bw,6524
|
|
147
|
-
biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R,sha256=
|
|
148
|
-
biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R,sha256=
|
|
149
|
-
biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R,sha256=
|
|
150
|
-
biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R,sha256=
|
|
147
|
+
biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R,sha256=UbNoyspFB8166VgbkkFyTS6tkA-7ybylfvO50eqNnBU,4841
|
|
148
|
+
biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R,sha256=dpyzIZU78zLHPLIEg9mAz8mK4XazxVuUm2CN33HGPpw,5233
|
|
149
|
+
biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R,sha256=hq4UroRpg4p5pvXMXs9uOJTY1r0M5KzNAwhCOTLYFVQ,16205
|
|
150
|
+
biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R,sha256=0MIRrUjCtTDkUiL6GfKbtjC7bLlt50AGWFv4fl4e72k,9856
|
|
151
151
|
biopipen/scripts/tcgamaf/Maf2Vcf.py,sha256=Cxh7fiSNCxWDTfIJqZDOOnaSrw-85S_fH2U-PWY03hc,704
|
|
152
152
|
biopipen/scripts/tcgamaf/MafAddChr.py,sha256=V10HMisl12O3ZfXuRmFNdy5p-3mr43WCvy0GHxSpwfA,494
|
|
153
153
|
biopipen/scripts/tcgamaf/maf2vcf.pl,sha256=hJKcH-NbgWK6fmK7f3qex7ozJJl-PqCNPXqpwfcHwJg,22707
|
|
@@ -161,7 +161,7 @@ biopipen/scripts/tcr/GIANA/Imgt_Human_TRBV.fasta,sha256=XUwDPXJxVH5O9Q0gCL6EILKX
|
|
|
161
161
|
biopipen/scripts/tcr/GIANA/query.py,sha256=5NWSEDNrJomMt48tzLGpRwJTZB0zQxvMVTilyG8osX8,7298
|
|
162
162
|
biopipen/scripts/tcr/Immunarch-basic.R,sha256=lPmh8Il3bEvOHEpb4FN4BokRsq6cS2h47cT15YBv6fg,3194
|
|
163
163
|
biopipen/scripts/tcr/Immunarch-clonality.R,sha256=ZPOSPNAVamHyM6yskx2MVAMNw051yuTaZllj3mUwxEM,3927
|
|
164
|
-
biopipen/scripts/tcr/Immunarch-diversity.R,sha256=
|
|
164
|
+
biopipen/scripts/tcr/Immunarch-diversity.R,sha256=Wk7b7435r4y4g3ItReTEAleHHfRXZtabRi3nNtqfo4A,27597
|
|
165
165
|
biopipen/scripts/tcr/Immunarch-geneusage.R,sha256=30gJdMfe36enjIsn-tJayrU8YAowS_4EtVm5cj6FxUQ,6885
|
|
166
166
|
biopipen/scripts/tcr/Immunarch-kmer.R,sha256=VmuXKI9AplyAj2NUnGV7utjgyu-ZuKRnry2ghf-9eQ0,6302
|
|
167
167
|
biopipen/scripts/tcr/Immunarch-overlap.R,sha256=6RxXTjGhWzUC_1BxojMFrbrTq2PI_EAo9vpWxxbIs_o,7536
|
|
@@ -208,7 +208,7 @@ biopipen/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
|
208
208
|
biopipen/utils/common_docstrs.py,sha256=ro9dUXeHMXBaqb-hTafwrG6xW5IOBEeiUM2_REjFoCo,5842
|
|
209
209
|
biopipen/utils/gene.R,sha256=BzAwlLA8hO12vF-3t6IwEuTEeLa_jBll4zm_5qe3qoE,1243
|
|
210
210
|
biopipen/utils/gene.py,sha256=qE_BqTayrJWxRdniffhcz6OhZcw9GUoOrj2EtFWH9Gw,2246
|
|
211
|
-
biopipen/utils/gsea.R,sha256=
|
|
211
|
+
biopipen/utils/gsea.R,sha256=rB_wHUBrn9SihMy_ICSRSgj-e48SGm_ZYs1oZtFgroA,7284
|
|
212
212
|
biopipen/utils/io.R,sha256=jIYdqdn0iRWfQYAZa5CjXi3fikqmYvPPLIXhobRe8sw,537
|
|
213
213
|
biopipen/utils/misc.R,sha256=nkjiAsEsilq0AeiKRDNqrhTx-1Grqg-rFlkjOEOEDYg,5224
|
|
214
214
|
biopipen/utils/misc.py,sha256=Pmh3CBiKJ3vC_RqorfOfRAvTVKXrGDJT8DMLfYbTivs,3055
|
|
@@ -218,7 +218,7 @@ biopipen/utils/reference.py,sha256=6bPSwQa-GiDfr7xLR9a5T64Ey40y24yn3QfQ5wDFZkU,4
|
|
|
218
218
|
biopipen/utils/rnaseq.R,sha256=Ro2B2dG-Z2oVaT5tkwp9RHBz4dp_RF-JcizlM5GYXFs,1298
|
|
219
219
|
biopipen/utils/single_cell.R,sha256=bKduqOQjSC8BtZJuwfUShR49omoEMbB57n3Gi6dYlqA,4147
|
|
220
220
|
biopipen/utils/vcf.py,sha256=ajXs0M_QghEctlvUlSRjWQIABVF02wPdYd-0LP4mIsU,9377
|
|
221
|
-
biopipen-0.23.
|
|
222
|
-
biopipen-0.23.
|
|
223
|
-
biopipen-0.23.
|
|
224
|
-
biopipen-0.23.
|
|
221
|
+
biopipen-0.23.6.dist-info/METADATA,sha256=TMEpW8CrUWJfOaZufAWkrBwktO2uvWa-nbmAT_5FnOU,886
|
|
222
|
+
biopipen-0.23.6.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
|
|
223
|
+
biopipen-0.23.6.dist-info/entry_points.txt,sha256=16Apdku3RFwghe1nb0JR7eVo4IzLae6hCWjU1VxYUn0,525
|
|
224
|
+
biopipen-0.23.6.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|