biomechzoo 0.5.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- __init__.py +33 -0
- biomechzoo/__init__.py +0 -0
- biomechzoo/__main__.py +6 -0
- biomechzoo/biomech_ops/__init__.py +0 -0
- biomechzoo/biomech_ops/continuous_relative_phase_data.py +31 -0
- biomechzoo/biomech_ops/continuous_relative_phase_line.py +36 -0
- biomechzoo/biomech_ops/filter_data.py +58 -0
- biomechzoo/biomech_ops/filter_line.py +85 -0
- biomechzoo/biomech_ops/movement_onset.py +53 -0
- biomechzoo/biomech_ops/normalize_data.py +36 -0
- biomechzoo/biomech_ops/normalize_line.py +51 -0
- biomechzoo/biomech_ops/phase_angle_data.py +39 -0
- biomechzoo/biomech_ops/phase_angle_line.py +48 -0
- biomechzoo/biomechzoo.py +447 -0
- biomechzoo/conversion/__init__.py +0 -0
- biomechzoo/conversion/c3d2zoo_data.py +95 -0
- biomechzoo/conversion/mvnx2zoo_data.py +113 -0
- biomechzoo/conversion/opencap2zoo_data.py +23 -0
- biomechzoo/conversion/table2zoo_data.py +114 -0
- biomechzoo/imu/__init__.py +0 -0
- biomechzoo/imu/kinematics.py +0 -0
- biomechzoo/imu/tilt_algorithm.py +112 -0
- biomechzoo/linear_algebra_ops/__init__.py +0 -0
- biomechzoo/linear_algebra_ops/compute_magnitude_data.py +43 -0
- biomechzoo/mvn/__init__.py +0 -0
- biomechzoo/mvn/load_mvnx.py +514 -0
- biomechzoo/mvn/main_mvnx.py +75 -0
- biomechzoo/mvn/mvn.py +232 -0
- biomechzoo/mvn/mvnx_file_accessor.py +464 -0
- biomechzoo/processing/__init__.py +0 -0
- biomechzoo/processing/addchannel_data.py +71 -0
- biomechzoo/processing/addevent_data.py +116 -0
- biomechzoo/processing/explodechannel_data.py +69 -0
- biomechzoo/processing/partition_data.py +46 -0
- biomechzoo/processing/removechannel_data.py +46 -0
- biomechzoo/processing/removeevent_data.py +57 -0
- biomechzoo/processing/renamechannel_data.py +79 -0
- biomechzoo/processing/renameevent_data.py +62 -0
- biomechzoo/processing/split_trial_data.py +40 -0
- biomechzoo/statistics/eventval.py +118 -0
- biomechzoo/utils/__init__.py +0 -0
- biomechzoo/utils/batchdisp.py +21 -0
- biomechzoo/utils/compute_sampling_rate_from_time.py +25 -0
- biomechzoo/utils/engine.py +88 -0
- biomechzoo/utils/findfield.py +11 -0
- biomechzoo/utils/get_split_events.py +33 -0
- biomechzoo/utils/peak_sign.py +24 -0
- biomechzoo/utils/set_zoosystem.py +66 -0
- biomechzoo/utils/version.py +5 -0
- biomechzoo/utils/zload.py +57 -0
- biomechzoo/utils/zplot.py +61 -0
- biomechzoo/utils/zsave.py +54 -0
- biomechzoo-0.5.9.dist-info/METADATA +46 -0
- biomechzoo-0.5.9.dist-info/RECORD +58 -0
- biomechzoo-0.5.9.dist-info/WHEEL +5 -0
- biomechzoo-0.5.9.dist-info/entry_points.txt +2 -0
- biomechzoo-0.5.9.dist-info/licenses/LICENSE +21 -0
- biomechzoo-0.5.9.dist-info/top_level.txt +2 -0
__init__.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
"""
|
|
2
|
+
BiomechZoo: A Python toolbox for processing and analyzing human movement data.
|
|
3
|
+
|
|
4
|
+
This package provides functions for converting, processing, analyzing,
|
|
5
|
+
and visualizing biomechanical data (e.g., motion capture, EMG, kinetics).
|
|
6
|
+
|
|
7
|
+
Example:
|
|
8
|
+
from biomechzoo import BiomechZoo
|
|
9
|
+
from biomechzoo.conversion import c3d2zoo
|
|
10
|
+
|
|
11
|
+
zoo = BiomechZoo()
|
|
12
|
+
zoo.conversion.c3d2zoo('path/to/data')
|
|
13
|
+
"""
|
|
14
|
+
|
|
15
|
+
# Import main class or entry point
|
|
16
|
+
from .biomechzo import BiomechZoo
|
|
17
|
+
|
|
18
|
+
# Import commonly used submodules
|
|
19
|
+
from . import conversion
|
|
20
|
+
from . import processing
|
|
21
|
+
from . import plotting
|
|
22
|
+
from . import utils
|
|
23
|
+
|
|
24
|
+
# Define what gets exposed with "from biomechzoo import *"
|
|
25
|
+
__all__ = [
|
|
26
|
+
"BiomechZoo",
|
|
27
|
+
"conversion",
|
|
28
|
+
"processing",
|
|
29
|
+
"plotting",
|
|
30
|
+
"utils",
|
|
31
|
+
]
|
|
32
|
+
|
|
33
|
+
__version__ = "0.4.4"
|
biomechzoo/__init__.py
ADDED
|
File without changes
|
biomechzoo/__main__.py
ADDED
|
File without changes
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
from biomechzoo.biomech_ops.continuous_relative_phase_line import continuous_relative_phase_line
|
|
2
|
+
from biomechzoo.processing.addchannel_data import addchannel_data
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def continuous_relative_phase_data(data, ch_dist, ch_prox):
|
|
6
|
+
""" This function determines the CRP on a 0-180 scale, correcting for
|
|
7
|
+
discontinuity in the signals >180.
|
|
8
|
+
See Also phase_angle_data.py and phase_angle_line.py
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
data_new = data.copy()
|
|
12
|
+
prox = data[ch_prox]['line']
|
|
13
|
+
dist = data[ch_dist]['line']
|
|
14
|
+
crp = continuous_relative_phase_line(dist, prox)
|
|
15
|
+
data_new = addchannel_data(data_new, ch_new_name=ch_dist + '_' + ch_prox + '_' + 'crp', ch_new_data=crp)
|
|
16
|
+
return data_new
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
if __name__ == '__main__':
|
|
20
|
+
# -------TESTING--------
|
|
21
|
+
import os
|
|
22
|
+
from biomechzoo.utils.zload import zload
|
|
23
|
+
from biomechzoo.utils.zplot import zplot
|
|
24
|
+
# note: crp should be computed on phase angle data. Here we just demonstrate that it works.
|
|
25
|
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
26
|
+
project_root = os.path.dirname(current_dir)
|
|
27
|
+
fl = os.path.join(project_root, 'data', 'other', 'HC032A18_exploded.zoo')
|
|
28
|
+
data = zload(fl)
|
|
29
|
+
data = continuous_relative_phase_data(data, ch_dist='RKneeAngles_x', ch_prox='RHipAngles_x')
|
|
30
|
+
zplot(data, 'RKneeAngles_x_RHipAngles_x_crp')
|
|
31
|
+
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
def continuous_relative_phase_line(dist, prox):
|
|
2
|
+
""" This function determines the CRP on a 0-180 scale, correcting for
|
|
3
|
+
discontinuity in the signals >180.
|
|
4
|
+
|
|
5
|
+
Arguments
|
|
6
|
+
dist, ndarray: data of distal segment or joint
|
|
7
|
+
prox, ndarray: data of proximal segment or joibt
|
|
8
|
+
|
|
9
|
+
Returns
|
|
10
|
+
crp, ndarray: continous relative phase betweeen dist and prox data
|
|
11
|
+
"""
|
|
12
|
+
temp_CRP = abs(dist - prox)
|
|
13
|
+
idx = temp_CRP > 180 # This corrects discontinuity in the data and puts everything on a 0-180 scale.
|
|
14
|
+
temp_CRP[idx] = 360 - temp_CRP[idx]
|
|
15
|
+
crp = temp_CRP
|
|
16
|
+
return crp
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
if __name__ == '__main__':
|
|
20
|
+
# -------TESTING--------
|
|
21
|
+
import os
|
|
22
|
+
from biomechzoo.utils.zload import zload
|
|
23
|
+
from biomechzoo.biomech_ops.phase_angle_line import phase_angle_line
|
|
24
|
+
from matplotlib import pyplot as plt
|
|
25
|
+
# note: crp should be computed on phase angle data. Here we just demonstrate that it works.
|
|
26
|
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
27
|
+
project_root = os.path.dirname(current_dir)
|
|
28
|
+
fl = os.path.join(project_root, 'data', 'other', 'HC032A18_exploded.zoo')
|
|
29
|
+
data = zload(fl)
|
|
30
|
+
knee = data['RKneeAngles_x']['line']
|
|
31
|
+
hip = data['RHipAngles_x']['line']
|
|
32
|
+
knee_pa = phase_angle_line(knee)
|
|
33
|
+
hip_pa = phase_angle_line(hip)
|
|
34
|
+
crp = continuous_relative_phase_line(knee_pa, hip_pa)
|
|
35
|
+
plt.plot(crp)
|
|
36
|
+
plt.show()
|
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
from biomechzoo.biomech_ops.filter_line import filter_line
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def filter_data(data, ch, filt=None):
|
|
5
|
+
"""
|
|
6
|
+
Filter one or more channels from a zoo data dictionary using specified filter parameters.
|
|
7
|
+
|
|
8
|
+
Arguments
|
|
9
|
+
----------
|
|
10
|
+
data : dict
|
|
11
|
+
The zoo data dictionary containing signal channels.
|
|
12
|
+
ch : str or list of str
|
|
13
|
+
The name(s) of the channel(s) to filter.
|
|
14
|
+
filt : dict, optional
|
|
15
|
+
Dictionary specifying filter parameters. Keys may include:
|
|
16
|
+
- 'ftype': 'butter' (default)
|
|
17
|
+
- 'order': filter order (default: 4)
|
|
18
|
+
- 'cutoff': cutoff frequency or tuple (Hz)
|
|
19
|
+
- 'btype': 'low', 'high', 'bandpass', 'bandstop' (default: 'lowpass')
|
|
20
|
+
|
|
21
|
+
Returns
|
|
22
|
+
-------
|
|
23
|
+
dict
|
|
24
|
+
The updated data dictionary with filtered channels.
|
|
25
|
+
"""
|
|
26
|
+
|
|
27
|
+
if filt is None:
|
|
28
|
+
filt = {'ftype': 'butter',
|
|
29
|
+
'order': 4,
|
|
30
|
+
'cutoff': 10,
|
|
31
|
+
'btype': 'lowpass',
|
|
32
|
+
'filtfilt': True}
|
|
33
|
+
|
|
34
|
+
if isinstance(ch, str):
|
|
35
|
+
ch = [ch]
|
|
36
|
+
|
|
37
|
+
# loop through all channels and filter
|
|
38
|
+
for c in ch:
|
|
39
|
+
if c not in data:
|
|
40
|
+
raise KeyError('Channel {} not found in data'.format(c))
|
|
41
|
+
|
|
42
|
+
if 'fs' not in filt:
|
|
43
|
+
|
|
44
|
+
video_channels = data['zoosystem']['Video']['Channels']
|
|
45
|
+
analog_channels = data['zoosystem']['Analog']['Channels']
|
|
46
|
+
|
|
47
|
+
if c in analog_channels:
|
|
48
|
+
filt['fs'] = data['zoosystem']['Analog']['Freq']
|
|
49
|
+
elif c in video_channels:
|
|
50
|
+
filt['fs'] = data['zoosystem']['Video']['Freq']
|
|
51
|
+
else:
|
|
52
|
+
raise ValueError('Channel not analog or video')
|
|
53
|
+
|
|
54
|
+
signal_raw = data[c]['line']
|
|
55
|
+
signal_filtered = filter_line(signal_raw=signal_raw, filt=filt)
|
|
56
|
+
data[c]['line'] = signal_filtered
|
|
57
|
+
|
|
58
|
+
return data
|
|
@@ -0,0 +1,85 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import scipy.signal as sgl
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def filter_line(signal_raw, filt=None, fs=None):
|
|
6
|
+
"""Filter an array using a Butterworth filter."""
|
|
7
|
+
#todo: verify that filter is working correctly
|
|
8
|
+
#todo add more filters
|
|
9
|
+
#todo: consider using kineticstoolkit
|
|
10
|
+
|
|
11
|
+
if filt is None:
|
|
12
|
+
filt = {'ftype': 'butter',
|
|
13
|
+
'order': 4,
|
|
14
|
+
'cutoff': 10,
|
|
15
|
+
'btype': 'lowpass',
|
|
16
|
+
'filtfilt': True}
|
|
17
|
+
if fs is None:
|
|
18
|
+
raise ValueError('fs is required if no filt is specified')
|
|
19
|
+
|
|
20
|
+
else:
|
|
21
|
+
if 'fs' not in filt:
|
|
22
|
+
raise ValueError('fs is a required key of filt')
|
|
23
|
+
|
|
24
|
+
# Normalize filter type strings
|
|
25
|
+
if filt['ftype'] == 'butterworth':
|
|
26
|
+
filt['ftype'] = 'butter'
|
|
27
|
+
if filt['btype'] is 'low':
|
|
28
|
+
filt['btype'] = 'lowpass'
|
|
29
|
+
if filt['btype'] is 'high':
|
|
30
|
+
filt['btype'] = 'highpass'
|
|
31
|
+
|
|
32
|
+
# Extract parameters
|
|
33
|
+
ftype = filt['ftype']
|
|
34
|
+
order = filt['order']
|
|
35
|
+
cutoff = filt['cutoff']
|
|
36
|
+
btype = filt['btype']
|
|
37
|
+
filtfilt = filt['filtfilt']
|
|
38
|
+
fs = filt['fs']
|
|
39
|
+
|
|
40
|
+
# prepare normalized cutoff(s)
|
|
41
|
+
nyq = 0.5 * fs
|
|
42
|
+
norm_cutoff = np.atleast_1d(np.array(cutoff) / nyq)
|
|
43
|
+
|
|
44
|
+
if ftype is 'butter':
|
|
45
|
+
signal_filtered = kt_butter(ts=signal_raw, fc=norm_cutoff, fs=fs, order=order, btype=btype, filtfilt=filtfilt)
|
|
46
|
+
else:
|
|
47
|
+
raise NotImplementedError(f"Filter type '{ftype}' not implemented.")
|
|
48
|
+
|
|
49
|
+
return signal_filtered
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def kt_butter(ts, fc, fs, order=2, btype='lowpass', filtfilt=True):
|
|
53
|
+
"""
|
|
54
|
+
Apply a Butterworth filter to data.
|
|
55
|
+
|
|
56
|
+
Parameters
|
|
57
|
+
----------
|
|
58
|
+
ts, ndarray, 1d.
|
|
59
|
+
fc, Cut-off frequency in Hz. This is a float for single-frequency filters
|
|
60
|
+
(lowpass, highpass), or a tuple of two floats (e.g., (10., 13.)
|
|
61
|
+
for two-frequency filters (bandpass, bandstop)).
|
|
62
|
+
order, Optional. Order of the filter. Default is 2.
|
|
63
|
+
btype, Optional. Can be either "lowpass", "highpass", "bandpass" or
|
|
64
|
+
"bandstop". Default is "lowpass".
|
|
65
|
+
filtfilt, Optional. If True, the filter is applied two times in reverse direction
|
|
66
|
+
to eliminate time lag. If False, the filter is applied only in forward
|
|
67
|
+
direction. Default is True.
|
|
68
|
+
|
|
69
|
+
Returns
|
|
70
|
+
-------
|
|
71
|
+
ts_f, A copy of the input data which each data being filtered.
|
|
72
|
+
|
|
73
|
+
Notes:
|
|
74
|
+
- This code was adapted from kineticstoolkit Thanks @felxi
|
|
75
|
+
"""
|
|
76
|
+
|
|
77
|
+
sos = sgl.butter(order, fc, btype, analog=False, output="sos", fs=fs)
|
|
78
|
+
|
|
79
|
+
# Filter
|
|
80
|
+
if filtfilt:
|
|
81
|
+
ts_f = sgl.sosfiltfilt(sos, ts, axis=0)
|
|
82
|
+
else:
|
|
83
|
+
ts_f = sgl.sosfilt(sos,ts, axis=0)
|
|
84
|
+
|
|
85
|
+
return ts_f
|
|
@@ -0,0 +1,53 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def movement_onset(yd, constant, etype):
|
|
5
|
+
"""
|
|
6
|
+
Extracts movement onset based on the average and standard deviation of a sliding window
|
|
7
|
+
Standard thresholds for running are mean_thresh=1.2, std_thresh=0.2. For walking mean_thresh=0.6, std_thresh=0.2.
|
|
8
|
+
|
|
9
|
+
yd: 1d array of the vector
|
|
10
|
+
constants: [sample_frequency, mean_thresh, std_thresh]
|
|
11
|
+
"""
|
|
12
|
+
acc_mag = yd.copy()
|
|
13
|
+
|
|
14
|
+
# ----extract the constants----
|
|
15
|
+
fs = constant[0]
|
|
16
|
+
mean_thresh = constant[1]
|
|
17
|
+
std_thresh = constant[2]
|
|
18
|
+
|
|
19
|
+
# ----sliding window features----
|
|
20
|
+
features = []
|
|
21
|
+
timestamps = []
|
|
22
|
+
window_size = 2 * fs # windows van 2 seconds
|
|
23
|
+
step_size = 1 * fs # with an overlap of 1 seconds
|
|
24
|
+
min_duration = 3 # minimal duration in sec that the thresholds needs to be surpassed
|
|
25
|
+
|
|
26
|
+
for start in range(0, len(acc_mag) - window_size, step_size):
|
|
27
|
+
segment = acc_mag[start:start + window_size]
|
|
28
|
+
mean_val = segment.mean()
|
|
29
|
+
std_val = segment.std()
|
|
30
|
+
# entropy = -np.sum((segment / np.sum(segment)) * np.log2(segment / np.sum(segment) + 1e-12))
|
|
31
|
+
timestamps.append(start)
|
|
32
|
+
features.append((mean_val, std_val))
|
|
33
|
+
|
|
34
|
+
features = np.array(features)
|
|
35
|
+
timestamps = np.array(timestamps)
|
|
36
|
+
index = None
|
|
37
|
+
# ----Check already moving else find start----
|
|
38
|
+
initial_window = features[:5] # First few seconds
|
|
39
|
+
if np.all(initial_window[:, 0] > mean_thresh) and np.all(initial_window[:, 1] > std_thresh):
|
|
40
|
+
print("already moving")
|
|
41
|
+
if etype == 'movement_offset':
|
|
42
|
+
index = 0
|
|
43
|
+
else:
|
|
44
|
+
movement_flags = (features[:, 0] > mean_thresh) & (features[:, 1] > std_thresh)
|
|
45
|
+
for i in range(len(movement_flags) - int(min_duration * fs / 50)):
|
|
46
|
+
if np.all(movement_flags[i:i + int(min_duration * fs / 50)]):
|
|
47
|
+
index = i
|
|
48
|
+
break
|
|
49
|
+
|
|
50
|
+
if etype == 'movement_offset':
|
|
51
|
+
index = len(yd) - index
|
|
52
|
+
|
|
53
|
+
return timestamps[index] if index is not None else timestamps[0]
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
import warnings
|
|
2
|
+
import copy
|
|
3
|
+
from biomechzoo.biomech_ops.normalize_line import normalize_line
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def normalize_data(data, nlength=101):
|
|
7
|
+
"""normalize all channels in the loaded zoo dict to nlen.
|
|
8
|
+
Arguments
|
|
9
|
+
data: dict, loaded zoo file
|
|
10
|
+
nlength: int: new length of data. Default = 101, usually a movement cycle
|
|
11
|
+
Returns:
|
|
12
|
+
None
|
|
13
|
+
Notes:
|
|
14
|
+
-It is often needed to partition data to a single cycle first (see partition_data)
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
# normalize channel length
|
|
18
|
+
data_new = copy.deepcopy(data)
|
|
19
|
+
for ch_name, ch_data in data_new.items():
|
|
20
|
+
if ch_name != 'zoosystem':
|
|
21
|
+
ch_data_line = ch_data['line']
|
|
22
|
+
ch_data_event = ch_data['event']
|
|
23
|
+
ch_data_normalized = normalize_line(ch_data_line, nlength)
|
|
24
|
+
data_new[ch_name]['line'] = ch_data_normalized
|
|
25
|
+
data_new[ch_name]['event'] = ch_data_event
|
|
26
|
+
warnings.warn('event data have not been normalized')
|
|
27
|
+
|
|
28
|
+
# update zoosystem
|
|
29
|
+
# todo: update all relevant zoosystem meta data related to data lengths
|
|
30
|
+
warnings.warn('zoosystem data have not been fully updated')
|
|
31
|
+
if 'Video' in data['zoosystem']:
|
|
32
|
+
data['zoosystem']['Video']['CURRENT_END_FRAME'] = nlength
|
|
33
|
+
if 'Analog' in data['zoosystem']:
|
|
34
|
+
data['zoosystem']['Analog']['CURRENT_END_FRAME'] = nlength
|
|
35
|
+
|
|
36
|
+
return data_new
|
|
@@ -0,0 +1,51 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from scipy.interpolate import interp1d
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def normalize_line(channel_data, nlength=101):
|
|
6
|
+
"""
|
|
7
|
+
Channel-level: interpolate channel data to target length.
|
|
8
|
+
Assumes channel_data is a 1D or 2D numpy array.
|
|
9
|
+
"""
|
|
10
|
+
original_length = channel_data.shape[0]
|
|
11
|
+
|
|
12
|
+
if original_length == nlength:
|
|
13
|
+
return channel_data
|
|
14
|
+
|
|
15
|
+
x_original = np.linspace(0, 1, original_length)
|
|
16
|
+
x_target = np.linspace(0, 1, nlength)
|
|
17
|
+
|
|
18
|
+
if channel_data.ndim == 1:
|
|
19
|
+
f = interp1d(x_original, channel_data, kind='linear')
|
|
20
|
+
channel_data_norm = f(x_target)
|
|
21
|
+
else:
|
|
22
|
+
channel_data_norm = np.zeros((nlength, channel_data.shape[1]))
|
|
23
|
+
for i in range(channel_data.shape[1]):
|
|
24
|
+
f = interp1d(x_original, channel_data[:, i], kind='linear')
|
|
25
|
+
channel_data_norm[:, i] = f(x_target)
|
|
26
|
+
|
|
27
|
+
return channel_data_norm
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
if __name__ == '__main__':
|
|
33
|
+
# --- 1D TESTS ---
|
|
34
|
+
data_1d = np.array([0, 1, 2, 3, 4])
|
|
35
|
+
print("Original 1D shape:", data_1d.shape)
|
|
36
|
+
|
|
37
|
+
# Case 1: same length
|
|
38
|
+
same = normalize_line(data_1d, nlength=5)
|
|
39
|
+
print("Same length test passed:", np.allclose(same, data_1d))
|
|
40
|
+
|
|
41
|
+
# Case 2: upsample
|
|
42
|
+
upsampled = normalize_line(data_1d, nlength=10)
|
|
43
|
+
print("Upsampled 1D shape:", upsampled.shape)
|
|
44
|
+
print("Upsampled 1D first/last values:", upsampled[0], upsampled[-1])
|
|
45
|
+
|
|
46
|
+
# Case 3: downsample
|
|
47
|
+
downsampled = normalize_line(data_1d, nlength=3)
|
|
48
|
+
print("Downsampled 1D shape:", downsampled.shape)
|
|
49
|
+
print("Downsampled 1D first/last values:", downsampled[0], downsampled[-1])
|
|
50
|
+
|
|
51
|
+
print("\nAll tests completed.")
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
from biomechzoo.biomech_ops.phase_angle_line import phase_angle_line
|
|
2
|
+
from biomechzoo.processing.addchannel_data import addchannel_data
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def phase_angle_data(data, channels):
|
|
6
|
+
"""Compute phase angle using Hilbert Transform.
|
|
7
|
+
Arguments
|
|
8
|
+
data: dict, zoo data to operate on
|
|
9
|
+
channels, list. Channel names on which to apply calculations
|
|
10
|
+
Returns:
|
|
11
|
+
data: dict, zoo data with calculations appended to new channel(s)
|
|
12
|
+
"""
|
|
13
|
+
data_new = data.copy()
|
|
14
|
+
for ch in channels:
|
|
15
|
+
if ch not in data_new:
|
|
16
|
+
raise ValueError('Channel {} not in data. Available keys: {}'.format(ch, list(data_new.keys())))
|
|
17
|
+
r = data_new[ch]['line']
|
|
18
|
+
phase_angle = phase_angle_line(r)
|
|
19
|
+
ch_new = ch + '_phase_angle'
|
|
20
|
+
data_new = addchannel_data(data_new, ch_new_name=ch_new, ch_new_data=phase_angle)
|
|
21
|
+
return data_new
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
if __name__ == '__main__':
|
|
25
|
+
# -------TESTING--------
|
|
26
|
+
import os
|
|
27
|
+
from biomechzoo.utils.zload import zload
|
|
28
|
+
from biomechzoo.utils.zplot import zplot
|
|
29
|
+
# get path to sample zoo file
|
|
30
|
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
31
|
+
project_root = os.path.dirname(current_dir)
|
|
32
|
+
fl = os.path.join(project_root, 'data', 'other', 'HC032A18_exploded.zoo')
|
|
33
|
+
|
|
34
|
+
# load zoo file
|
|
35
|
+
data = zload(fl)
|
|
36
|
+
data = data['data']
|
|
37
|
+
data = phase_angle_data(data, channels=['RKneeAngles_x', 'RHipAngles_x'])
|
|
38
|
+
zplot(data, 'RKneeAngles_x_phase_angle')
|
|
39
|
+
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from scipy.signal import hilbert
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def phase_angle_line(r):
|
|
6
|
+
"""
|
|
7
|
+
Computes the phase angle for a single kinematic waveform using the Hilbert transform method.
|
|
8
|
+
|
|
9
|
+
Parameters:
|
|
10
|
+
r : array_like
|
|
11
|
+
(n, 1) array of kinematic data (e.g., joint or segment angle)
|
|
12
|
+
|
|
13
|
+
Returns:
|
|
14
|
+
PA_data : ndarray
|
|
15
|
+
1D array of phase angle (in degrees) computed from input using the Hilbert transform.
|
|
16
|
+
|
|
17
|
+
Reference:
|
|
18
|
+
Lamb and Stöckl (2014). "On the use of continuous relative phase..."
|
|
19
|
+
Clinical Biomechanics. https://doi.org/10.1016/j.clinbiomech.2014.03.008
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
# Step 1: Center the data around zero as per Lamb and Stöckl eq. 11
|
|
23
|
+
cdata = r - np.min(r) - (np.max(r) - np.min(r)) / 2
|
|
24
|
+
|
|
25
|
+
# Step 2: Hilbert transform
|
|
26
|
+
X = hilbert(cdata)
|
|
27
|
+
|
|
28
|
+
# Step 3: Phase angle calculation
|
|
29
|
+
PA = np.rad2deg(np.arctan2(np.imag(X), np.real(X)))
|
|
30
|
+
|
|
31
|
+
return PA
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
if __name__ == '__main__':
|
|
35
|
+
# -------TESTING--------
|
|
36
|
+
import os
|
|
37
|
+
from biomechzoo.utils.zload import zload
|
|
38
|
+
from matplotlib import pyplot as plt
|
|
39
|
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
40
|
+
project_root = os.path.dirname(current_dir)
|
|
41
|
+
fl = os.path.join(project_root, 'data', 'other', 'HC032A18_exploded.zoo')
|
|
42
|
+
data = zload(fl)
|
|
43
|
+
print(data)
|
|
44
|
+
r = data['RKneeAngles_x']['line']
|
|
45
|
+
phase_angle = phase_angle_line(r)
|
|
46
|
+
plt.plot(phase_angle)
|
|
47
|
+
plt.show()
|
|
48
|
+
|