biomedisa 2024.5.21__py3-none-any.whl → 2024.5.22__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
biomedisa/deeplearning.py CHANGED
@@ -42,6 +42,7 @@ import time
42
42
  import subprocess
43
43
  import glob
44
44
  import tempfile
45
+ import tifffile
45
46
 
46
47
  class Biomedisa(object):
47
48
  pass
@@ -55,6 +56,11 @@ def get_gpu_memory():
55
56
  except:
56
57
  return None
57
58
 
59
+ def number_of_slices(file_path):
60
+ with tifffile.TiffFile(file_path) as tiff:
61
+ z_dim = len(tiff.pages)
62
+ return z_dim
63
+
58
64
  def deep_learning(img_data, label_data=None, val_img_data=None, val_label_data=None,
59
65
  path_to_images=None, path_to_labels=None, val_images=None, val_labels=None,
60
66
  path_to_model=None, predict=False, train=False, header_file=None,
@@ -248,8 +254,16 @@ def deep_learning(img_data, label_data=None, val_img_data=None, val_label_data=N
248
254
  # list of images
249
255
  path_to_finals = []
250
256
  if bm.path_to_images is not None and os.path.isdir(bm.path_to_images):
251
- files = glob.glob(bm.path_to_images+'/**/*', recursive=True)
252
- bm.path_to_images = [f for f in files if os.path.isfile(f)]
257
+ # load list of volumetric image files
258
+ files = []
259
+ for data_type in ['.am','.hdr','.mhd','.mha','.nrrd','.nii','.nii.gz','.zip','.mrc']:
260
+ files += [file for file in glob.glob(bm.path_to_images+'/**/*'+data_type, recursive=True) if not os.path.basename(file).startswith('.')]
261
+ for data_type in ['.tif','.tiff']:
262
+ files += [file for file in glob.glob(bm.path_to_images+'/**/*'+data_type, recursive=True) if not os.path.basename(file).startswith('.') and number_of_slices(file)>1]
263
+ if len(files)==0: # assume directory of 2D slices
264
+ bm.path_to_images = [bm.path_to_images]
265
+ else:
266
+ bm.path_to_images = files
253
267
  else:
254
268
  bm.path_to_images = [bm.path_to_images]
255
269
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: biomedisa
3
- Version: 2024.5.21
3
+ Version: 2024.5.22
4
4
  Summary: Segmentation of 3D volumetric image data
5
5
  Author: Philipp Lösel
6
6
  Author-email: philipp.loesel@anu.edu.au
@@ -50,11 +50,18 @@ Biomedisa (https://biomedisa.info) is a free and easy-to-use open-source applica
50
50
  + Download the data from our [gallery](https://biomedisa.info/gallery/)
51
51
 
52
52
  ## Revisions
53
- 2024.05.21
53
+ 2024.05.22
54
54
  + Pip is the preferred installation method
55
55
  + Commands, module names and imports have been changed to conform to the Pip standard
56
56
  + For versions <=2023.09.1 please check [README](https://github.com/biomedisa/biomedisa/blob/master/README/deprecated/README_2023.09.1.md)
57
57
 
58
+ ## Quickstart
59
+ Install the Biomedisa package from the [Python Package Index](https://pypi.org/project/biomedisa/):
60
+ ```
61
+ python -m pip install -U biomedisa
62
+ ```
63
+ For smart interpolation and deep Learning modules, follow the [installation instructions](https://github.com/biomedisa/biomedisa#installation-command-line-based).
64
+
58
65
  ## Smart Interpolation
59
66
  + [Parameters and Examples](https://github.com/biomedisa/biomedisa/blob/master/README/smart_interpolation.md)
60
67
 
@@ -1,6 +1,6 @@
1
1
  biomedisa/__init__.py,sha256=hw4mzEjGFXm-vxus2DBfKFW0nKoG0ibL5SH6ShfchrY,1526
2
2
  biomedisa/__main__.py,sha256=a1--8vhtztWEloHVtbM43FZLCfrFo4BELgdsgtWE8ls,536
3
- biomedisa/deeplearning.py,sha256=dVwLkijm0ibtn6zUUV3t2WK6Fzvks4VlgzKNLqzDpAQ,27064
3
+ biomedisa/deeplearning.py,sha256=UG5baX58CrO8YXe9pU6_Bp2OOvbC74LQw4S33HqM2iA,27828
4
4
  biomedisa/interpolation.py,sha256=R8UbBWt7vOuiQCPSeNIpEY0_yfQUg1oBfhAjXi91Hl4,17253
5
5
  biomedisa/mesh.py,sha256=glvpTN0PPByb5j2IbLCdWQtc5O4VT-Pwu3en8EaYyTo,15819
6
6
  biomedisa/features/DataGenerator.py,sha256=bGys6UZ0bnKb_k1Y3Spo6MNPk_goSAmptdZnI39smaw,12770
@@ -37,8 +37,8 @@ biomedisa/features/random_walk/pyopencl_large.py,sha256=q79AxG3p3qFjxfiAZfUK9I5B
37
37
  biomedisa/features/random_walk/pyopencl_small.py,sha256=opNlS-qzOa9qWafBNJdvf6r1aRAFf7_JXf6ISDnkdXE,17068
38
38
  biomedisa/features/random_walk/rw_large.py,sha256=ZnITvk00Y11ZZlGuBRaJO1EwU0wYBdEwdpj9vvXCqF4,19805
39
39
  biomedisa/features/random_walk/rw_small.py,sha256=RPzZe24YrEwYelJukDjvqaoD_SyhgdriEi7uV3kZGXI,14881
40
- biomedisa-2024.5.21.dist-info/LICENSE,sha256=sehayP6UhydNnmstfL4yFR3genMRdpuUh6uZVWJN1H0,14152
41
- biomedisa-2024.5.21.dist-info/METADATA,sha256=GJ9BXl6MH84zMYZrpShMBkSDZx50dYIKWDE97EWj1-w,10465
42
- biomedisa-2024.5.21.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
43
- biomedisa-2024.5.21.dist-info/top_level.txt,sha256=opsf1Eb4vCguPSxev4HHSeiUKCccT_C_RcUCdAYbHWQ,10
44
- biomedisa-2024.5.21.dist-info/RECORD,,
40
+ biomedisa-2024.5.22.dist-info/LICENSE,sha256=sehayP6UhydNnmstfL4yFR3genMRdpuUh6uZVWJN1H0,14152
41
+ biomedisa-2024.5.22.dist-info/METADATA,sha256=jKMlVJyzFHJ37MREWXc9UbUuDoxVA36hYr-1egUfnhY,10786
42
+ biomedisa-2024.5.22.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
43
+ biomedisa-2024.5.22.dist-info/top_level.txt,sha256=opsf1Eb4vCguPSxev4HHSeiUKCccT_C_RcUCdAYbHWQ,10
44
+ biomedisa-2024.5.22.dist-info/RECORD,,