biopipen 0.22.0__py3-none-any.whl → 0.22.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of biopipen might be problematic. Click here for more details.

@@ -1,6 +1,7 @@
1
1
  suppressPackageStartupMessages(library(rlang))
2
2
  suppressPackageStartupMessages(library(tidyselect))
3
3
  suppressPackageStartupMessages(library(dplyr))
4
+ suppressPackageStartupMessages(library(tidyr))
4
5
 
5
6
  #' Get expanded, collapsed, emerged or vanished clones from a meta data frame
6
7
  #'
@@ -15,6 +16,8 @@ suppressPackageStartupMessages(library(dplyr))
15
16
  #' be used as `ident_2`.
16
17
  #' @param subset An expression to subset the cells, will be passed to
17
18
  #' `dplyr::filter()`. Default is `TRUE` (no filtering).
19
+ #' @param each A column name (without quotes) in metadata to split the cells.
20
+ #' Each comparison will be done for each value in this column.
18
21
  #' @param id The column name (without quotes) in metadata for the
19
22
  #' group ids (i.e. `CDR3.aa`)
20
23
  #' @param compare Either a (numeric) column name (i.e. `Clones`, without quotes)
@@ -25,6 +28,7 @@ suppressPackageStartupMessages(library(dplyr))
25
28
  #' @param uniq Whether to return unique ids or not. Default is `TRUE`.
26
29
  #' If `FALSE`, you can mutate the meta data frame with the returned ids.
27
30
  #' For example, `df %>% mutate(expanded = expanded(...))`.
31
+ #' @param debug Return the transformed data frame with counts, predicates, sum, and diff.
28
32
  #' @param order The order of the returned ids. It could be `sum` or `diff`,
29
33
  #' which is the sum or diff of the `compare` between idents. Two kinds of
30
34
  #' modifiers can be added, including `desc` and `abs`. For example,
@@ -82,8 +86,10 @@ suppressPackageStartupMessages(library(dplyr))
82
86
  id,
83
87
  compare,
84
88
  fun,
89
+ each,
85
90
  uniq,
86
- order
91
+ order,
92
+ debug
87
93
  ) {
88
94
  if (length(idents) == 1) {
89
95
  ident_1 <- idents[1]
@@ -119,100 +125,82 @@ suppressPackageStartupMessages(library(dplyr))
119
125
 
120
126
  if (!compare_is_count && !compare_label %in% colnames(df)) {
121
127
  stop(paste0(
122
- "`compare` must be either a column name in df, or 'count'/'n'. ",
128
+ "`compare` must be either a column name in df, or 'count'/'.n'. ",
123
129
  'Got "',
124
130
  compare_label,
125
131
  '"'
126
132
  ))
127
133
  }
128
134
 
129
- predicate <- function(comp) {
135
+ predicate <- function(ident_1, ident_2) {
130
136
  if (fun == "expanded") {
131
- comp[1] > comp[2] && comp[2] > 0
137
+ ident_1 > ident_2 && ident_2 > 0
132
138
  } else if (fun == "expanded+") {
133
- comp[1] > comp[2]
139
+ ident_1 > ident_2
134
140
  } else if (fun == "collapsed") {
135
- comp[1] < comp[2] && comp[1] > 0
141
+ ident_1 < ident_2 && ident_1 > 0
136
142
  } else if (fun == "collapsed+") {
137
- comp[1] < comp[2]
143
+ ident_1 < ident_2
138
144
  } else if (fun == "emerged") {
139
- comp[1] > 0 && comp[2] == 0
145
+ ident_1 > 0 && ident_2 == 0
140
146
  } else if (fun == "vanished") {
141
- comp[1] == 0 && comp[2] > 0
147
+ ident_1 == 0 && ident_2 > 0
142
148
  }
143
149
  }
144
150
 
145
151
  # subset the data frame
146
- trans <- df %>% dplyr::filter(!!subset) %>%
147
- # remove NA values in group.by column
148
- dplyr::filter(!is.na(!!group.by)) %>%
149
- # mark the group.by column (as ..group) as ident_1 or ident_2 or NA
152
+ trans <- df %>%
153
+ dplyr::filter(!!subset) %>%
154
+ drop_na(!!id) %>%
155
+ # # remove NA values in group.by column
156
+ # dplyr::filter(!is.na(!!group.by)) %>%
157
+ # mark the group.by column (as .group) as ident_1 or ident_2 or NA
150
158
  mutate(
151
- ..group = if_else(
159
+ .group = if_else(
152
160
  !!group.by == ident_1,
153
161
  "ident_1",
154
162
  if_else(ident_2 != "<NULL>" & !!group.by != ident_2, NA, "ident_2")
155
163
  )
156
164
  ) %>%
157
165
  # remove NA values in ..group column
158
- dplyr::filter(!is.na(..group)) %>%
159
- # for each clone and group (ident_1 and ident_2)
160
- group_by(!!id, ..group) %>%
161
- # summarise the number of cells in each clone and group
162
- # so that we can compare between groups later
163
- summarise(
164
- ..compare = ifelse(compare_is_count, n(), first(!!compare)),
165
- .groups = "drop"
166
- ) %>%
167
- # for each clone, either compare Clones or ..count between groups
168
- # (ident_1 and ident_2)
169
- group_by(!!id) %>%
170
- # add missing group (either ident_1 or ident_2)
171
- group_modify(function(d, ...) {
172
- if (nrow(d) == 1) {
173
- d <- d %>% add_row(
174
- ..group = ifelse(
175
- d$..group == "ident_1", "ident_2", "ident_1"
176
- ),
177
- ..compare = 0
178
- )
179
- }
180
- d
181
- }) %>%
182
- # make sure ident_1 and ident_2 are in order
183
- arrange(..group, .by_group = TRUE) %>%
166
+ drop_na(.group)
167
+
168
+ if (is.null(each)) {
169
+ trans <- trans %>% group_by(!!id, .group)
170
+ } else {
171
+ trans <- trans %>% group_by(!!each, !!id, .group)
172
+ }
173
+
174
+ if (compare_is_count) {
175
+ trans <- trans %>% summarise(.n = n(), .groups = "drop")
176
+ } else {
177
+ trans <- trans %>% summarise(.n = first(!!compare), .groups = "drop")
178
+ }
179
+
180
+ trans <- trans %>% pivot_wider(names_from = .group, values_from = .n) %>%
181
+ replace_na(list(ident_1 = 0, ident_2 = 0)) %>%
182
+ rowwise() %>%
184
183
  # add the predicates, sums and diffs
185
- summarise(
186
- ..predicate = predicate(..compare),
187
- ..sum = sum(..compare),
188
- ..diff = ..compare[1] - ..compare[2]
184
+ mutate(
185
+ .predicate = predicate(ident_1, ident_2),
186
+ .sum = ident_1 + ident_2,
187
+ .diff = ident_1 - ident_2
189
188
  ) %>%
190
- # filter the clones
191
- dplyr::filter(..predicate)
189
+ ungroup() %>%
190
+ arrange(!!order)
192
191
 
193
- order_sum <- grepl("sum", order)
194
- order_diff <- grepl("diff", order)
195
- order_desc <- grepl("desc", order)
196
- order_abs <- grepl("abs", order)
197
- if (order_sum && !order_desc) {
198
- out <- trans %>% arrange(..sum) %>% pull(!!id)
199
- } else if (order_sum) {
200
- out <- trans %>% arrange(desc(..sum)) %>% pull(!!id)
201
- } else if (order_diff && !order_desc && !order_abs) {
202
- out <- trans %>% arrange(..diff) %>% pull(!!id)
203
- } else if (order_diff && !order_desc && order_abs) {
204
- out <- trans %>% arrange(abs(..diff)) %>% pull(!!id)
205
- } else if (order_diff && order_desc && !order_abs) {
206
- out <- trans %>% arrange(desc(..diff)) %>% pull(!!id)
207
- } else if (order_diff && order_desc && order_abs) {
208
- out <- trans %>% arrange(desc(abs(..diff))) %>% pull(!!id)
209
- } else {
210
- out <- trans %>% pull(!!id)
192
+ if (debug) {
193
+ return(trans)
211
194
  }
212
195
 
213
- if (uniq) { return(out) }
196
+ uniq_ids <- trans %>% filter(.predicate) %>% pull(!!id) %>% as.vector() %>% unique()
197
+ if (uniq) {
198
+ return(uniq_ids)
199
+ }
214
200
 
215
- df %>% mutate(..out = if_else(!!id %in% out, !!id, NA)) %>% pull(..out)
201
+ out <- df %>% pull(!!id)
202
+ out[!out %in% uniq_ids] <- NA
203
+ out
216
204
  }
217
205
 
218
206
  #' @export
@@ -221,10 +209,12 @@ expanded <- function(
221
209
  group.by, # nolint
222
210
  idents,
223
211
  subset = TRUE,
212
+ each = NULL,
224
213
  id = CDR3.aa,
225
- compare = Clones,
214
+ compare = .n,
226
215
  uniq = TRUE,
227
- order = "diff+desc",
216
+ debug = FALSE,
217
+ order = desc(.sum),
228
218
  include_emerged = FALSE
229
219
  ) {
230
220
  lbl <- as_label(enquo(df))
@@ -233,15 +223,17 @@ expanded <- function(
233
223
  }
234
224
  fun = if (include_emerged) "expanded+" else "expanded"
235
225
  .size_compare(
236
- df,
237
- enquo(group.by),
238
- idents,
239
- enquo(subset),
240
- enquo(id),
241
- enquo(compare),
242
- fun,
226
+ df = df,
227
+ group.by = enquo(group.by),
228
+ idents = idents,
229
+ subset = enquo(subset),
230
+ id = enquo(id),
231
+ compare = enquo(compare),
232
+ fun = fun,
233
+ each = tryCatch(enquo(each), error = function(e) NULL),
243
234
  uniq = uniq,
244
- order = order
235
+ order = enexpr(order),
236
+ debug = debug
245
237
  )
246
238
  }
247
239
 
@@ -251,10 +243,12 @@ collapsed <- function(
251
243
  group.by, # nolint
252
244
  idents,
253
245
  subset = TRUE,
246
+ each = NULL,
254
247
  id = CDR3.aa,
255
- compare = Clones,
248
+ compare = .n,
256
249
  uniq = TRUE,
257
- order = "diff+desc",
250
+ debug = FALSE,
251
+ order = desc(.sum),
258
252
  include_vanished = FALSE
259
253
  ) {
260
254
  lbl <- as_label(enquo(df))
@@ -263,15 +257,17 @@ collapsed <- function(
263
257
  }
264
258
  fun = if (include_vanished) "collapsed+" else "collapsed"
265
259
  .size_compare(
266
- df,
267
- enquo(group.by),
268
- idents,
269
- enquo(subset),
270
- enquo(id),
271
- enquo(compare),
272
- fun,
260
+ df = df,
261
+ group.by = enquo(group.by),
262
+ idents = idents,
263
+ subset = enquo(subset),
264
+ id = enquo(id),
265
+ compare = enquo(compare),
266
+ fun = fun,
267
+ each = tryCatch(enquo(each), error = function(e) NULL),
273
268
  uniq = uniq,
274
- order = order
269
+ order = enexpr(order),
270
+ debug = debug
275
271
  )
276
272
  }
277
273
 
@@ -281,25 +277,29 @@ emerged <- function(
281
277
  group.by, # nolint
282
278
  idents,
283
279
  subset = TRUE,
280
+ each = NULL,
284
281
  id = CDR3.aa,
285
- compare = Clones,
282
+ compare = .n,
286
283
  uniq = TRUE,
287
- order = "diff+desc"
284
+ debug = FALSE,
285
+ order = desc(.sum)
288
286
  ) {
289
287
  lbl <- as_label(enquo(df))
290
288
  if (length(lbl) == 1 && lbl == ".") {
291
289
  df <- across(everything())
292
290
  }
293
291
  .size_compare(
294
- df,
295
- enquo(group.by),
296
- idents,
297
- enquo(subset),
298
- enquo(id),
299
- enquo(compare),
300
- "emerged",
292
+ df = df,
293
+ group.by = enquo(group.by),
294
+ idents = idents,
295
+ subset = enquo(subset),
296
+ id = enquo(id),
297
+ compare = enquo(compare),
298
+ fun = "emerged",
299
+ each = tryCatch(enquo(each), error = function(e) NULL),
301
300
  uniq = uniq,
302
- order = order
301
+ order = enexpr(order),
302
+ debug = debug
303
303
  )
304
304
  }
305
305
 
@@ -309,25 +309,29 @@ vanished <- function(
309
309
  group.by, # nolint
310
310
  idents,
311
311
  subset = TRUE,
312
+ each = NULL,
312
313
  id = CDR3.aa,
313
- compare = Clones,
314
+ compare = .n,
314
315
  uniq = TRUE,
315
- order = "diff+desc"
316
+ debug = FALSE,
317
+ order = desc(.sum)
316
318
  ) {
317
319
  lbl <- as_label(enquo(df))
318
320
  if (length(lbl) == 1 && lbl == ".") {
319
321
  df <- across(everything())
320
322
  }
321
323
  .size_compare(
322
- df,
323
- enquo(group.by),
324
- idents,
325
- enquo(subset),
326
- enquo(id),
327
- enquo(compare),
328
- "vanished",
324
+ df = df,
325
+ group.by = enquo(group.by),
326
+ idents = idents,
327
+ subset = enquo(subset),
328
+ id = enquo(id),
329
+ compare = enquo(compare),
330
+ fun = "vanished",
331
+ each = tryCatch(enquo(each), error = function(e) NULL),
329
332
  uniq = uniq,
330
- order = order
333
+ order = enexpr(order),
334
+ debug = debug
331
335
  )
332
336
  }
333
337
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: biopipen
3
- Version: 0.22.0
3
+ Version: 0.22.2
4
4
  Summary: Bioinformatics processes/pipelines that can be run from `pipen run`
5
5
  License: MIT
6
6
  Author: pwwang
@@ -1,15 +1,16 @@
1
- biopipen/__init__.py,sha256=0kk8efeJF41FZIYweGTJylbizaWrp9W3qN78RClCWIU,23
1
+ biopipen/__init__.py,sha256=Bh5Z0gPzleot68P4r2qTs7W0HNi5DFO8t_uKNyCoA94,23
2
2
  biopipen/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  biopipen/core/config.py,sha256=edK5xnDhM8j27srDzsxubi934NMrglLoKrdcC8qsEPk,1069
4
- biopipen/core/config.toml,sha256=JALO2S7TfmV3gIRPJ0cLTFWncPXXheQJS3vYQlyX6wQ,1600
4
+ biopipen/core/config.toml,sha256=Rn7Cta7WsMtmQkKGC4h9d5dU_STaIVBgR8UliiGgL6o,1757
5
5
  biopipen/core/defaults.py,sha256=yPeehPLk_OYCf71IgRVCWuQRxLAMixDF81Ium0HtPKI,344
6
- biopipen/core/filters.py,sha256=5Qi7do0JT8_mwd80ddf4TgsX7yZh__ZpOex270Jjrbc,11037
6
+ biopipen/core/filters.py,sha256=bsH5an2Wfk4JaEEYpa5xFLy9-QVN3fdA_nl7_ceSM68,11562
7
7
  biopipen/core/proc.py,sha256=7TsjBM7EEtMMB-w4jbxV_CSRY8J970gM8320Ga1YeHU,717
8
8
  biopipen/core/testing.py,sha256=5vR15kkCjfXM7Bx0HBzabNLtDLAEX4uU94TskCkPni8,1447
9
9
  biopipen/ns/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  biopipen/ns/bam.py,sha256=5AsYrB0mtr_mH6mCL6gjJ5rC4NywpjFkpFjUrBGp7Fk,9301
11
11
  biopipen/ns/bcftools.py,sha256=puCDfIL-1z6cz2y1Rlz-ESNIr8xJgeIjEQ440qicCvM,3467
12
12
  biopipen/ns/bed.py,sha256=UN38qUChDeE-ipuSBY8RVLwvJqM2wxSRmlhOiDo4JG0,5395
13
+ biopipen/ns/cellranger.py,sha256=0A6pCpBLg1zKm2Ve2cXvGvNNK4lMqdsek2iTer5X_TI,3679
13
14
  biopipen/ns/cnv.py,sha256=vq6dZfEOyuVuqg3nP6FQtNmQ-JocpBJMX9IYlZ0OPD0,6803
14
15
  biopipen/ns/cnvkit.py,sha256=5mA2Q8-YDs4g1HoxtpB_NWnyZYwEThNr3s3wlubLQrQ,31130
15
16
  biopipen/ns/cnvkit_pipeline.py,sha256=2fJLn70L2jJ81ZMNdnU84Sf3HoKA2CSnHuDzLGR8jmw,36854
@@ -19,16 +20,18 @@ biopipen/ns/gsea.py,sha256=EsNRAPYsagaV2KYgr4Jv0KCnZGqayM209v4yOGGTIOI,7423
19
20
  biopipen/ns/misc.py,sha256=fzn0pXvdghMkQhu-e3MMapPNMyO6IAJbtTzVU3GbFa0,3246
20
21
  biopipen/ns/plot.py,sha256=yguxmErUOH-hOM10JfuI_sXw2p49XF8yGR_gXfbd5yQ,4066
21
22
  biopipen/ns/rnaseq.py,sha256=l4vFeRasGhkexopGTM_VfSyIFewOxg-9L5niFzhWUNA,565
22
- biopipen/ns/scrna.py,sha256=F5j1TmjsS2swwm-uDyT6sTys5pldIJ_M2hNITAQdflc,82728
23
+ biopipen/ns/scrna.py,sha256=jLK_K90B36ZbmDZcR8PT2x1ntBpvxKHzeNhWYkrexhM,82876
23
24
  biopipen/ns/scrna_basic.py,sha256=Py90IveDI5Alm6FUeC89xp3W79VPRvAQctQpc5JtO2M,8639
24
25
  biopipen/ns/scrna_metabolic_landscape.py,sha256=dSL-y1Gx1fcgebX7vk3wcSbm9aBALfCZKz0vjcDxQ_8,28139
25
26
  biopipen/ns/tcgamaf.py,sha256=AFbUJIxiMSvsVY3RcHgjRFuMnNh2DG3Mr5slLNEyz6o,1455
26
- biopipen/ns/tcr.py,sha256=-cHx2VjfcYUIwWh1OpEfjHDe3RPH-GDlLnpS4pljUs8,82417
27
+ biopipen/ns/tcr.py,sha256=ZCwL_1Of-F5xVJ0hgdVLAjHwwwfegqkW_SO66oYULqM,83738
27
28
  biopipen/ns/vcf.py,sha256=cdkKroii0_nl_bSP2cnO09qESUAhHqu6btOiTSKS79Y,15314
28
29
  biopipen/ns/web.py,sha256=3zucrDo-IVsSnIvlw-deoScuxqWa6OMTm8Vo-R4E44Q,2224
29
30
  biopipen/reports/bam/CNAClinic.svelte,sha256=D4IxQcgDCPQZMbXog-aZP5iJEQTK2N4i0C60e_iXyfs,213
30
31
  biopipen/reports/bam/CNVpytor.svelte,sha256=s03SlhbEPd8-_44Dy_cqE8FSErhUdqStLK39te5o7ZE,1364
31
32
  biopipen/reports/bam/ControlFREEC.svelte,sha256=OwN96RW0dN-gtQ1zWKbXYZCYkkrOC0RQmP3UG4x7zqU,837
33
+ biopipen/reports/cellranger/CellRangerCount.svelte,sha256=oR7WzqY_FcjeCi5rir0qyUdUe09mkYBgg4-V1dB9ph4,478
34
+ biopipen/reports/cellranger/CellRangerVdj.svelte,sha256=oR7WzqY_FcjeCi5rir0qyUdUe09mkYBgg4-V1dB9ph4,478
32
35
  biopipen/reports/cnv/AneuploidyScore.svelte,sha256=x0LbhqjauZpqMzmzDWmYgx-rEh5Tzo8qBrXcLcM0h78,1020
33
36
  biopipen/reports/cnv/AneuploidyScoreSummary.svelte,sha256=AWlns70mChJGhH3z8r5uXuI4tc7VbVN_cOUdqBr3ZKg,4414
34
37
  biopipen/reports/cnv/TMADScoreSummary.svelte,sha256=tJutaMOqeXxKroAosOIqOJVyhTTFet-soMwuOYVHTYU,2060
@@ -76,6 +79,8 @@ biopipen/scripts/bed/Bed2Vcf.py,sha256=u0mp_2Y4UtEA839zq9UENesH6Gyiwd4sZQW9wFnBV
76
79
  biopipen/scripts/bed/BedConsensus.py,sha256=gfAxuIalvCEpS0tiOyAJGPYGgHN0L-hm0K37Iteh5yw,2386
77
80
  biopipen/scripts/bed/BedLiftOver.sh,sha256=Y4gBsz9w4zhE29UmWojO6F4PXMMMWC1uCzjrxa19eOs,256
78
81
  biopipen/scripts/bed/BedtoolsMerge.py,sha256=TjKO5MpUzDj931bQAWku2660MVSiZzdMHt_v2Xbt0IE,355
82
+ biopipen/scripts/cellranger/CellRangerCount.py,sha256=ZDcry8suLhulXiTsl01LGKmSJkewJ-TgHazLtfsBr6U,2516
83
+ biopipen/scripts/cellranger/CellRangerVdj.py,sha256=-QbhPKqFBZ15Es6NJaU7Lwf1KQW_3Lyv0aISh-Urk2M,2504
79
84
  biopipen/scripts/cnv/AneuploidyScore.R,sha256=liAN8u8_lj8voJ01oBW9Dw09yi388KF5f_gwPOv0wdE,8437
80
85
  biopipen/scripts/cnv/AneuploidyScoreSummary.R,sha256=9Zni5zqYfzevs5XSAt3fqD9WZ_RWr_ByUnXReKLLWoY,12337
81
86
  biopipen/scripts/cnv/TMADScore.R,sha256=uCLHQR6sMt-4uVUAEJlJxYXlai9ZE5J7xBl0sl-EkjU,1065
@@ -105,33 +110,33 @@ biopipen/scripts/misc/Str2File.py,sha256=99oQNxChxChNJ9vmD77b48cu-r_P_heSpx7A5wi
105
110
  biopipen/scripts/plot/Heatmap.R,sha256=4v_oRME8ZiwczIlBIp-OP_YPWLAvBKzbHiwNBCZ0Xog,1982
106
111
  biopipen/scripts/plot/VennDiagram.R,sha256=GVc-kyHqnXrbXZvy-evcxI1XGtlLSChBiVnMjPywNMA,731
107
112
  biopipen/scripts/rnaseq/UnitConversion.R,sha256=9etSQ6ivtlrgSg4mLjViZAl8nUtCxfEROxXvFCpN9sg,1928
108
- biopipen/scripts/scrna/CellTypeAnnotation-direct.R,sha256=jBEc2OTjC4hbVCJJXzZ4KC9Db5W-7kfJ3N5U5rE05AQ,1449
113
+ biopipen/scripts/scrna/CellTypeAnnotation-direct.R,sha256=Qp8w3-Xh67F6QHYzpTjWdSDdCVlhcjGjgoAi7PGUbmI,1797
109
114
  biopipen/scripts/scrna/CellTypeAnnotation-hitype.R,sha256=6_DBAlLKcHqaMyWGZWvTd4gFfHymfz9s2XLja8aj1qA,1869
110
115
  biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R,sha256=1ejye0hs-EOwzzdP9gFWSLPcF6dOAA6VmNKXEjmS11E,1654
111
116
  biopipen/scripts/scrna/CellTypeAnnotation-sctype.R,sha256=u1eQsBWv1GKTbkwp6OFyiPuMFFcgwoa4-VI-d4q8nM4,3877
112
117
  biopipen/scripts/scrna/CellTypeAnnotation.R,sha256=6Le1SvZcKI8D0SLkFZ5SibGsW9ZWqirnBl3Q1BNZOuU,513
113
- biopipen/scripts/scrna/CellsDistribution.R,sha256=iuDGlfHNzenACW2y4KGRtwDQAI650XJ4SSMts7UDXS0,12734
118
+ biopipen/scripts/scrna/CellsDistribution.R,sha256=shfgljiveRMrMM9GAbvemn9vSUCL9vNwTxH2Hiq9Yyk,12669
114
119
  biopipen/scripts/scrna/DimPlots.R,sha256=-mXOTMnpPxvR30XLjwcohFfFx7xTqWKKiICwJiD6yEo,1554
115
120
  biopipen/scripts/scrna/ExprImpution-alra.R,sha256=8wcyZk1Whf45SXsYOM_ykl8m-iBxr27KEjtslbl2JQQ,782
116
121
  biopipen/scripts/scrna/ExprImpution-rmagic.R,sha256=yYnkyVfqIaNynsbaZZLGS6DrAJ_XhVQj1Ox598w8yOY,651
117
122
  biopipen/scripts/scrna/ExprImpution-scimpute.R,sha256=mg40qCUW7-nP5oHPvARq7dmtoahM0GRFWXQpum0BXVk,1082
118
123
  biopipen/scripts/scrna/ExprImpution.R,sha256=7768ezrr59xUZDXq8lO9jj2XhnkSsx-xxBmOD9_DO7c,313
119
124
  biopipen/scripts/scrna/GeneExpressionInvistigation.R,sha256=FI5MWic3xRml2DN7ONcyT7pbceOnL30Zd4nBHRZRFNQ,3800
120
- biopipen/scripts/scrna/MarkersFinder.R,sha256=mPyKZcYcrhTjLqqp406-wkGZzpTUSBUQnDSsGJe-SL4,18669
125
+ biopipen/scripts/scrna/MarkersFinder.R,sha256=v_PIhg-QcuaY_6F_sNGMkNohLmlZL_BkGNiXNPxRn6I,21137
121
126
  biopipen/scripts/scrna/MetaMarkers.R,sha256=3gZdMjO4sGQLq0XvlLooMrQUKEAIYUCTsxVHrkYe7HM,11119
122
127
  biopipen/scripts/scrna/ModuleScoreCalculator.R,sha256=0mLGoTvJRpTbCnmuYbYKqZnP3ZdJQkTn6getJddBKRs,2495
123
128
  biopipen/scripts/scrna/RadarPlots.R,sha256=1oicly0wxLaQDrDUojKtyCD052cYnMrBcW8TpbFY7wE,8535
124
129
  biopipen/scripts/scrna/SCImpute.R,sha256=dSJOHhmJ3x_72LBRXT72dbCti5oiB85CJ-OjWtqONbk,2958
125
130
  biopipen/scripts/scrna/ScFGSEA.R,sha256=wePSQYGjGv_InJEmi0Hf0zNt1gmqhkItjFqYE-wiYec,5999
126
131
  biopipen/scripts/scrna/SeuratClusterStats-dimplots.R,sha256=BknWb-5Vc_LHB3hlOgsAEooHObG6xoU1JV2KeNVrEGk,1623
127
- biopipen/scripts/scrna/SeuratClusterStats-features.R,sha256=NLdv5un_mntsNSukChUCXY3u41GARrNMqM4Ko0kN384,7705
132
+ biopipen/scripts/scrna/SeuratClusterStats-features.R,sha256=ft1sSF2pXuDb4H2vSkPYuzcDgOOpXpCZGv9_17DdZN8,7705
128
133
  biopipen/scripts/scrna/SeuratClusterStats-stats.R,sha256=KSD4GSssj-UZeMlWPbHbCLyonACGhSvVwAD4jeoJ_60,4099
129
134
  biopipen/scripts/scrna/SeuratClusterStats.R,sha256=SO4AGgF95YoLvjGMiC6fb3OIQkXne2Lqt5G7n50JYJo,616
130
135
  biopipen/scripts/scrna/SeuratClustering.R,sha256=JBJkwZmdjMsWzHaa_WvYCN1tXQimgclmgAOj3VJ1b3A,9114
131
136
  biopipen/scripts/scrna/SeuratFilter.R,sha256=BrYK0MLdaTtQvInMaQsmOt7oH_hlks0M1zykkJtg2lM,509
132
137
  biopipen/scripts/scrna/SeuratLoading.R,sha256=ekWKnHIqtQb3kHVQiVymAHXXqiUxs6KKefjZKjaykmk,900
133
138
  biopipen/scripts/scrna/SeuratMap2Ref.R,sha256=TkDSDc5do6BOtkAq3fS5HpjyqWUwsu8YqRC5in62oz8,3750
134
- biopipen/scripts/scrna/SeuratMetadataMutater.R,sha256=YvuhTKTWT7Se3hTqkgD3Ag_PKqKXiyDi6HcGCNIIKiM,723
139
+ biopipen/scripts/scrna/SeuratMetadataMutater.R,sha256=Pp4GsF3hZ6ZC2vroC3LSBmVa4B1p2L3hbh981yaAIeQ,1093
135
140
  biopipen/scripts/scrna/SeuratPreparing.R,sha256=j_t8EbPoNNRFPquerYd6BjtbIgdHCt8h2XXZax8_tXM,8453
136
141
  biopipen/scripts/scrna/SeuratSplit.R,sha256=vdK11V39_Uo_NaOh76QWCtxObGaEr5Ynxqq0hTiSvsU,754
137
142
  biopipen/scripts/scrna/SeuratSubset.R,sha256=yVA11NVE2FSSw-DhxQcJRapns0tNNHdyDYi5epO6SKM,1776
@@ -146,8 +151,8 @@ biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R,sha25
146
151
  biopipen/scripts/tcgamaf/Maf2Vcf.py,sha256=Cxh7fiSNCxWDTfIJqZDOOnaSrw-85S_fH2U-PWY03hc,704
147
152
  biopipen/scripts/tcgamaf/MafAddChr.py,sha256=V10HMisl12O3ZfXuRmFNdy5p-3mr43WCvy0GHxSpwfA,494
148
153
  biopipen/scripts/tcgamaf/maf2vcf.pl,sha256=hJKcH-NbgWK6fmK7f3qex7ozJJl-PqCNPXqpwfcHwJg,22707
149
- biopipen/scripts/tcr/Attach2Seurat.R,sha256=kJck_jpjpLhUx1_9vjBeKWCrzI8Gb09nGwUOtp1Ztnk,1315
150
- biopipen/scripts/tcr/CDR3AAPhyschem.R,sha256=p5vBspsd0H3xgk2iptjbGlxfJZlW16BIy3lVcwiMfEI,16656
154
+ biopipen/scripts/tcr/Attach2Seurat.R,sha256=C91TAh1cLSxWkdFPf84pbxlpTYMuWq_rduG4eiIkXZI,1345
155
+ biopipen/scripts/tcr/CDR3AAPhyschem.R,sha256=rvXa9z7EY745Su0bzz0WpBd6QxXMGrzV_Eq7Ur9xb_g,16645
151
156
  biopipen/scripts/tcr/CloneResidency.R,sha256=sH76jRg_5q0THsIlgcHMCucdQyeLsc4jixbF938ennI,21421
152
157
  biopipen/scripts/tcr/CloneSizeQQPlot.R,sha256=5FPfWQjxTsv59KSDQaDWj3C95zPQMngKG7qOf95NEzI,4527
153
158
  biopipen/scripts/tcr/GIANA/GIANA.py,sha256=0qLhgCWxT8K-4JvORA03CzBPTT5pd4Di5B_DgrHXbFA,47198
@@ -163,15 +168,15 @@ biopipen/scripts/tcr/Immunarch-overlap.R,sha256=6RxXTjGhWzUC_1BxojMFrbrTq2PI_EAo
163
168
  biopipen/scripts/tcr/Immunarch-spectratyping.R,sha256=ICmCbsUDvwYjwL9kTiTEqQ7Fpmy7t7_GAJ5VTU9IeOU,2977
164
169
  biopipen/scripts/tcr/Immunarch-tracking.R,sha256=j1w36v1YuzohW1Nd14m90wRtjzpJSD6OM5KbF_wVxcY,4443
165
170
  biopipen/scripts/tcr/Immunarch-vjjunc.R,sha256=nOueF9l4_KVrKSZ1Sl0yObmjbd-5Hms2-RON6K23idg,3736
166
- biopipen/scripts/tcr/Immunarch.R,sha256=wddxHA4mGAdlQ_P7IXEiovVFYDTb9buGyFQ1MwwEHjI,2943
171
+ biopipen/scripts/tcr/Immunarch.R,sha256=L8rGJ4GODQ-anB8aIVmlPqRK01FBLhw6_ANT_4L6jhU,3030
167
172
  biopipen/scripts/tcr/Immunarch2VDJtools.R,sha256=QB9ILGbnsfoWaRANK6ceb14wpSWy8F1V1EdEmfIqiks,706
168
173
  biopipen/scripts/tcr/ImmunarchFilter.R,sha256=o25O36FwH_0w6F8DFQ0SfpcwDzlzaGefXqr9ESrvb4k,3974
169
- biopipen/scripts/tcr/ImmunarchLoading.R,sha256=vg3Pg_5JvcOiT3gOrWn98EpjGi8r7SYh52hhvfSyyzk,5836
174
+ biopipen/scripts/tcr/ImmunarchLoading.R,sha256=BNUJorjfF2R-j2ApUFKrAgqAJxzhzsDN9RUqzpkrfDY,5426
170
175
  biopipen/scripts/tcr/ImmunarchSplitIdents.R,sha256=FGCeGV0uSmFU91lKkldUAeV4A2m3hHw5X4GNi8ffGzI,1873
171
176
  biopipen/scripts/tcr/SampleDiversity.R,sha256=jQ1OU3b8vswD8tZhLt3fkcqJKrl2bhQX0giHM2rXz3Y,2643
172
177
  biopipen/scripts/tcr/TCRClusterStats.R,sha256=3YxIfsTBbFFI6fBTU3gM60bGuVv52PmL7bs16_WciGw,12089
173
- biopipen/scripts/tcr/TCRClustering.R,sha256=yfIiCMQuywjoJnAXwRJjlJsoYIA8swUMKIt_AsGvHQY,8566
174
- biopipen/scripts/tcr/TESSA.R,sha256=math-ZvkxYlZvXuHB0dNz3sv8hkx7p87EFW2PmEvJ60,7294
178
+ biopipen/scripts/tcr/TCRClustering.R,sha256=bW9cwVZCRlFIqO03LsUKu6qk6xZ_WxarHDUcnl_diT8,8592
179
+ biopipen/scripts/tcr/TESSA.R,sha256=nvzkhJHziTOjgZvAuU0L6qqCNgSp9f90P0i4tEMivwA,6798
175
180
  biopipen/scripts/tcr/TESSA_source/Atchley_factors.csv,sha256=SumqDOqP67P54uM7Cuc5_O_rySTWcGo7eX3psMSPX9s,763
176
181
  biopipen/scripts/tcr/TESSA_source/BriseisEncoder.py,sha256=z4_Q_6StymffuUGGjHP1-B3aTsXtamKao5Q1-Kg9has,6831
177
182
  biopipen/scripts/tcr/TESSA_source/MCMC_control.R,sha256=93Nnz0IG8KfFnVscZDvmBp1qccZoSoG_jIVpOWBQLHE,2911
@@ -200,20 +205,20 @@ biopipen/scripts/vcf/VcfSplitSamples.py,sha256=GraKi7WluzDAvVVGljwd3Yif6MriniF8s
200
205
  biopipen/scripts/web/Download.py,sha256=WKC_t5ZEeJoKFyY9XwksHARcMbKmHMcxNEUDLMGJ0Cc,924
201
206
  biopipen/scripts/web/DownloadList.py,sha256=cZvdi3LVzlATiTvAXe0uuDDXGqB5jcR2zHrMLCEb2U8,1130
202
207
  biopipen/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
203
- biopipen/utils/common_docstrs.py,sha256=7jnUhJ0GKV9YR6-wZYqycenGoQIz8Nol5auhKYuIGMM,3060
208
+ biopipen/utils/common_docstrs.py,sha256=77whqrhTg6kA7XHW5s7RJT3tGLo-d0XzgPc3LriBdgI,3296
204
209
  biopipen/utils/gene.R,sha256=BzAwlLA8hO12vF-3t6IwEuTEeLa_jBll4zm_5qe3qoE,1243
205
210
  biopipen/utils/gene.py,sha256=qE_BqTayrJWxRdniffhcz6OhZcw9GUoOrj2EtFWH9Gw,2246
206
211
  biopipen/utils/gsea.R,sha256=o3RC-wejsfFXPXzRIpFw22F-aif27qnuKEPavvXIlkc,5794
207
212
  biopipen/utils/io.R,sha256=jIYdqdn0iRWfQYAZa5CjXi3fikqmYvPPLIXhobRe8sw,537
208
213
  biopipen/utils/misc.R,sha256=nkjiAsEsilq0AeiKRDNqrhTx-1Grqg-rFlkjOEOEDYg,5224
209
214
  biopipen/utils/misc.py,sha256=Pmh3CBiKJ3vC_RqorfOfRAvTVKXrGDJT8DMLfYbTivs,3055
210
- biopipen/utils/mutate_helpers.R,sha256=E4OcaMC7aqb6D6m3dXSDLdHhTZb8RUksjtFwHweMGF8,13219
215
+ biopipen/utils/mutate_helpers.R,sha256=F_DYYjmmlPp2FppNIFUI1cNKsR2vUCwDn7NlvinasBQ,13068
211
216
  biopipen/utils/plot.R,sha256=pzl37PomNeUZPxohHZ2w93j3Fc4T0Qrc62FF-9MTKdw,4417
212
217
  biopipen/utils/reference.py,sha256=6bPSwQa-GiDfr7xLR9a5T64Ey40y24yn3QfQ5wDFZkU,4420
213
218
  biopipen/utils/rnaseq.R,sha256=Ro2B2dG-Z2oVaT5tkwp9RHBz4dp_RF-JcizlM5GYXFs,1298
214
219
  biopipen/utils/single_cell.R,sha256=bKduqOQjSC8BtZJuwfUShR49omoEMbB57n3Gi6dYlqA,4147
215
220
  biopipen/utils/vcf.py,sha256=ajXs0M_QghEctlvUlSRjWQIABVF02wPdYd-0LP4mIsU,9377
216
- biopipen-0.22.0.dist-info/METADATA,sha256=Qc13J8hjCs_d1_nhm5emj93Knx889HqPT7ciqRVlKjQ,886
217
- biopipen-0.22.0.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
218
- biopipen-0.22.0.dist-info/entry_points.txt,sha256=sfI6oDEEuMvAg0KNujE9uu-c29y7IwQQA1_A2sUjPhc,527
219
- biopipen-0.22.0.dist-info/RECORD,,
221
+ biopipen-0.22.2.dist-info/METADATA,sha256=vtGP0R0JZ3mSaEgRjhGbqNuLnbmYp1Rc7XoErM1JCxo,886
222
+ biopipen-0.22.2.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
223
+ biopipen-0.22.2.dist-info/entry_points.txt,sha256=-rKo4gInvzqlh7_2oEVmEo9gKO9y1ba3rHWTWOM5xP4,561
224
+ biopipen-0.22.2.dist-info/RECORD,,
@@ -2,6 +2,7 @@
2
2
  bam=biopipen.ns.bam
3
3
  bcftools=biopipen.ns.bcftools
4
4
  bed=biopipen.ns.bed
5
+ cellranger=biopipen.ns.cellranger
5
6
  cnv=biopipen.ns.cnv
6
7
  cnvkit=biopipen.ns.cnvkit
7
8
  cnvkit_pipeline=biopipen.ns.cnvkit_pipeline