biomedisa 2024.5.16__py3-none-any.whl → 2024.5.18__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: biomedisa
3
- Version: 2024.5.16
3
+ Version: 2024.5.18
4
4
  Summary: Segmentation of 3D volumetric image data
5
5
  Author: Philipp Lösel
6
6
  Author-email: philipp.loesel@anu.edu.au
@@ -55,13 +55,8 @@ Biomedisa (https://biomedisa.info) is a free and easy-to-use open-source applica
55
55
 
56
56
  #### Python example
57
57
  ```python
58
- # change this line to your biomedisa directory
59
- path_to_biomedisa = '/home/<user>/git/biomedisa'
60
-
61
- import sys
62
- sys.path.append(path_to_biomedisa)
63
- from biomedisa_features.biomedisa_helper import load_data, save_data
64
- from biomedisa_features.biomedisa_interpolation import smart_interpolation
58
+ from biomedisa.biomedisa_features.biomedisa_helper import load_data, save_data
59
+ from biomedisa.interpolation import smart_interpolation
65
60
 
66
61
  # load data
67
62
  img, _ = load_data('Downloads/trigonopterus.tif')
@@ -81,11 +76,7 @@ save_data('Downloads/final.trigonopterus.smooth.am', smooth_result, header=heade
81
76
 
82
77
  #### Command-line based
83
78
  ```
84
- # change to the features directory
85
- cd git/biomedisa/biomedisa_features/
86
-
87
- # start smart interpolation
88
- python biomedisa_interpolation.py C:\Users\%USERNAME%\Downloads\tumor.tif C:\Users\%USERNAME%\Downloads\labels.tumor.tif
79
+ python -m biomedisa.interpolation C:\Users\%USERNAME%\Downloads\tumor.tif C:\Users\%USERNAME%\Downloads\labels.tumor.tif
89
80
  ```
90
81
 
91
82
  # Deep Learning
@@ -93,14 +84,8 @@ python biomedisa_interpolation.py C:\Users\%USERNAME%\Downloads\tumor.tif C:\Use
93
84
 
94
85
  #### Python example (training)
95
86
  ```python
96
- # change this line to your biomedisa directory
97
- path_to_biomedisa = '/home/<user>/git/biomedisa'
98
-
99
- # load libraries
100
- import sys
101
- sys.path.append(path_to_biomedisa)
102
- from biomedisa_features.biomedisa_helper import load_data
103
- from biomedisa_features.biomedisa_deeplearning import deep_learning
87
+ from biomedisa.biomedisa_features.biomedisa_helper import load_data
88
+ from biomedisa.deeplearning import deep_learning
104
89
 
105
90
  # load image data
106
91
  img1, _ = load_data('Head1.am')
@@ -129,27 +114,18 @@ deep_learning(img_data, label_data, train=True, batch_size=12,
129
114
 
130
115
  #### Command-line based (training)
131
116
  ```
132
- # change to the features directory
133
- cd git/biomedisa/biomedisa_features/
134
-
135
117
  # start training with a batch size of 12
136
- python biomedisa_deeplearning.py C:\Users\%USERNAME%\Downloads\training_heart C:\Users\%USERNAME%\Downloads\training_heart_labels -t -bs 12
118
+ python -m biomedisa.deeplearning C:\Users\%USERNAME%\Downloads\training_heart C:\Users\%USERNAME%\Downloads\training_heart_labels -t -bs 12
137
119
 
138
120
  # validation (optional)
139
- python biomedisa_deeplearning.py C:\Users\%USERNAME%\Downloads\training_heart C:\Users\%USERNAME%\Downloads\training_heart_labels -t -vi C:\Users\%USERNAME%\Downloads\val_img -vl C:\Users\%USERNAME%\Downloads\val_labels
121
+ python -m biomedisa.deeplearning C:\Users\%USERNAME%\Downloads\training_heart C:\Users\%USERNAME%\Downloads\training_heart_labels -t -vi C:\Users\%USERNAME%\Downloads\val_img -vl C:\Users\%USERNAME%\Downloads\val_labels
140
122
  ```
141
123
  If running into ResourceExhaustedError due to out of memory (OOM), try to use smaller batch size.
142
124
 
143
125
  #### Python example (prediction)
144
126
  ```python
145
- # change this line to your biomedisa directory
146
- path_to_biomedisa = '/home/<user>/git/biomedisa'
147
-
148
- # load libraries
149
- import sys
150
- sys.path.append(path_to_biomedisa)
151
- from biomedisa_features.biomedisa_helper import load_data, save_data
152
- from biomedisa_features.biomedisa_deeplearning import deep_learning
127
+ from biomedisa.biomedisa_features.biomedisa_helper import load_data, save_data
128
+ from biomedisa.deeplearning import deep_learning
153
129
 
154
130
  # load data
155
131
  img, _ = load_data('Head5.am')
@@ -164,20 +140,15 @@ save_data('final.Head5.am', results['regular'], results['header'])
164
140
 
165
141
  #### Command-line based (prediction)
166
142
  ```
167
- # change to the features directory
168
- cd git/biomedisa/biomedisa_features/
169
-
170
143
  # start prediction with a batch size of 6
171
- python biomedisa_deeplearning.py C:\Users\%USERNAME%\Downloads\testing_axial_crop_pat13.nii.gz C:\Users\%USERNAME%\Downloads\heart.h5 -p -bs 6
144
+ python -m biomedisa.deeplearning C:\Users\%USERNAME%\Downloads\testing_axial_crop_pat13.nii.gz C:\Users\%USERNAME%\Downloads\heart.h5 -p -bs 6
172
145
  ```
173
146
 
174
147
  # Biomedisa Features
175
148
 
176
149
  #### Load and save data (such as Amira Mesh, TIFF, NRRD, NIfTI or DICOM)
177
150
  ```python
178
- import sys
179
- sys.path.append(path_to_biomedisa) # e.g. '/home/<user>/git/biomedisa'
180
- from biomedisa_features.biomedisa_helper import load_data, save_data
151
+ from biomedisa.biomedisa_features.biomedisa_helper import load_data, save_data
181
152
 
182
153
  # load data as numpy array
183
154
  # for DICOM, PNG files, or similar formats, 'path_to_data' must reference
@@ -190,10 +161,8 @@ save_data(path_to_data, data, header)
190
161
 
191
162
  #### Create STL mesh from segmentation (label values are saved as attributes)
192
163
  ```python
193
- import os, sys
194
- sys.path.append(path_to_biomedisa) # e.g. '/home/<user>/git/biomedisa'
195
- from biomedisa_features.biomedisa_helper import load_data, save_data
196
- from biomedisa_features.create_mesh import get_voxel_spacing, save_mesh
164
+ from biomedisa.biomedisa_features.biomedisa_helper import load_data, save_data
165
+ from biomedisa.mesh import get_voxel_spacing, save_mesh
197
166
 
198
167
  # load segmentation
199
168
  data, header, extension = load_data(path_to_data, return_extension=True)
@@ -209,7 +178,7 @@ save_mesh(path_to_data, data, x_res, y_res, z_res, poly_reduction=0.9, smoothing
209
178
 
210
179
  #### Create mesh directly
211
180
  ```
212
- python git/biomedisa/biomedisa_features/create_mesh.py <path_to_data>
181
+ python -m biomedisa.mesh <path_to_data>
213
182
  ```
214
183
 
215
184
  #### Options
@@ -225,9 +194,7 @@ python git/biomedisa/biomedisa_features/create_mesh.py <path_to_data>
225
194
 
226
195
  #### Resize data
227
196
  ```python
228
- import os, sys
229
- sys.path.append(path_to_biomedisa) # e.g. '/home/<user>/git/biomedisa'
230
- from biomedisa_features.biomedisa_helper import img_resize
197
+ from biomedisa.biomedisa_features.biomedisa_helper import img_resize
231
198
 
232
199
  # resize image data
233
200
  zsh, ysh, xsh = data.shape
@@ -240,7 +207,7 @@ label_data = img_resize(label_data, new_zsh, new_ysh, new_xsh, labels=True)
240
207
 
241
208
  #### Remove outliers and fill holes
242
209
  ```python
243
- from biomedisa_features.biomedisa_helper import clean, fill
210
+ from biomedisa.biomedisa_features.biomedisa_helper import clean, fill
244
211
 
245
212
  # delete outliers smaller than 90% of the segment
246
213
  label_data = clean(label_data, 0.9)
@@ -251,24 +218,28 @@ label_data = fill(label_data, 0.9)
251
218
 
252
219
  #### Accuracy assessment
253
220
  ```python
254
- from biomedisa_features.biomedisa_helper import Dice_score, ASSD
221
+ from biomedisa.biomedisa_features.biomedisa_helper import Dice_score, ASSD
255
222
  dice = Dice_score(ground_truth, result)
256
223
  assd = ASSD(ground_truth, result)
257
224
  ```
258
225
 
259
226
  # Update Biomedisa
260
- If you have used `git clone`, change to the Biomedisa directory and make a pull request.
227
+ If you installed Biomedisa via Pip.
228
+ ```
229
+ pip install --upgrade biomedisa
230
+ ```
231
+ If you used `git clone`, change to the Biomedisa directory and make a pull request.
261
232
  ```
262
233
  cd git/biomedisa
263
234
  git pull
264
235
  ```
265
236
 
266
- If you have installed the browser based version of Biomedisa (including MySQL database), you also need to update the database.
237
+ If you installed the browser based version of Biomedisa (including MySQL database), you also need to update the database.
267
238
  ```
268
239
  python manage.py migrate
269
240
  ```
270
241
 
271
- If you have installed an [Apache Server](https://github.com/biomedisa/biomedisa/blob/master/README/APACHE_SERVER.md), you need to restart the server.
242
+ If you installed an [Apache Server](https://github.com/biomedisa/biomedisa/blob/master/README/APACHE_SERVER.md), you need to restart the server.
272
243
  ```
273
244
  sudo service apache2 restart
274
245
  ```
@@ -37,8 +37,8 @@ biomedisa/biomedisa_features/random_walk/pyopencl_large.py,sha256=cOBhvxrdKCkbr6
37
37
  biomedisa/biomedisa_features/random_walk/pyopencl_small.py,sha256=2XALYNNv9D8Gb1u2lcjR1O4W9UM0Xxjj0r4nr-NiEkk,17068
38
38
  biomedisa/biomedisa_features/random_walk/rw_large.py,sha256=FERIsTXmqZprGCTShRR75PesIX5MMVtptk-SqI-4abo,19805
39
39
  biomedisa/biomedisa_features/random_walk/rw_small.py,sha256=0YFL0Ovb_400Ikbxv5yOXWskl3vAyfQ_0_Gz5EXzvVQ,14881
40
- biomedisa-2024.5.16.dist-info/LICENSE,sha256=sehayP6UhydNnmstfL4yFR3genMRdpuUh6uZVWJN1H0,14152
41
- biomedisa-2024.5.16.dist-info/METADATA,sha256=h2Eq4HFLRDvAG4P-TgLp1FgQkq6_p50v1pYxtSCSA7k,11677
42
- biomedisa-2024.5.16.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
43
- biomedisa-2024.5.16.dist-info/top_level.txt,sha256=opsf1Eb4vCguPSxev4HHSeiUKCccT_C_RcUCdAYbHWQ,10
44
- biomedisa-2024.5.16.dist-info/RECORD,,
40
+ biomedisa-2024.5.18.dist-info/LICENSE,sha256=sehayP6UhydNnmstfL4yFR3genMRdpuUh6uZVWJN1H0,14152
41
+ biomedisa-2024.5.18.dist-info/METADATA,sha256=Ck2qVtPA2ayKHrT0Rq7MUKl9wSWlvp9XNKxQ5HsTsHU,10748
42
+ biomedisa-2024.5.18.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
43
+ biomedisa-2024.5.18.dist-info/top_level.txt,sha256=opsf1Eb4vCguPSxev4HHSeiUKCccT_C_RcUCdAYbHWQ,10
44
+ biomedisa-2024.5.18.dist-info/RECORD,,