biopipen 0.22.7__py3-none-any.whl → 0.22.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of biopipen might be problematic. Click here for more details.

biopipen/__init__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "0.22.7"
1
+ __version__ = "0.22.8"
@@ -159,7 +159,7 @@ do_one_group <- function(group) {
159
159
  }
160
160
  }
161
161
 
162
- groups = as.character(unique(sobj@meta.data[[grouping]]))
162
+ groups = sort(as.character(unique(sobj@meta.data[[grouping]])))
163
163
  if (ncores == 1) {
164
164
  lapply(groups, do_one_group)
165
165
  } else {
@@ -203,7 +203,7 @@ do_one_subset <- function(s, subset_col, subset_prefix) {
203
203
  pvalues_mat[p, c] <- pval
204
204
  }
205
205
  }
206
- all_NA <- rowAlls(is.na(mean_expression_shuffle))
206
+ all_NA <- rowAlls(is.na(mean_expression_shuffle), useNames = F)
207
207
  mean_expression_shuffle <- mean_expression_shuffle[!all_NA, , drop = F]
208
208
  # heatmap
209
209
  dat <- mean_expression_shuffle
@@ -212,7 +212,7 @@ do_one_subset <- function(s, subset_col, subset_prefix) {
212
212
  sort_column <- c()
213
213
 
214
214
  for (i in colnames(dat)) {
215
- select_row <- which(rowMaxs(dat, na.rm = T) == dat[, i])
215
+ select_row <- which(rowMaxs(dat, na.rm = T, useNames = F) == dat[, i])
216
216
  tmp <- rownames(dat)[select_row][order(dat[select_row, i], decreasing = T)]
217
217
  sort_row <- c(sort_row, tmp)
218
218
  }
@@ -282,7 +282,7 @@ do_one_subset <- function(s, subset_col, subset_prefix) {
282
282
  args = list(
283
283
  mapping = aes(x = variable, y = value, fill = variable),
284
284
  trim = F,
285
- size = 0.2,
285
+ linewidth = 0.2,
286
286
  show.legend = F,
287
287
  width = 1.2
288
288
  ),
@@ -357,7 +357,7 @@ do_one_subset_col <- function(subset_col, subset_prefix) {
357
357
  row_names_max_width = max_text_width(pws, gp = gpar(fontsize = 12)),
358
358
  row_dend_reorder = TRUE,
359
359
  row_dend_width = unit(30, "mm"),
360
- column_split = do_call(c, lapply(1:length(subsets), function(i) {rep(subsets[i], ncol(x[[i]]$hmdata))})),
360
+ column_split = unlist(lapply(1:length(subsets), function(i) {rep(subsets[i], ncol(x[[i]]$hmdata))})),
361
361
  cluster_columns = FALSE
362
362
  ),
363
363
  devpars = hm_devpars,
biopipen/utils/gsea.R CHANGED
@@ -14,8 +14,8 @@ prerank = function(
14
14
  # See: https://gseapy.readthedocs.io/en/latest/_modules/gseapy/algorithm.html#ranking_metric
15
15
  expr_pos_mean = rowMeans(exprdata[, classes == pos, drop=F], na.rm=TRUE)
16
16
  expr_neg_mean = rowMeans(exprdata[, classes == neg, drop=F], na.rm=TRUE)
17
- expr_pos_std = rowSds(as.matrix(exprdata[, classes == pos, drop=F]), na.rm=TRUE)
18
- expr_neg_std = rowSds(as.matrix(exprdata[, classes == neg, drop=F]), na.rm=TRUE)
17
+ expr_pos_std = rowSds(as.matrix(exprdata[, classes == pos, drop=F]), na.rm=TRUE, useNames = T)
18
+ expr_neg_std = rowSds(as.matrix(exprdata[, classes == neg, drop=F]), na.rm=TRUE, useNames = T)
19
19
  rands = rnorm(length(expr_neg_std)) * 1e-6
20
20
 
21
21
  if (method %in% c("s2n", "signal_to_noise")) {
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: biopipen
3
- Version: 0.22.7
3
+ Version: 0.22.8
4
4
  Summary: Bioinformatics processes/pipelines that can be run from `pipen run`
5
5
  License: MIT
6
6
  Author: pwwang
@@ -1,4 +1,4 @@
1
- biopipen/__init__.py,sha256=A-PCmnFCMZxIhCv-dXpG9uKeIOhjJzgJKVRpj3pY5Ys,23
1
+ biopipen/__init__.py,sha256=EOysPoftuC2obWtC-OXdrP2U1GFGj8atmVYzLWnwLuI,23
2
2
  biopipen/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  biopipen/core/config.py,sha256=edK5xnDhM8j27srDzsxubi934NMrglLoKrdcC8qsEPk,1069
4
4
  biopipen/core/config.toml,sha256=Rn7Cta7WsMtmQkKGC4h9d5dU_STaIVBgR8UliiGgL6o,1757
@@ -145,8 +145,8 @@ biopipen/scripts/scrna/TopExpressingGenes.R,sha256=ZTmk09LNwrZfVLbjDZ1QJbLAvA4GS
145
145
  biopipen/scripts/scrna/Write10X.R,sha256=EHefujCvOuSTBRtPUVmzJFKo2I7M2zPWDbbmPWmqdxo,284
146
146
  biopipen/scripts/scrna/sctype.R,sha256=NaUJkABwF5G1UVm1CCtcMbwLSj94Mo24mbYCKFqo1Bw,6524
147
147
  biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R,sha256=zB-nOsC8P0cOv1hcqgXOciGSJ5i3QfLTpIds7XkwaLQ,3893
148
- biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R,sha256=SJMLumGOjt8ZotlmHfzzveJEE4hpvUk5kyT892pDxHs,4887
149
- biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R,sha256=8mPntv1WDJuryn3jON72xD6ZWHToa7g6Je4A3cF_sUI,15876
148
+ biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R,sha256=gWAzdtaC_o8P9WHVQ7-5Tg8XNv6D-OiSU7dKcEJMWr8,4893
149
+ biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R,sha256=qEcRuONt4Ijm6ysoPqGgOk46klAQwgVbQhnwHfXRknI,15905
150
150
  biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R,sha256=PcLv40S1lbdaTKzCDis1iVLABCFSRwKyajA_62O87lo,9733
151
151
  biopipen/scripts/tcgamaf/Maf2Vcf.py,sha256=Cxh7fiSNCxWDTfIJqZDOOnaSrw-85S_fH2U-PWY03hc,704
152
152
  biopipen/scripts/tcgamaf/MafAddChr.py,sha256=V10HMisl12O3ZfXuRmFNdy5p-3mr43WCvy0GHxSpwfA,494
@@ -208,7 +208,7 @@ biopipen/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
208
208
  biopipen/utils/common_docstrs.py,sha256=7mAXf7bE2Px4xWifOKGAilkcFdc1C-xKnglQR1oTqw4,3885
209
209
  biopipen/utils/gene.R,sha256=BzAwlLA8hO12vF-3t6IwEuTEeLa_jBll4zm_5qe3qoE,1243
210
210
  biopipen/utils/gene.py,sha256=qE_BqTayrJWxRdniffhcz6OhZcw9GUoOrj2EtFWH9Gw,2246
211
- biopipen/utils/gsea.R,sha256=o3RC-wejsfFXPXzRIpFw22F-aif27qnuKEPavvXIlkc,5794
211
+ biopipen/utils/gsea.R,sha256=KsSWNoRwPsSsWfNS2Iu5qKi9QQYsqn47wARm0QgV68w,5822
212
212
  biopipen/utils/io.R,sha256=jIYdqdn0iRWfQYAZa5CjXi3fikqmYvPPLIXhobRe8sw,537
213
213
  biopipen/utils/misc.R,sha256=nkjiAsEsilq0AeiKRDNqrhTx-1Grqg-rFlkjOEOEDYg,5224
214
214
  biopipen/utils/misc.py,sha256=Pmh3CBiKJ3vC_RqorfOfRAvTVKXrGDJT8DMLfYbTivs,3055
@@ -218,7 +218,7 @@ biopipen/utils/reference.py,sha256=6bPSwQa-GiDfr7xLR9a5T64Ey40y24yn3QfQ5wDFZkU,4
218
218
  biopipen/utils/rnaseq.R,sha256=Ro2B2dG-Z2oVaT5tkwp9RHBz4dp_RF-JcizlM5GYXFs,1298
219
219
  biopipen/utils/single_cell.R,sha256=bKduqOQjSC8BtZJuwfUShR49omoEMbB57n3Gi6dYlqA,4147
220
220
  biopipen/utils/vcf.py,sha256=ajXs0M_QghEctlvUlSRjWQIABVF02wPdYd-0LP4mIsU,9377
221
- biopipen-0.22.7.dist-info/METADATA,sha256=_CWuhaUCCrcSTT1jpHYKLlDqHqYnhFjMgCrSCBjIsUk,886
222
- biopipen-0.22.7.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
223
- biopipen-0.22.7.dist-info/entry_points.txt,sha256=-rKo4gInvzqlh7_2oEVmEo9gKO9y1ba3rHWTWOM5xP4,561
224
- biopipen-0.22.7.dist-info/RECORD,,
221
+ biopipen-0.22.8.dist-info/METADATA,sha256=qmO4X3KbCYvYAf7NHiIyljm3OyA80id21GTjpI_tr28,886
222
+ biopipen-0.22.8.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
223
+ biopipen-0.22.8.dist-info/entry_points.txt,sha256=-rKo4gInvzqlh7_2oEVmEo9gKO9y1ba3rHWTWOM5xP4,561
224
+ biopipen-0.22.8.dist-info/RECORD,,