biomedisa 2024.5.20__py3-none-any.whl → 2024.5.21__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- biomedisa/__init__.py +1 -1
- biomedisa/features/split_volume.py +1 -1
- {biomedisa-2024.5.20.dist-info → biomedisa-2024.5.21.dist-info}/METADATA +25 -42
- {biomedisa-2024.5.20.dist-info → biomedisa-2024.5.21.dist-info}/RECORD +7 -7
- {biomedisa-2024.5.20.dist-info → biomedisa-2024.5.21.dist-info}/LICENSE +0 -0
- {biomedisa-2024.5.20.dist-info → biomedisa-2024.5.21.dist-info}/WHEEL +0 -0
- {biomedisa-2024.5.20.dist-info → biomedisa-2024.5.21.dist-info}/top_level.txt +0 -0
biomedisa/__init__.py
CHANGED
@@ -28,7 +28,7 @@
|
|
28
28
|
|
29
29
|
import os
|
30
30
|
from biomedisa.features.biomedisa_helper import load_data, save_data
|
31
|
-
from biomedisa.
|
31
|
+
from biomedisa.interpolation import smart_interpolation
|
32
32
|
from tifffile import imread, imwrite, TiffFile
|
33
33
|
import numpy as np
|
34
34
|
import argparse
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: biomedisa
|
3
|
-
Version: 2024.5.
|
3
|
+
Version: 2024.5.21
|
4
4
|
Summary: Segmentation of 3D volumetric image data
|
5
5
|
Author: Philipp Lösel
|
6
6
|
Author-email: philipp.loesel@anu.edu.au
|
@@ -21,36 +21,41 @@ License-File: LICENSE
|
|
21
21
|
- [Installation (command-line based)](#installation-command-line-based)
|
22
22
|
- [Installation (browser based)](#installation-browser-based)
|
23
23
|
- [Download Data](#download-data)
|
24
|
+
- [Revisions](#revisions)
|
24
25
|
- [Smart Interpolation](#smart-interpolation)
|
25
26
|
- [Deep Learning](#deep-learning)
|
26
27
|
- [Biomedisa Features](#biomedisa-features)
|
27
|
-
- [Update Biomedisa](#update-biomedisa)
|
28
|
-
- [Releases](#releases)
|
29
28
|
- [Authors](#authors)
|
30
29
|
- [FAQ](#faq)
|
31
30
|
- [Citation](#citation)
|
32
31
|
- [License](#license)
|
33
32
|
|
34
|
-
|
33
|
+
## Overview
|
35
34
|
Biomedisa (https://biomedisa.info) is a free and easy-to-use open-source application for segmenting large volumetric images, e.g. CT and MRI scans, developed at [The Australian National University CTLab](https://ctlab.anu.edu.au/). Biomedisa's semi-automated segmentation is based on a smart interpolation of sparsely pre-segmented slices, taking into account the complete underlying image data. In addition, Biomedisa enables deep learning for the fully automated segmentation of series of similar samples. It can be used in combination with segmentation tools such as Amira/Avizo, ImageJ/Fiji and 3D Slicer. If you are using Biomedisa or the data for your research please cite: Lösel, P.D. et al. [Introducing Biomedisa as an open-source online platform for biomedical image segmentation.](https://www.nature.com/articles/s41467-020-19303-w) *Nat. Commun.* **11**, 5577 (2020).
|
36
35
|
|
37
|
-
|
36
|
+
## Hardware Requirements
|
38
37
|
+ One or more NVIDIA GPUs with compute capability 3.0 or higher or an Intel CPU.
|
39
38
|
|
40
|
-
|
39
|
+
## Installation (command-line based)
|
41
40
|
+ [Ubuntu 22.04 + CUDA + GPU (recommended)](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8_gpu_cli.md)
|
42
41
|
+ [Ubuntu 22.04 + OpenCL + CPU (smart interpolation only and very slow)](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_opencl_cpu_cli.md)
|
43
42
|
+ [Windows 10 + CUDA + GPU (recommended)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_cuda_gpu_cli.md)
|
44
43
|
+ [Windows 10 + OpenCL + GPU (easy to install but lacks features like allaxis, smoothing, uncertainty, optimized GPU memory usage)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_opencl_gpu_cli.md)
|
45
44
|
+ [Windows 10 + OpenCL + CPU (very slow)](https://github.com/biomedisa/biomedisa/blob/master/README/windows10_opencl_cpu_cli.md)
|
46
45
|
|
47
|
-
|
46
|
+
## Installation (browser based)
|
48
47
|
+ [Ubuntu 22.04](https://github.com/biomedisa/biomedisa/blob/master/README/ubuntu2204_cuda11.8.md)
|
49
48
|
|
50
|
-
|
49
|
+
## Download Data
|
51
50
|
+ Download the data from our [gallery](https://biomedisa.info/gallery/)
|
52
51
|
|
53
|
-
|
52
|
+
## Revisions
|
53
|
+
2024.05.21
|
54
|
+
+ Pip is the preferred installation method
|
55
|
+
+ Commands, module names and imports have been changed to conform to the Pip standard
|
56
|
+
+ For versions <=2023.09.1 please check [README](https://github.com/biomedisa/biomedisa/blob/master/README/deprecated/README_2023.09.1.md)
|
57
|
+
|
58
|
+
## Smart Interpolation
|
54
59
|
+ [Parameters and Examples](https://github.com/biomedisa/biomedisa/blob/master/README/smart_interpolation.md)
|
55
60
|
|
56
61
|
#### Python example
|
@@ -77,9 +82,12 @@ save_data('Downloads/final.trigonopterus.smooth.am', smooth_result, header=heade
|
|
77
82
|
#### Command-line based
|
78
83
|
```
|
79
84
|
python -m biomedisa.interpolation C:\Users\%USERNAME%\Downloads\tumor.tif C:\Users\%USERNAME%\Downloads\labels.tumor.tif
|
85
|
+
|
86
|
+
# if pre-segmentation is not exclusively in the XY plane
|
87
|
+
python -m biomedisa.interpolation C:\Users\%USERNAME%\Downloads\tumor.tif C:\Users\%USERNAME%\Downloads\labels.tumor.tif --allaxis
|
80
88
|
```
|
81
89
|
|
82
|
-
|
90
|
+
## Deep Learning
|
83
91
|
+ [Parameters and Examples](https://github.com/biomedisa/biomedisa/blob/master/README/deep_learning.md)
|
84
92
|
|
85
93
|
#### Python example (training)
|
@@ -115,10 +123,10 @@ deep_learning(img_data, label_data, train=True, batch_size=12,
|
|
115
123
|
#### Command-line based (training)
|
116
124
|
```
|
117
125
|
# start training with a batch size of 12
|
118
|
-
python -m biomedisa.deeplearning C:\Users\%USERNAME%\Downloads\training_heart C:\Users\%USERNAME%\Downloads\training_heart_labels -t -bs
|
126
|
+
python -m biomedisa.deeplearning C:\Users\%USERNAME%\Downloads\training_heart C:\Users\%USERNAME%\Downloads\training_heart_labels -t -bs=12
|
119
127
|
|
120
128
|
# validation (optional)
|
121
|
-
python -m biomedisa.deeplearning C:\Users\%USERNAME%\Downloads\training_heart C:\Users\%USERNAME%\Downloads\training_heart_labels -t -vi
|
129
|
+
python -m biomedisa.deeplearning C:\Users\%USERNAME%\Downloads\training_heart C:\Users\%USERNAME%\Downloads\training_heart_labels -t -vi=C:\Users\%USERNAME%\Downloads\val_img -vl=C:\Users\%USERNAME%\Downloads\val_labels
|
122
130
|
```
|
123
131
|
If running into ResourceExhaustedError due to out of memory (OOM), try to use smaller batch size.
|
124
132
|
|
@@ -143,7 +151,7 @@ save_data('final.Head5.am', results['regular'], results['header'])
|
|
143
151
|
python -m biomedisa.deeplearning C:\Users\%USERNAME%\Downloads\testing_axial_crop_pat13.nii.gz C:\Users\%USERNAME%\Downloads\heart.h5 -p
|
144
152
|
```
|
145
153
|
|
146
|
-
|
154
|
+
## Biomedisa Features
|
147
155
|
|
148
156
|
#### Load and save data (such as Amira Mesh, TIFF, NRRD, NIfTI or DICOM)
|
149
157
|
```python
|
@@ -222,41 +230,16 @@ dice = Dice_score(ground_truth, result)
|
|
222
230
|
assd = ASSD(ground_truth, result)
|
223
231
|
```
|
224
232
|
|
225
|
-
|
226
|
-
If you installed Biomedisa via Pip
|
227
|
-
```
|
228
|
-
pip install --upgrade biomedisa
|
229
|
-
```
|
230
|
-
If you used `git clone`, change to the Biomedisa directory and make a pull request
|
231
|
-
```
|
232
|
-
cd git/biomedisa
|
233
|
-
git pull
|
234
|
-
```
|
235
|
-
|
236
|
-
If you installed the browser based version of Biomedisa (including MySQL database), you also need to update the database
|
237
|
-
```
|
238
|
-
python manage.py migrate
|
239
|
-
```
|
240
|
-
|
241
|
-
If you installed an [Apache Server](https://github.com/biomedisa/biomedisa/blob/master/README/APACHE_SERVER.md), you need to restart the server
|
242
|
-
```
|
243
|
-
sudo service apache2 restart
|
244
|
-
```
|
245
|
-
|
246
|
-
# Releases
|
247
|
-
|
248
|
-
For the versions available, see the [list of releases](https://github.com/biomedisa/biomedisa/releases).
|
249
|
-
|
250
|
-
# Authors
|
233
|
+
## Authors
|
251
234
|
|
252
235
|
* **Philipp D. Lösel**
|
253
236
|
|
254
237
|
See also the list of [contributors](https://github.com/biomedisa/biomedisa/blob/master/credits.md) who participated in this project.
|
255
238
|
|
256
|
-
|
239
|
+
## FAQ
|
257
240
|
Frequently asked questions can be found at: https://biomedisa.info/faq/.
|
258
241
|
|
259
|
-
|
242
|
+
## Citation
|
260
243
|
|
261
244
|
If you use Biomedisa or the data, please cite the following paper:
|
262
245
|
|
@@ -270,7 +253,7 @@ If you use Biomedisa's Smart Interpolation, you can also cite the initial descri
|
|
270
253
|
|
271
254
|
`Lösel, P. & Heuveline, V. Enhancing a diffusion algorithm for 4D image segmentation using local information. Proc. SPIE 9784, 97842L (2016).` https://doi.org/10.1117/12.2216202
|
272
255
|
|
273
|
-
|
256
|
+
## License
|
274
257
|
|
275
258
|
This project is covered under the **EUROPEAN UNION PUBLIC LICENCE v. 1.2 (EUPL)**.
|
276
259
|
|
@@ -1,4 +1,4 @@
|
|
1
|
-
biomedisa/__init__.py,sha256=
|
1
|
+
biomedisa/__init__.py,sha256=hw4mzEjGFXm-vxus2DBfKFW0nKoG0ibL5SH6ShfchrY,1526
|
2
2
|
biomedisa/__main__.py,sha256=a1--8vhtztWEloHVtbM43FZLCfrFo4BELgdsgtWE8ls,536
|
3
3
|
biomedisa/deeplearning.py,sha256=dVwLkijm0ibtn6zUUV3t2WK6Fzvks4VlgzKNLqzDpAQ,27064
|
4
4
|
biomedisa/interpolation.py,sha256=R8UbBWt7vOuiQCPSeNIpEY0_yfQUg1oBfhAjXi91Hl4,17253
|
@@ -21,7 +21,7 @@ biomedisa/features/pid.py,sha256=Jmn1VIp0fBlgBrqZ-yUIQVVb5-NAxNBdibXALVr2PPI,254
|
|
21
21
|
biomedisa/features/process_image.py,sha256=VtS3fGDvglqJiiJLPK1toe76J58j914NJ8XQKg3CRwo,11091
|
22
22
|
biomedisa/features/pycuda_test.py,sha256=UGAGIz_dgcCJkzjyCqnMlflp-WJPzpCtFQmE9C5DwIo,3275
|
23
23
|
biomedisa/features/remove_outlier.py,sha256=XhbFPkazMmEUZiP0FERdCkrXaLhwO095x4wcn-B3SdU,16756
|
24
|
-
biomedisa/features/split_volume.py,sha256=
|
24
|
+
biomedisa/features/split_volume.py,sha256=UgMpHhZPvH90xFo-mJ0Oc0tBXbrf8FQF0kzVySAlO8g,8917
|
25
25
|
biomedisa/features/amira_to_np/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
26
26
|
biomedisa/features/amira_to_np/amira_data_stream.py,sha256=JrZTyKP01CKDFB5d9BlGtSFwBgoAo0AJeAmn3pADH88,32618
|
27
27
|
biomedisa/features/amira_to_np/amira_grammar.py,sha256=z1yajLHmn-GDb-rzZ5iHlKmPZDDbO9fNqP2jXf8z3KE,14324
|
@@ -37,8 +37,8 @@ biomedisa/features/random_walk/pyopencl_large.py,sha256=q79AxG3p3qFjxfiAZfUK9I5B
|
|
37
37
|
biomedisa/features/random_walk/pyopencl_small.py,sha256=opNlS-qzOa9qWafBNJdvf6r1aRAFf7_JXf6ISDnkdXE,17068
|
38
38
|
biomedisa/features/random_walk/rw_large.py,sha256=ZnITvk00Y11ZZlGuBRaJO1EwU0wYBdEwdpj9vvXCqF4,19805
|
39
39
|
biomedisa/features/random_walk/rw_small.py,sha256=RPzZe24YrEwYelJukDjvqaoD_SyhgdriEi7uV3kZGXI,14881
|
40
|
-
biomedisa-2024.5.
|
41
|
-
biomedisa-2024.5.
|
42
|
-
biomedisa-2024.5.
|
43
|
-
biomedisa-2024.5.
|
44
|
-
biomedisa-2024.5.
|
40
|
+
biomedisa-2024.5.21.dist-info/LICENSE,sha256=sehayP6UhydNnmstfL4yFR3genMRdpuUh6uZVWJN1H0,14152
|
41
|
+
biomedisa-2024.5.21.dist-info/METADATA,sha256=GJ9BXl6MH84zMYZrpShMBkSDZx50dYIKWDE97EWj1-w,10465
|
42
|
+
biomedisa-2024.5.21.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
43
|
+
biomedisa-2024.5.21.dist-info/top_level.txt,sha256=opsf1Eb4vCguPSxev4HHSeiUKCccT_C_RcUCdAYbHWQ,10
|
44
|
+
biomedisa-2024.5.21.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|