bigdl-core-npu 2.6.0b20241112__cp310-cp310-win_amd64.whl → 2.6.0b20241114__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (95) hide show
  1. {bigdl_core_npu-2.6.0b20241112.dist-info → bigdl_core_npu-2.6.0b20241114.dist-info}/METADATA +1 -1
  2. {bigdl_core_npu-2.6.0b20241112.dist-info → bigdl_core_npu-2.6.0b20241114.dist-info}/RECORD +95 -85
  3. intel_npu_acceleration_library/_version.py +1 -1
  4. intel_npu_acceleration_library/backend/bindings.py +10 -0
  5. intel_npu_acceleration_library/backend/factory.py +2 -26
  6. intel_npu_acceleration_library/backend/tensor.py +69 -0
  7. intel_npu_acceleration_library/device.py +2 -2
  8. intel_npu_acceleration_library/dtypes.py +34 -1
  9. intel_npu_acceleration_library/external/openvino/_offline_transformations/__init__.py +1 -0
  10. intel_npu_acceleration_library/external/openvino/_pyopenvino.cp310-win_amd64.pyd +0 -0
  11. intel_npu_acceleration_library/external/openvino/_pyopenvino.cp311-win_amd64.pyd +0 -0
  12. intel_npu_acceleration_library/external/openvino/_pyopenvino.cp312-win_amd64.pyd +0 -0
  13. intel_npu_acceleration_library/external/openvino/_pyopenvino.cp38-win_amd64.pyd +0 -0
  14. intel_npu_acceleration_library/external/openvino/_pyopenvino.cp39-win_amd64.pyd +0 -0
  15. intel_npu_acceleration_library/external/openvino/frontend/jax/__init__.py +15 -0
  16. intel_npu_acceleration_library/external/openvino/frontend/jax/jaxpr_decoder.py +283 -0
  17. intel_npu_acceleration_library/external/openvino/frontend/jax/py_jax_frontend.cp310-win_amd64.pyd +0 -0
  18. intel_npu_acceleration_library/external/openvino/frontend/jax/py_jax_frontend.cp311-win_amd64.pyd +0 -0
  19. intel_npu_acceleration_library/external/openvino/frontend/jax/py_jax_frontend.cp312-win_amd64.pyd +0 -0
  20. intel_npu_acceleration_library/external/openvino/frontend/jax/py_jax_frontend.cp38-win_amd64.pyd +0 -0
  21. intel_npu_acceleration_library/external/openvino/frontend/jax/py_jax_frontend.cp39-win_amd64.pyd +0 -0
  22. intel_npu_acceleration_library/external/openvino/frontend/jax/utils.py +129 -0
  23. intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp310-win_amd64.pyd +0 -0
  24. intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp311-win_amd64.pyd +0 -0
  25. intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp312-win_amd64.pyd +0 -0
  26. intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp38-win_amd64.pyd +0 -0
  27. intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp39-win_amd64.pyd +0 -0
  28. intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp310-win_amd64.pyd +0 -0
  29. intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp311-win_amd64.pyd +0 -0
  30. intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp312-win_amd64.pyd +0 -0
  31. intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp38-win_amd64.pyd +0 -0
  32. intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp39-win_amd64.pyd +0 -0
  33. intel_npu_acceleration_library/external/openvino/frontend/pytorch/fx_decoder.py +8 -0
  34. intel_npu_acceleration_library/external/openvino/frontend/pytorch/gptq.py +1 -1
  35. intel_npu_acceleration_library/external/openvino/frontend/pytorch/patch_model.py +28 -8
  36. intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp310-win_amd64.pyd +0 -0
  37. intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp311-win_amd64.pyd +0 -0
  38. intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp312-win_amd64.pyd +0 -0
  39. intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp38-win_amd64.pyd +0 -0
  40. intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp39-win_amd64.pyd +0 -0
  41. intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/op_support.py +1 -0
  42. intel_npu_acceleration_library/external/openvino/frontend/pytorch/ts_decoder.py +3 -0
  43. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp310-win_amd64.pyd +0 -0
  44. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp311-win_amd64.pyd +0 -0
  45. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp312-win_amd64.pyd +0 -0
  46. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp38-win_amd64.pyd +0 -0
  47. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp39-win_amd64.pyd +0 -0
  48. intel_npu_acceleration_library/external/openvino/helpers/packing.py +4 -4
  49. intel_npu_acceleration_library/external/openvino/preprocess/__init__.py +2 -0
  50. intel_npu_acceleration_library/external/openvino/preprocess/torchvision/requirements.txt +1 -0
  51. intel_npu_acceleration_library/external/openvino/properties/__init__.py +1 -0
  52. intel_npu_acceleration_library/external/openvino/runtime/op/__init__.py +1 -0
  53. intel_npu_acceleration_library/external/openvino/runtime/opset1/ops.py +2 -1
  54. intel_npu_acceleration_library/external/openvino/runtime/opset13/ops.py +5 -6
  55. intel_npu_acceleration_library/external/openvino/runtime/opset15/__init__.py +2 -0
  56. intel_npu_acceleration_library/external/openvino/runtime/opset15/ops.py +62 -1
  57. intel_npu_acceleration_library/external/openvino/runtime/opset6/ops.py +60 -43
  58. intel_npu_acceleration_library/external/openvino/runtime/opset8/ops.py +4 -0
  59. intel_npu_acceleration_library/external/openvino/runtime/properties/__init__.py +1 -0
  60. intel_npu_acceleration_library/external/openvino/runtime/utils/decorators.py +67 -1
  61. intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/inputs_filling.py +9 -9
  62. intel_npu_acceleration_library/external/openvino/tools/ovc/convert_impl.py +16 -2
  63. intel_npu_acceleration_library/external/openvino/tools/ovc/main.py +5 -0
  64. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/jax_frontend_utils.py +19 -0
  65. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/pipeline.py +68 -16
  66. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/pytorch_frontend_utils.py +70 -60
  67. intel_npu_acceleration_library/external/openvino/tools/ovc/utils.py +90 -3
  68. intel_npu_acceleration_library/external/openvino/utils.py +17 -0
  69. intel_npu_acceleration_library/lib/Release/intel_npu_acceleration_library.dll +0 -0
  70. intel_npu_acceleration_library/lib/Release/openvino.dll +0 -0
  71. intel_npu_acceleration_library/lib/Release/openvino_auto_batch_plugin.dll +0 -0
  72. intel_npu_acceleration_library/lib/Release/openvino_auto_plugin.dll +0 -0
  73. intel_npu_acceleration_library/lib/Release/openvino_c.dll +0 -0
  74. intel_npu_acceleration_library/lib/Release/openvino_hetero_plugin.dll +0 -0
  75. intel_npu_acceleration_library/lib/Release/openvino_intel_cpu_plugin.dll +0 -0
  76. intel_npu_acceleration_library/lib/Release/openvino_intel_gpu_plugin.dll +0 -0
  77. intel_npu_acceleration_library/lib/Release/openvino_intel_npu_plugin.dll +0 -0
  78. intel_npu_acceleration_library/lib/Release/openvino_ir_frontend.dll +0 -0
  79. intel_npu_acceleration_library/lib/Release/openvino_jax_frontend.dll +0 -0
  80. intel_npu_acceleration_library/lib/Release/openvino_onnx_frontend.dll +0 -0
  81. intel_npu_acceleration_library/lib/Release/openvino_paddle_frontend.dll +0 -0
  82. intel_npu_acceleration_library/lib/Release/openvino_pytorch_frontend.dll +0 -0
  83. intel_npu_acceleration_library/lib/Release/openvino_tensorflow_frontend.dll +0 -0
  84. intel_npu_acceleration_library/lib/Release/openvino_tensorflow_lite_frontend.dll +0 -0
  85. intel_npu_acceleration_library/lib/Release/tbb12.dll +0 -0
  86. intel_npu_acceleration_library/lib/Release/tbb12_debug.dll +0 -0
  87. intel_npu_acceleration_library/lib/Release/tbbbind_2_5.dll +0 -0
  88. intel_npu_acceleration_library/lib/Release/tbbbind_2_5_debug.dll +0 -0
  89. intel_npu_acceleration_library/lib/Release/tbbmalloc.dll +0 -0
  90. intel_npu_acceleration_library/lib/Release/tbbmalloc_debug.dll +0 -0
  91. intel_npu_acceleration_library/lib/Release/tbbmalloc_proxy.dll +0 -0
  92. intel_npu_acceleration_library/lib/Release/tbbmalloc_proxy_debug.dll +0 -0
  93. intel_npu_acceleration_library/nn/module.py +17 -17
  94. {bigdl_core_npu-2.6.0b20241112.dist-info → bigdl_core_npu-2.6.0b20241114.dist-info}/WHEEL +0 -0
  95. {bigdl_core_npu-2.6.0b20241112.dist-info → bigdl_core_npu-2.6.0b20241114.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,283 @@
1
+ # Copyright (C) 2018-2024 Intel Corporation
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # flake8: noqa
5
+ # mypy: ignore-errors
6
+
7
+ import jax.core
8
+ from openvino.frontend.jax.py_jax_frontend import _FrontEndJaxDecoder as Decoder
9
+ from openvino.runtime import PartialShape, Type as OVType, OVAny
10
+ from openvino.frontend.jax.utils import jax_array_to_ov_const, get_ov_type_for_value, \
11
+ ivalue_to_constant
12
+
13
+ import jax
14
+ import numpy as np
15
+
16
+ from typing import List
17
+ import logging
18
+ logger = logging.getLogger(__name__)
19
+ logger.setLevel(logging.WARNING)
20
+
21
+ class JaxprPythonDecoder (Decoder):
22
+ '''
23
+ The jaxpr decoder uses Jaxpr to get graph information from a jax module.
24
+ It takes use of the following parts.
25
+
26
+ - `ClosedJaxpr`: the jaxpr object that contains the jaxpr and literals.
27
+ - `Jaxpr`: the jaxpr object that contains the invars, outvars, and eqns.
28
+ - `JaxEqns`: A list of jaxpr equations, which contains the information of the operation.
29
+ - `Primitive`: the operation that is used in the equation.
30
+ - `invars`: the input variables of the equation.
31
+ - `aval`: the abstract value.
32
+ - `outvars`: the output variables of the equation.
33
+ - `aval`: the abstract value.
34
+ - `params`: the named params of this equation.
35
+ - `invars`: the inputs of the model (traced graph).
36
+ - `aval`: the abstract value.
37
+ - `outvars`: the outputs of the model (traced graph).
38
+ - `aval`: the abstract value.
39
+ - `constvars`: the constant variables used in this model.
40
+ - `aval`: the abstract value.
41
+ - `Literal`: the literal object that contains the value of the constants.
42
+ '''
43
+
44
+ def __init__(self, jaxpr, name=None, literals=None):
45
+ '''
46
+ Inputs:
47
+ - jaxpr: for users, `ClosedJaxpr` is expected here. See https://github.com/google/jax/blob/jaxlib-v0.4.29/jax/_src/core.py#L197
48
+ - name: the name for the model.
49
+ - literals: the literals (constants) that are used in the model.
50
+ '''
51
+ Decoder.__init__(self)
52
+
53
+ if isinstance(jaxpr, (jax.core.JaxprEqn, jax.core.Jaxpr)):
54
+ self.jaxpr = jaxpr
55
+ elif isinstance(jaxpr, jax.core.ClosedJaxpr):
56
+ # Take the `Jaxpr` from `ClosedJaxpr`, see https://github.com/google/jax/blob/jaxlib-v0.4.29/jax/_src/core.py#L85
57
+ self.jaxpr = jaxpr.jaxpr
58
+ # Literal should be a `Jax.core.Var`, see https://github.com/google/jax/blob/jaxlib-v0.4.29/jax/_src/core.py#L85
59
+ self.literals = jaxpr.literals
60
+ else:
61
+ raise ValueError(f"Unexpected type of jaxpr: {type(jaxpr)}")
62
+ self.name = name
63
+ if self.name is None:
64
+ self.name = "jax_module"
65
+ if literals is not None:
66
+ self.literals = literals
67
+
68
+ self.params = {}
69
+ if hasattr(self.jaxpr, 'params') and isinstance(self.jaxpr.params, dict):
70
+ for k in self.jaxpr.params.keys():
71
+ self.params[k] = self.convert_param_to_constant_node(self.jaxpr, k)
72
+
73
+ # TODO: this implementation may lead to memory increasing. Any better solution?
74
+ self.m_decoders = []
75
+
76
+ def inputs(self) -> List[int]:
77
+ if isinstance(self.jaxpr, jax.core.JaxprEqn):
78
+ idx = 0
79
+ res = []
80
+ for inp in self.jaxpr.invars:
81
+ if isinstance(inp, jax.core.Literal):
82
+ res.append(self.literals[idx].output(0))
83
+ idx += 1
84
+ else:
85
+ res.append(id(inp))
86
+ return res
87
+ else:
88
+ return [id(v) for v in self.jaxpr.invars]
89
+
90
+ def input(self, idx: int) -> int:
91
+ return id(self.jaxpr.invars[idx])
92
+
93
+ def get_input_shape(self, index):
94
+ return PartialShape(self.jaxpr.invars[index].aval.shape)
95
+
96
+ def get_input_signature_name(self, index) -> str:
97
+ return "jaxpr_invar_" + str(index)
98
+
99
+ def get_input_type(self, index) -> OVType:
100
+ return get_ov_type_for_value(self.jaxpr.invars[index])
101
+
102
+ def get_named_param(self, name):
103
+ '''
104
+ Get the object id of the named parameter by the name.
105
+ '''
106
+ return self.params[name].output(0)
107
+
108
+ def get_named_param_as_constant(self, name):
109
+ '''
110
+ The named parameter in JAX is a python object but we want to use its value in cpp.
111
+ Therefore this API is used to get the named parameter as a constant, which can be used
112
+ to extract the value of it in cpp-level.
113
+ '''
114
+ return self.params[name].as_constant()
115
+
116
+ def get_param_names(self):
117
+ '''
118
+ In JAX, the named parameters may exist in `params` attribute of `JaxEqn`.
119
+ For example, the `jax.lax.cat` operation has a named parameter `dim`,
120
+ which is used to indicate the dimension to concatenate the tensors.
121
+
122
+ Here we return the names of all the named params that appear in the model for the current `JaxEqn`.
123
+ '''
124
+ return list(self.params.keys())
125
+
126
+ def get_output_type(self, index) -> OVType:
127
+ return get_ov_type_for_value(self.jaxpr.outvars[index])
128
+
129
+ def get_output_name(self, index) -> str:
130
+ return "jaxpr_outvar_" + str(index)
131
+
132
+ def get_output_shape(self, index):
133
+ return PartialShape(self.jaxpr.outvars[index].aval.shape)
134
+
135
+ def visit_subgraph(self, node_visitor) -> None:
136
+ if isinstance(self.jaxpr, jax.core.JaxprEqn):
137
+ return
138
+ for _, decoder in self.params.items():
139
+ self.m_decoders.append(decoder)
140
+ node_visitor(decoder)
141
+ for idx, node in enumerate(self.jaxpr.constvars):
142
+ decoder = self.convert_literal_to_constant_node(
143
+ literal=self.literals[idx],
144
+ name=self.name + "/" + f"const({id(node)})",
145
+ output_id=id(node)
146
+ )
147
+ self.m_decoders.append(decoder)
148
+ node_visitor(decoder)
149
+ # Visit every `JaxEqn` in the jaxpr, see https://github.com/google/jax/blob/jaxlib-v0.4.29/jax/_src/core.py#L285
150
+ for node in self.jaxpr.eqns:
151
+ literal_decoders = []
152
+ for inp in node.invars:
153
+ if isinstance(inp, jax.core.Literal):
154
+ literal_decoder = self.convert_literal_to_constant_node(inp)
155
+ literal_decoders.append(literal_decoder)
156
+ node_visitor(literal_decoder)
157
+ decoder = JaxprPythonDecoder(node, name=self.name + "/" + node.primitive.name, literals=literal_decoders)
158
+ self.m_decoders.append(decoder)
159
+ node_visitor(decoder)
160
+
161
+ def get_op_type(self) -> str:
162
+ if isinstance(self.jaxpr, jax.core.JaxprEqn):
163
+ return self.jaxpr.primitive.name
164
+ else:
165
+ return "root"
166
+
167
+ def outputs(self) -> List[int]:
168
+ return [id(v) for v in self.jaxpr.outvars]
169
+
170
+ def output(self, idx: int) -> int:
171
+ return id(self.jaxpr.outvars[idx])
172
+
173
+ def num_inputs(self) -> int:
174
+ return len(self.jaxpr.invars)
175
+
176
+ def num_outputs(self) -> int:
177
+ return len(self.jaxpr.outvars)
178
+
179
+ def as_constant(self):
180
+ if self.get_op_type() == 'constant':
181
+ value = self.literals
182
+ # TODO: dig out how to share the memory.
183
+ # Currently, using shared_memory will raise `ValueError: array is not writeable``
184
+ ov_const = jax_array_to_ov_const(value, shared_memory=False)
185
+ return ov_const.outputs()
186
+ else:
187
+ raise ValueError("This is not a constant node so it cannot be converted to a constant.")
188
+
189
+ @staticmethod
190
+ def convert_param_to_constant_node(jaxpr, param):
191
+ assert hasattr(jaxpr, 'params'), "The jaxpr does not have params."
192
+ constant = ivalue_to_constant(jaxpr.params[param], shared_memory=False)
193
+ return _JaxprPythonConstantDecoder(constant=constant)
194
+
195
+ @staticmethod
196
+ def convert_literal_to_constant_node(literal, name=None, output_id=None):
197
+ if isinstance(literal, jax.core.Literal):
198
+ constant = ivalue_to_constant(literal.val, shared_memory=False)
199
+ elif isinstance(literal, (jax.Array, np.ndarray)):
200
+ constant = ivalue_to_constant(literal, shared_memory=False)
201
+ else:
202
+ raise TypeError( f"The input should be a literal or jax array, but got {type(literal)}.")
203
+ return _JaxprPythonConstantDecoder(constant=constant, name=name, output_id=output_id)
204
+
205
+ class _JaxprPythonConstantDecoder (Decoder):
206
+ def __init__(self, name=None, constant=None, output_id=None):
207
+ '''
208
+ A decoder specially for constants and named parameters.
209
+
210
+ Inputs:
211
+ - name: the name for the model.
212
+ - literals: the literals (constants) that are used in the model.
213
+ - output_id: the id specified for this decoder's output. If none, use `id(self.constant)`.
214
+ '''
215
+ Decoder.__init__(self)
216
+
217
+ self.name = name
218
+ self.constant = constant
219
+ self.output_id = id(self.constant) if output_id is None else output_id
220
+
221
+ def inputs(self) -> List[int]:
222
+ return []
223
+
224
+ def input(self, idx: int) -> int:
225
+ raise ValueError("This is a constant node so it does not have input.")
226
+
227
+ def get_input_shape(self, index):
228
+ raise ValueError("This is a constant node so it does not have input shape.")
229
+
230
+ def get_input_signature_name(self, index) -> str:
231
+ raise ValueError("This is a constant node so it does not have input signature name.")
232
+
233
+ def get_input_type(self, index) -> OVType:
234
+ raise ValueError("This is a constant node so it does not have input type.")
235
+
236
+ def get_named_param(self, name):
237
+ raise ValueError("This is a constant node so it does not have named param.")
238
+
239
+ def get_named_param_as_constant(self, name):
240
+ raise ValueError("This is a constant node so it does not have named param.")
241
+
242
+ def get_param_names(self):
243
+ '''
244
+ In JAX, the named parameters may exist in `params` attribute of `JaxEqn`.
245
+ For example, the `jax.lax.cat` operation has a named parameter `dim`,
246
+ which is used to indicate the dimension to concatenate the tensors.
247
+
248
+ However, `_JaxprPythonConstantDecoder` is already a named param or a constant.
249
+ So it will never have a named param.
250
+ '''
251
+ return []
252
+
253
+ def get_output_type(self, index) -> OVType:
254
+ assert len(self.constant) == 1
255
+ return OVAny(self.constant[0].element_type)
256
+
257
+ def get_output_name(self, index) -> str:
258
+ return "jaxpr_outvar_" + str(index)
259
+
260
+ def get_output_shape(self, index):
261
+ assert len(self.constant) == 1
262
+ return PartialShape(self.constant[0].shape)
263
+
264
+ def visit_subgraph(self, node_visitor) -> None:
265
+ return
266
+
267
+ def get_op_type(self) -> str:
268
+ return "constant"
269
+
270
+ def outputs(self) -> List[int]:
271
+ return [self.output_id]
272
+
273
+ def output(self, idx: int) -> int:
274
+ return self.output_id
275
+
276
+ def num_inputs(self) -> int:
277
+ return 0
278
+
279
+ def num_outputs(self) -> int:
280
+ return 1
281
+
282
+ def as_constant(self):
283
+ return self.constant
@@ -0,0 +1,129 @@
1
+ # Copyright (C) 2018-2024 Intel Corporation
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # flake8: noqa
5
+ # mypy: ignore-errors
6
+
7
+ import jax
8
+ import numpy as np
9
+ import jax.numpy as jnp
10
+
11
+ from openvino.runtime import op, Type as OVType, Shape, OVAny
12
+
13
+ numpy_to_ov_type_map = {
14
+ np.float32: OVType.f32,
15
+ bool: OVType.boolean,
16
+ jax.dtypes.bfloat16: OVType.bf16, # TODO: check this
17
+ np.float16: OVType.f16,
18
+ np.float32: OVType.f32,
19
+ np.float64: OVType.f64,
20
+ np.uint8: OVType.u8,
21
+ np.int8: OVType.i8,
22
+ np.int16: OVType.i16,
23
+ np.int32: OVType.i32,
24
+ np.int64: OVType.i64,
25
+ }
26
+
27
+ jax_to_ov_type_map = {
28
+ jnp.float32: OVType.f32,
29
+ jnp.bfloat16: OVType.bf16, # TODO: check this
30
+ jnp.float16: OVType.f16,
31
+ jnp.float64: OVType.f64,
32
+ jnp.uint8: OVType.u8,
33
+ jnp.int8: OVType.i8,
34
+ jnp.int16: OVType.i16,
35
+ jnp.int32: OVType.i32,
36
+ jnp.int64: OVType.i64,
37
+ }
38
+
39
+ try:
40
+ jax_to_ov_type_map[jnp.bool] = OVType.boolean
41
+ except:
42
+ pass
43
+
44
+ basic_to_ov_type_map = {
45
+ int: OVType.i64,
46
+ float: OVType.f32,
47
+ bool: OVType.boolean,
48
+ }
49
+
50
+ ov_type_to_int_map = {
51
+ OVType.u8: 0,
52
+ OVType.i8: 1,
53
+ OVType.i16: 2,
54
+ OVType.i32: 3,
55
+ OVType.i64: 4,
56
+ OVType.f16: 5,
57
+ OVType.f32: 6,
58
+ OVType.f64: 7,
59
+ OVType.boolean: 11,
60
+ OVType.bf16: 15,
61
+ }
62
+
63
+ def get_type_from_py_type(value):
64
+ if isinstance(value, float):
65
+ return OVType.f32
66
+ if isinstance(value, bool):
67
+ return OVType.boolean
68
+ if isinstance(value, int):
69
+ return OVType.i64
70
+ return OVType.dynamic
71
+
72
+ def get_ov_type_for_value(value):
73
+ if isinstance(value, (jax.core.Var, jax.core.Literal)):
74
+ if value.aval.dtype in jax_to_ov_type_map:
75
+ return OVAny(jax_to_ov_type_map[value.aval.dtype])
76
+ for k, v in numpy_to_ov_type_map.items():
77
+ if value.aval.dtype == k:
78
+ return OVAny(v)
79
+ for k, v in basic_to_ov_type_map.items():
80
+ if isinstance(value.aval.dtype, k):
81
+ return OVAny(v)
82
+ elif isinstance(value, (int, float, bool)):
83
+ return OVAny(jax_to_ov_type_map[type(value)])
84
+ else:
85
+ raise NotImplementedError(f"dtype for {value} of type {type(value)} has not been supported yet.")
86
+
87
+ def get_ov_type_from_jax_type(dtype):
88
+ if dtype in jax_to_ov_type_map:
89
+ return OVAny(jax_to_ov_type_map[dtype])
90
+ for k, v in numpy_to_ov_type_map.items():
91
+ if dtype == k:
92
+ return OVAny(v)
93
+ for k, v in basic_to_ov_type_map.items():
94
+ if isinstance(dtype, k):
95
+ return OVAny(v)
96
+ return None
97
+
98
+ def jax_array_to_ov_const(arr: np.ndarray, shared_memory=True):
99
+ # TODO: deal with bfloat16 dtype here.
100
+ if isinstance(arr, np.ndarray):
101
+ return op.Constant(arr, shared_memory=shared_memory)
102
+ elif isinstance(arr, jax.Array):
103
+ return op.Constant(np.array(jax.device_get(arr)), shared_memory=shared_memory)
104
+ else:
105
+ raise ValueError(f"Constant is expected to be a numpy array or jax array but got {type(arr)}")
106
+
107
+ def ivalue_to_constant(ivalue, shared_memory=True):
108
+ '''
109
+ Convert a python object to an openvino constant.
110
+ '''
111
+ ov_type = get_type_from_py_type(ivalue)
112
+ if ov_type.is_static():
113
+ return op.Constant(ov_type, Shape([]), [ivalue]).outputs()
114
+
115
+ if isinstance(ivalue, (list, tuple)):
116
+ assert len(ivalue) > 0, "Can't deduce type for empty list"
117
+ ov_type = get_type_from_py_type(ivalue[0])
118
+ assert ov_type.is_static(), "Can't deduce type for list"
119
+ return op.Constant(ov_type, Shape([len(ivalue)]), ivalue).outputs()
120
+
121
+ if isinstance(ivalue, (jax.Array, np.ndarray)):
122
+ return jax_array_to_ov_const(ivalue, shared_memory=shared_memory).outputs()
123
+
124
+ ov_dtype_value = get_ov_type_from_jax_type(ivalue)
125
+ if ov_dtype_value is not None:
126
+ return op.Constant(OVType.i64, Shape([]), [ov_type_to_int_map[ov_dtype_value]]).outputs()
127
+
128
+ print(f"[WARNING][JAX FE] Cannot get constant from value {ivalue}")
129
+ return None
@@ -30,6 +30,7 @@ class TorchFXPythonDecoder (Decoder):
30
30
  self.input_shapes = input_shapes
31
31
 
32
32
  self._input_signature = []
33
+ self._example_input = None
33
34
 
34
35
  if issubclass(type(pt_module), torch.fx.graph_module.GraphModule):
35
36
 
@@ -316,6 +317,13 @@ class TorchFXPythonDecoder (Decoder):
316
317
  def num_of_outputs(self):
317
318
  return len(self.outputs())
318
319
 
320
+ def output_list_size(self):
321
+ max_out_id = -1
322
+ for user in self.pt_module.users:
323
+ if "<built-in function getitem>" == str(user.target) and max_out_id < user.args[1]:
324
+ max_out_id = user.args[1]
325
+ return max_out_id + 1
326
+
319
327
  def output(self, index):
320
328
  return self.outputs()[index]
321
329
 
@@ -32,7 +32,7 @@ def patched_forward(self, *args, **kwargs):
32
32
  x = args[0]
33
33
  dtype = x.dtype
34
34
  outshape = x.shape[:-1] + (self.width,)
35
- x = x.view(-1, x.shape[-1])
35
+ x = x.contiguous().view(-1, x.shape[-1])
36
36
  groups = self.qzeros.shape[0]
37
37
  height = self.qweight.shape[0]
38
38
 
@@ -30,6 +30,7 @@ def patch_model(model, module_extensions, orig_forward_name):
30
30
 
31
31
  if extension:
32
32
  # The Trampoline class is instantiated for every module replacement, so we can use class members individually for each module.
33
+
33
34
  class Trampoline(torch.autograd.Function):
34
35
  target_extension = extension
35
36
  original_module = m
@@ -83,16 +84,35 @@ def unpatch_model(model, orig_forward_name):
83
84
 
84
85
 
85
86
  def __make_16bit_traceable(model: torch.nn.Module):
86
- # Replace torch.nn.Linear with ModuleExtension and move other modules to fp32
87
- extensions = {torch.nn.Linear: ModuleExtension(
88
- torch.nn.Linear,
89
- "aten::linear",
90
- evaluate=lambda module, *args, **kwargs: torch.ones(
91
- list(args[0].shape[:-1]) + [module.out_features], dtype=torch.float32) * 0.5,
92
- convert=lambda module, target_op, *args, **kwargs: target_op(args[0], module.weight, module.bias))
87
+ """
88
+ Prepare a 16-bit PyTorch model for tracing with OpenVINO.
89
+ - Replace known list of modules with ModuleExtension.
90
+ - Convert other modules with weights to FP32.
91
+ """
92
+ extensions = {
93
+ torch.nn.Linear: ModuleExtension(
94
+ torch.nn.Linear, "ov_ext::linear",
95
+ evaluate=lambda module, *args, **kwargs: torch.full(
96
+ list(args[0].shape[:-1]) + [module.out_features], 0.5, dtype=torch.float32),
97
+ convert=lambda module, target_op, *args, **kwargs: target_op(args[0], module.weight, module.bias)),
98
+ torch.nn.Embedding: ModuleExtension(
99
+ torch.nn.Embedding, "ov_ext::embedding",
100
+ evaluate=lambda module, *args, **kwargs: torch.full(
101
+ list(args[0].shape) + [module.embedding_dim], 0.5, dtype=torch.float32),
102
+ convert=lambda module, target_op, *args, **kwargs: target_op(module.weight, args[0], module.padding_idx, module.scale_grad_by_freq, module.sparse)),
93
103
  }
104
+ try:
105
+ from transformers.pytorch_utils import Conv1D
106
+ extensions[Conv1D] = ModuleExtension(
107
+ Conv1D, "ov_ext::conv1d",
108
+ evaluate=lambda module, *args, **kwargs: torch.full(
109
+ list(args[0].shape[:-1]) + [module.nf], 0.5, dtype=torch.float32),
110
+ convert=lambda module, target_op, *args, **kwargs: target_op(args[0], module.weight, module.bias))
111
+ except:
112
+ pass
94
113
  patch_model(model, extensions,
95
114
  "_openvino_module_extension_patch_orig_forward")
96
115
  for _, module in model.named_modules():
97
- if module.__class__ not in extensions and hasattr(module, "weight") and module.weight.dtype in [torch.float16, torch.bfloat16]:
116
+ if module.__class__ not in extensions and (any([p.dtype in [torch.float16, torch.bfloat16] for p in module.parameters(False)])
117
+ or any([b.dtype in [torch.float16, torch.bfloat16] for b in module.buffers(False)])):
98
118
  module.float()
@@ -241,6 +241,7 @@ class OperatorSupport(OperatorSupport):
241
241
  "torch.ops.aten.transpose.int": None,
242
242
  "torch.ops.aten.tril.default": None,
243
243
  "torch.ops.aten.tril_.default": None,
244
+ "torch.ops.aten.triu.default": None,
244
245
  "torch.ops.aten.unbind.int": None,
245
246
  "torch.ops.aten.unfold.default": None,
246
247
  "torch.ops.aten.unsqueeze.default": None,
@@ -96,6 +96,7 @@ class TorchScriptPythonDecoder (Decoder):
96
96
  if isinstance(pt_module, torch.nn.Module):
97
97
  pt_module.eval()
98
98
  input_signature = None
99
+ input_parameters = None
99
100
  if isinstance(pt_module, torch.nn.Module) and not isinstance(pt_module, (torch.jit._trace.TopLevelTracedModule, torch.jit._script.RecursiveScriptModule)):
100
101
  # input params is dictionary contains input names and their signature values (type hints and default values if any)
101
102
  input_params = inspect.signature(pt_module.forward if hasattr(
@@ -150,8 +151,10 @@ class TorchScriptPythonDecoder (Decoder):
150
151
  scripted, preserved_attrs=preserved_attrs)
151
152
  else:
152
153
  f_model = scripted
154
+ self._example_input = input_parameters["example_inputs"] if input_parameters else None
153
155
  else:
154
156
  f_model = pt_module
157
+ self._example_input = example_inputs
155
158
 
156
159
  self._input_signature = input_signature
157
160
  return f_model
@@ -20,10 +20,10 @@ def pack_data(array: np.ndarray, type: Type) -> np.ndarray:
20
20
 
21
21
  :param array: numpy array with values to pack.
22
22
  :type array: numpy array
23
- :param type: Type to interpret the array values. Type must be u1, u4, i4 or nf4.
23
+ :param type: Type to interpret the array values. Type must be u1, u4, i4, nf4 or f4e2m1.
24
24
  :type type: openvino.runtime.Type
25
25
  """
26
- assert type in [Type.u1, Type.u4, Type.i4, Type.nf4], "Packing algorithm for the" "data types stored in 1, 2 or 4 bits"
26
+ assert type in [Type.u1, Type.u4, Type.i4, Type.nf4, Type.f4e2m1], "Packing algorithm for the" "data types stored in 1, 2 or 4 bits"
27
27
 
28
28
  minimum_regular_dtype = np.int8 if type == Type.i4 else np.uint8
29
29
  casted_to_regular_type = array.astype(dtype=minimum_regular_dtype, casting="unsafe")
@@ -57,12 +57,12 @@ def unpack_data(array: np.ndarray, type: Type, shape: Union[list, Shape]) -> np.
57
57
 
58
58
  :param array: numpy array to unpack.
59
59
  :type array: numpy array
60
- :param type: Type to extract from array values. Type must be u1, u4, i4 or nf4.
60
+ :param type: Type to extract from array values. Type must be u1, u4, i4, nf4 or f4e2m1.
61
61
  :type type: openvino.runtime.Type
62
62
  :param shape: the new shape for the unpacked array.
63
63
  :type shape: Union[list, openvino.runtime.Shape]
64
64
  """
65
- assert type in [Type.u1, Type.u4, Type.i4, Type.nf4], "Unpacking algorithm for the" "data types stored in 1, 2 or 4 bits"
65
+ assert type in [Type.u1, Type.u4, Type.i4, Type.nf4, Type.f4e2m1], "Unpacking algorithm for the" "data types stored in 1, 2 or 4 bits"
66
66
  unpacked = np.unpackbits(array.view(np.uint8))
67
67
  shape = list(shape)
68
68
  if type.bitwidth == 1:
@@ -24,3 +24,5 @@ from openvino._pyopenvino.preprocess import PreProcessSteps
24
24
  from openvino._pyopenvino.preprocess import PostProcessSteps
25
25
  from openvino._pyopenvino.preprocess import ColorFormat
26
26
  from openvino._pyopenvino.preprocess import ResizeAlgorithm
27
+ from openvino._pyopenvino.preprocess import PaddingMode
28
+
@@ -1,3 +1,4 @@
1
+ --extra-index-url https://download.pytorch.org/whl/cpu
1
2
  torch>=1.13
2
3
  torchvision; platform_machine == 'arm64' and python_version >= '3.8'
3
4
  torchvision; platform_machine != 'arm64'
@@ -5,6 +5,7 @@
5
5
  # Enums
6
6
  from openvino._pyopenvino.properties import Affinity
7
7
  from openvino._pyopenvino.properties import CacheMode
8
+ from openvino._pyopenvino.properties import WorkloadType
8
9
 
9
10
  # Properties
10
11
  import openvino._pyopenvino.properties as __properties
@@ -15,4 +15,5 @@ from openvino._pyopenvino.op import Parameter
15
15
  from openvino._pyopenvino.op import if_op
16
16
  from openvino._pyopenvino.op import loop
17
17
  from openvino._pyopenvino.op import tensor_iterator
18
+ from openvino._pyopenvino.op import read_value
18
19
  from openvino._pyopenvino.op import Result
@@ -31,7 +31,7 @@ from openvino.runtime.utils.types import (
31
31
  get_element_type_str,
32
32
  make_constant_node,
33
33
  )
34
-
34
+ from openvino.utils import deprecated
35
35
 
36
36
  _get_node_factory_opset1 = partial(_get_node_factory, "opset1")
37
37
 
@@ -1532,6 +1532,7 @@ def lstm_cell(
1532
1532
  return _get_node_factory_opset1().create("LSTMCell", node_inputs, attributes)
1533
1533
 
1534
1534
 
1535
+ @deprecated(version="2025.0", message="Use lstm_sequence from opset 5")
1535
1536
  @nameable_op
1536
1537
  def lstm_sequence(
1537
1538
  X: NodeInput,