biomedisa 2024.5.17__py3-none-any.whl → 2024.5.19__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- biomedisa/biomedisa_features/biomedisa_helper.py +100 -110
- biomedisa/biomedisa_features/create_slices.py +49 -56
- biomedisa/biomedisa_features/crop_helper.py +107 -112
- biomedisa/biomedisa_features/keras_helper.py +137 -163
- biomedisa/deeplearning.py +78 -79
- {biomedisa-2024.5.17.dist-info → biomedisa-2024.5.19.dist-info}/METADATA +25 -55
- {biomedisa-2024.5.17.dist-info → biomedisa-2024.5.19.dist-info}/RECORD +10 -10
- {biomedisa-2024.5.17.dist-info → biomedisa-2024.5.19.dist-info}/LICENSE +0 -0
- {biomedisa-2024.5.17.dist-info → biomedisa-2024.5.19.dist-info}/WHEEL +0 -0
- {biomedisa-2024.5.17.dist-info → biomedisa-2024.5.19.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: biomedisa
|
3
|
-
Version: 2024.5.
|
3
|
+
Version: 2024.5.19
|
4
4
|
Summary: Segmentation of 3D volumetric image data
|
5
5
|
Author: Philipp Lösel
|
6
6
|
Author-email: philipp.loesel@anu.edu.au
|
@@ -55,13 +55,8 @@ Biomedisa (https://biomedisa.info) is a free and easy-to-use open-source applica
|
|
55
55
|
|
56
56
|
#### Python example
|
57
57
|
```python
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
import sys
|
62
|
-
sys.path.append(path_to_biomedisa)
|
63
|
-
from biomedisa_features.biomedisa_helper import load_data, save_data
|
64
|
-
from biomedisa_features.biomedisa_interpolation import smart_interpolation
|
58
|
+
from biomedisa.biomedisa_features.biomedisa_helper import load_data, save_data
|
59
|
+
from biomedisa.interpolation import smart_interpolation
|
65
60
|
|
66
61
|
# load data
|
67
62
|
img, _ = load_data('Downloads/trigonopterus.tif')
|
@@ -81,11 +76,7 @@ save_data('Downloads/final.trigonopterus.smooth.am', smooth_result, header=heade
|
|
81
76
|
|
82
77
|
#### Command-line based
|
83
78
|
```
|
84
|
-
|
85
|
-
cd git/biomedisa/biomedisa_features/
|
86
|
-
|
87
|
-
# start smart interpolation
|
88
|
-
python biomedisa_interpolation.py C:\Users\%USERNAME%\Downloads\tumor.tif C:\Users\%USERNAME%\Downloads\labels.tumor.tif
|
79
|
+
python -m biomedisa.interpolation C:\Users\%USERNAME%\Downloads\tumor.tif C:\Users\%USERNAME%\Downloads\labels.tumor.tif
|
89
80
|
```
|
90
81
|
|
91
82
|
# Deep Learning
|
@@ -93,14 +84,8 @@ python biomedisa_interpolation.py C:\Users\%USERNAME%\Downloads\tumor.tif C:\Use
|
|
93
84
|
|
94
85
|
#### Python example (training)
|
95
86
|
```python
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
# load libraries
|
100
|
-
import sys
|
101
|
-
sys.path.append(path_to_biomedisa)
|
102
|
-
from biomedisa_features.biomedisa_helper import load_data
|
103
|
-
from biomedisa_features.biomedisa_deeplearning import deep_learning
|
87
|
+
from biomedisa.biomedisa_features.biomedisa_helper import load_data
|
88
|
+
from biomedisa.deeplearning import deep_learning
|
104
89
|
|
105
90
|
# load image data
|
106
91
|
img1, _ = load_data('Head1.am')
|
@@ -129,27 +114,18 @@ deep_learning(img_data, label_data, train=True, batch_size=12,
|
|
129
114
|
|
130
115
|
#### Command-line based (training)
|
131
116
|
```
|
132
|
-
# change to the features directory
|
133
|
-
cd git/biomedisa/biomedisa_features/
|
134
|
-
|
135
117
|
# start training with a batch size of 12
|
136
|
-
python
|
118
|
+
python -m biomedisa.deeplearning C:\Users\%USERNAME%\Downloads\training_heart C:\Users\%USERNAME%\Downloads\training_heart_labels -t -bs 12
|
137
119
|
|
138
120
|
# validation (optional)
|
139
|
-
python
|
121
|
+
python -m biomedisa.deeplearning C:\Users\%USERNAME%\Downloads\training_heart C:\Users\%USERNAME%\Downloads\training_heart_labels -t -vi C:\Users\%USERNAME%\Downloads\val_img -vl C:\Users\%USERNAME%\Downloads\val_labels
|
140
122
|
```
|
141
123
|
If running into ResourceExhaustedError due to out of memory (OOM), try to use smaller batch size.
|
142
124
|
|
143
125
|
#### Python example (prediction)
|
144
126
|
```python
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
# load libraries
|
149
|
-
import sys
|
150
|
-
sys.path.append(path_to_biomedisa)
|
151
|
-
from biomedisa_features.biomedisa_helper import load_data, save_data
|
152
|
-
from biomedisa_features.biomedisa_deeplearning import deep_learning
|
127
|
+
from biomedisa.biomedisa_features.biomedisa_helper import load_data, save_data
|
128
|
+
from biomedisa.deeplearning import deep_learning
|
153
129
|
|
154
130
|
# load data
|
155
131
|
img, _ = load_data('Head5.am')
|
@@ -164,20 +140,14 @@ save_data('final.Head5.am', results['regular'], results['header'])
|
|
164
140
|
|
165
141
|
#### Command-line based (prediction)
|
166
142
|
```
|
167
|
-
|
168
|
-
cd git/biomedisa/biomedisa_features/
|
169
|
-
|
170
|
-
# start prediction with a batch size of 6
|
171
|
-
python biomedisa_deeplearning.py C:\Users\%USERNAME%\Downloads\testing_axial_crop_pat13.nii.gz C:\Users\%USERNAME%\Downloads\heart.h5 -p -bs 6
|
143
|
+
python -m biomedisa.deeplearning C:\Users\%USERNAME%\Downloads\testing_axial_crop_pat13.nii.gz C:\Users\%USERNAME%\Downloads\heart.h5 -p
|
172
144
|
```
|
173
145
|
|
174
146
|
# Biomedisa Features
|
175
147
|
|
176
148
|
#### Load and save data (such as Amira Mesh, TIFF, NRRD, NIfTI or DICOM)
|
177
149
|
```python
|
178
|
-
import
|
179
|
-
sys.path.append(path_to_biomedisa) # e.g. '/home/<user>/git/biomedisa'
|
180
|
-
from biomedisa_features.biomedisa_helper import load_data, save_data
|
150
|
+
from biomedisa.biomedisa_features.biomedisa_helper import load_data, save_data
|
181
151
|
|
182
152
|
# load data as numpy array
|
183
153
|
# for DICOM, PNG files, or similar formats, 'path_to_data' must reference
|
@@ -190,10 +160,8 @@ save_data(path_to_data, data, header)
|
|
190
160
|
|
191
161
|
#### Create STL mesh from segmentation (label values are saved as attributes)
|
192
162
|
```python
|
193
|
-
import
|
194
|
-
|
195
|
-
from biomedisa_features.biomedisa_helper import load_data, save_data
|
196
|
-
from biomedisa_features.create_mesh import get_voxel_spacing, save_mesh
|
163
|
+
from biomedisa.biomedisa_features.biomedisa_helper import load_data, save_data
|
164
|
+
from biomedisa.mesh import get_voxel_spacing, save_mesh
|
197
165
|
|
198
166
|
# load segmentation
|
199
167
|
data, header, extension = load_data(path_to_data, return_extension=True)
|
@@ -209,7 +177,7 @@ save_mesh(path_to_data, data, x_res, y_res, z_res, poly_reduction=0.9, smoothing
|
|
209
177
|
|
210
178
|
#### Create mesh directly
|
211
179
|
```
|
212
|
-
python
|
180
|
+
python -m biomedisa.mesh <path_to_data>
|
213
181
|
```
|
214
182
|
|
215
183
|
#### Options
|
@@ -225,9 +193,7 @@ python git/biomedisa/biomedisa_features/create_mesh.py <path_to_data>
|
|
225
193
|
|
226
194
|
#### Resize data
|
227
195
|
```python
|
228
|
-
import
|
229
|
-
sys.path.append(path_to_biomedisa) # e.g. '/home/<user>/git/biomedisa'
|
230
|
-
from biomedisa_features.biomedisa_helper import img_resize
|
196
|
+
from biomedisa.biomedisa_features.biomedisa_helper import img_resize
|
231
197
|
|
232
198
|
# resize image data
|
233
199
|
zsh, ysh, xsh = data.shape
|
@@ -240,7 +206,7 @@ label_data = img_resize(label_data, new_zsh, new_ysh, new_xsh, labels=True)
|
|
240
206
|
|
241
207
|
#### Remove outliers and fill holes
|
242
208
|
```python
|
243
|
-
from biomedisa_features.biomedisa_helper import clean, fill
|
209
|
+
from biomedisa.biomedisa_features.biomedisa_helper import clean, fill
|
244
210
|
|
245
211
|
# delete outliers smaller than 90% of the segment
|
246
212
|
label_data = clean(label_data, 0.9)
|
@@ -251,24 +217,28 @@ label_data = fill(label_data, 0.9)
|
|
251
217
|
|
252
218
|
#### Accuracy assessment
|
253
219
|
```python
|
254
|
-
from biomedisa_features.biomedisa_helper import Dice_score, ASSD
|
220
|
+
from biomedisa.biomedisa_features.biomedisa_helper import Dice_score, ASSD
|
255
221
|
dice = Dice_score(ground_truth, result)
|
256
222
|
assd = ASSD(ground_truth, result)
|
257
223
|
```
|
258
224
|
|
259
225
|
# Update Biomedisa
|
260
|
-
If you
|
226
|
+
If you installed Biomedisa via Pip
|
227
|
+
```
|
228
|
+
pip install --upgrade biomedisa
|
229
|
+
```
|
230
|
+
If you used `git clone`, change to the Biomedisa directory and make a pull request
|
261
231
|
```
|
262
232
|
cd git/biomedisa
|
263
233
|
git pull
|
264
234
|
```
|
265
235
|
|
266
|
-
If you
|
236
|
+
If you installed the browser based version of Biomedisa (including MySQL database), you also need to update the database
|
267
237
|
```
|
268
238
|
python manage.py migrate
|
269
239
|
```
|
270
240
|
|
271
|
-
If you
|
241
|
+
If you installed an [Apache Server](https://github.com/biomedisa/biomedisa/blob/master/README/APACHE_SERVER.md), you need to restart the server
|
272
242
|
```
|
273
243
|
sudo service apache2 restart
|
274
244
|
```
|
@@ -1,6 +1,6 @@
|
|
1
1
|
biomedisa/__init__.py,sha256=BLbuGv-c8I8XMzOOnc07qrcWxq8CUA5NM73S3gkixEI,1690
|
2
2
|
biomedisa/__main__.py,sha256=a1--8vhtztWEloHVtbM43FZLCfrFo4BELgdsgtWE8ls,536
|
3
|
-
biomedisa/deeplearning.py,sha256=
|
3
|
+
biomedisa/deeplearning.py,sha256=jh6LivGgWSjIoz_2bm-kfnyq90EMiLZwuh6T8Ldj738,27136
|
4
4
|
biomedisa/interpolation.py,sha256=mz5Ieiee2RftqisqNzKcCU7IV1n0LGON4zyhvBwE94s,17335
|
5
5
|
biomedisa/mesh.py,sha256=6f5klVPoA3zmF3jxLCOUkCXelLtlroS6tJquRHaMwsQ,15920
|
6
6
|
biomedisa/biomedisa_features/DataGenerator.py,sha256=FTktX35_FboSzk4UXG_ZN58xXYJqwjX_7ZJ65bzNuFs,12770
|
@@ -10,12 +10,12 @@ biomedisa/biomedisa_features/PredictDataGeneratorCrop.py,sha256=JBwFcOZMakNMlL5U
|
|
10
10
|
biomedisa/biomedisa_features/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
11
|
biomedisa/biomedisa_features/active_contour.py,sha256=PUAfCzHKU-p7xeQoWxmDh0ZFbnInXEsafgeE1k-96d0,18131
|
12
12
|
biomedisa/biomedisa_features/assd.py,sha256=cXHAhwJqhwOvzgTodlQb21NvYafWTjBJ7_H_icuBNMU,6537
|
13
|
-
biomedisa/biomedisa_features/biomedisa_helper.py,sha256=
|
14
|
-
biomedisa/biomedisa_features/create_slices.py,sha256=
|
15
|
-
biomedisa/biomedisa_features/crop_helper.py,sha256=
|
13
|
+
biomedisa/biomedisa_features/biomedisa_helper.py,sha256=OhsjzMUhtGLpeo95zU23_LVSyCKcuMm6rXlzG_QO0hk,32294
|
14
|
+
biomedisa/biomedisa_features/create_slices.py,sha256=lPYdA2AgwVUJmW94EKrSjKF_lkf7_ROFRSlnLLTQ1EY,13098
|
15
|
+
biomedisa/biomedisa_features/crop_helper.py,sha256=jcvMysMfCbarDzayTkc6rY5Tv3Mx37k00yyzSc4Nphw,24533
|
16
16
|
biomedisa/biomedisa_features/curvop_numba.py,sha256=9jc4OvHQ6JDN-DaFhRQMLpBDU85HhqzX_YUVBf3Q3vA,7049
|
17
17
|
biomedisa/biomedisa_features/django_env.py,sha256=S-ajQpw5A2aBlTYgn_FiyIr02QH05rInzhBDulb9lNg,8989
|
18
|
-
biomedisa/biomedisa_features/keras_helper.py,sha256=
|
18
|
+
biomedisa/biomedisa_features/keras_helper.py,sha256=49LTHH_Jn9fyIe5B9uounQNXA86qPjSsvtKAhuEg8qs,50321
|
19
19
|
biomedisa/biomedisa_features/nc_reader.py,sha256=7uwdmz4pLC__xb8hWjZ7Y9jrkNJOyD01kIA1EOP8GV0,7406
|
20
20
|
biomedisa/biomedisa_features/pid.py,sha256=HAIq52F-PKwDGRyKE74qsY-bdBTs1s85vcIQTKaMIy8,2528
|
21
21
|
biomedisa/biomedisa_features/process_image.py,sha256=yxBC3ACV2umscEycXZtY9Hsi1ATws7omnvXROEDfQfA,11159
|
@@ -37,8 +37,8 @@ biomedisa/biomedisa_features/random_walk/pyopencl_large.py,sha256=cOBhvxrdKCkbr6
|
|
37
37
|
biomedisa/biomedisa_features/random_walk/pyopencl_small.py,sha256=2XALYNNv9D8Gb1u2lcjR1O4W9UM0Xxjj0r4nr-NiEkk,17068
|
38
38
|
biomedisa/biomedisa_features/random_walk/rw_large.py,sha256=FERIsTXmqZprGCTShRR75PesIX5MMVtptk-SqI-4abo,19805
|
39
39
|
biomedisa/biomedisa_features/random_walk/rw_small.py,sha256=0YFL0Ovb_400Ikbxv5yOXWskl3vAyfQ_0_Gz5EXzvVQ,14881
|
40
|
-
biomedisa-2024.5.
|
41
|
-
biomedisa-2024.5.
|
42
|
-
biomedisa-2024.5.
|
43
|
-
biomedisa-2024.5.
|
44
|
-
biomedisa-2024.5.
|
40
|
+
biomedisa-2024.5.19.dist-info/LICENSE,sha256=sehayP6UhydNnmstfL4yFR3genMRdpuUh6uZVWJN1H0,14152
|
41
|
+
biomedisa-2024.5.19.dist-info/METADATA,sha256=81H289XkDEGCBCcKyRtjUVoohr8kZIY1PIquZr9RM_Q,10696
|
42
|
+
biomedisa-2024.5.19.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
43
|
+
biomedisa-2024.5.19.dist-info/top_level.txt,sha256=opsf1Eb4vCguPSxev4HHSeiUKCccT_C_RcUCdAYbHWQ,10
|
44
|
+
biomedisa-2024.5.19.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|