bigdl-core-npu 2.6.0b20241105__cp311-cp311-win_amd64.whl → 2.6.0b20241108__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: bigdl-core-npu
3
- Version: 2.6.0b20241105
3
+ Version: 2.6.0b20241108
4
4
  Summary: Intel® NPU Acceleration Library
5
5
  Home-page: https://github.com/intel/intel-npu-acceleration-library
6
6
  Author: Alessandro Palla
@@ -1,5 +1,5 @@
1
1
  intel_npu_acceleration_library/__init__.py,sha256=ZKTIhGMDjF7P6pF-yX8KWcSXbeHWRk24AO_orsa18f8,536
2
- intel_npu_acceleration_library/_version.py,sha256=6IpWQ1T8O4WG_Td4cVVVORNLQ21lwNifl3XwpYZbHNk,112
2
+ intel_npu_acceleration_library/_version.py,sha256=S89ngkpryrwC_Ix_E0eWOoWTRhXnScWlheUoeDqAk0E,112
3
3
  intel_npu_acceleration_library/compiler.py,sha256=3IdgqjamSC8MLexDBJypIeZRiWIcTFnvQSU1LPXUr7Y,6225
4
4
  intel_npu_acceleration_library/device.py,sha256=TbG4cJ197qo7PJQ5zz9zfxbuXB5OTWJlKNaKL4TAlms,7395
5
5
  intel_npu_acceleration_library/dtypes.py,sha256=1CV4FIuvlmLsTCS1nCCEwq4EzZmD3thj1_92v5vajpw,3539
@@ -8,10 +8,10 @@ intel_npu_acceleration_library/optimizations.py,sha256=9NY8QoDFbs2LY12jbx6As8g2v
8
8
  intel_npu_acceleration_library/quantization.py,sha256=6N_04h1KX6TNbw-ceANV0Pmk4_lQ2Y9C7Pwn5x-zQzo,5566
9
9
  intel_npu_acceleration_library/backend/__init__.py,sha256=2NP6Ypr1dGUNXmLGW5GD9xrh0U9KJgqxTd_c7su1RUY,857
10
10
  intel_npu_acceleration_library/backend/base.py,sha256=hbHqxSOfWH5BaA5PY6_zaf1Zdg5NrQK6WOfe-hr279k,8605
11
- intel_npu_acceleration_library/backend/bindings.py,sha256=cla6JRX7pqUDuRmsXN6K9cAKklHz_mb6butatR2Eu9I,8901
11
+ intel_npu_acceleration_library/backend/bindings.py,sha256=XXMNZn77bFzpm-8x0RoDYwK4kMrjxTg4CwcK5LTFu04,9074
12
12
  intel_npu_acceleration_library/backend/compression.py,sha256=Avz_zm2s_ELy5peVQ8zFGn8njBfh9nEGR16mflotBic,630
13
13
  intel_npu_acceleration_library/backend/convolution.py,sha256=cN3k78X3Y4Cbf7er-MFq0sJ4OwIvquj8PajpdEDmCo4,2018
14
- intel_npu_acceleration_library/backend/factory.py,sha256=n63KE8X9eOuv2m2MiQFASjzgnkIM9deGtDC-qSHRMMw,38847
14
+ intel_npu_acceleration_library/backend/factory.py,sha256=o_ofk4rfQqDYh1vbpbseJnyeR8IuX2lowKi4fWpwJxY,40000
15
15
  intel_npu_acceleration_library/backend/linear.py,sha256=RiLUh5FOSxRWHB5kYx7mOPOOrS_vxIeBJ5t3yC6wOiQ,1908
16
16
  intel_npu_acceleration_library/backend/matmul.py,sha256=mfGi73-mIbUcXp4kyvCGW0Y9kb4Xp1ppbGNpdJFohuA,1819
17
17
  intel_npu_acceleration_library/backend/mlp.py,sha256=BuKVwSI726v3nHQQvtMBbXyWxRTq-WoLZtTxeSeWaaY,2330
@@ -187,7 +187,7 @@ intel_npu_acceleration_library/external/openvino/torch/__init__.py,sha256=RXLzsf
187
187
  intel_npu_acceleration_library/functional/__init__.py,sha256=WWKwKOh6Sgovv7mKctA872TbLP98Pg5m5-MREvUmlAA,204
188
188
  intel_npu_acceleration_library/functional/scaled_dot_product_attention.py,sha256=yGUcg4tDQOLuUnP1g74cl-ec8TRr2SuAMcNLlN6qLvE,1620
189
189
  intel_npu_acceleration_library/lib/Release/cache.json,sha256=CyrSqZUWo0Ec4_7ydOiuKIC0Gm8AybrGdozUqUuHxBw,8840377
190
- intel_npu_acceleration_library/lib/Release/intel_npu_acceleration_library.dll,sha256=xFQJt6_dNl7NrXVYGtFhPdIGC2xoxOQo1rzEdEAPy04,304640
190
+ intel_npu_acceleration_library/lib/Release/intel_npu_acceleration_library.dll,sha256=_3WhhMSZi8JgyjQ0VH6Ipxp4MWw2hioC355CAAjO4Ks,307712
191
191
  intel_npu_acceleration_library/lib/Release/openvino.dll,sha256=_ifEwHwM-7LuKMhAnlqNuJ2GxsLXbG47easxl5E4shU,12624904
192
192
  intel_npu_acceleration_library/lib/Release/openvino_auto_batch_plugin.dll,sha256=hXFvu4oLvfNhCODn5eNYOmkxBb0LEKYXHA0sZLccOXc,195080
193
193
  intel_npu_acceleration_library/lib/Release/openvino_auto_plugin.dll,sha256=nh_iDxejjHlkes-KT0IwBzEd4Ec0L3bXQFCl0Dqerf8,472072
@@ -217,7 +217,7 @@ intel_npu_acceleration_library/nn/functional.py,sha256=UfAKBc0u6RtyaMo14ldH2GpEn
217
217
  intel_npu_acceleration_library/nn/linear.py,sha256=Q06SoGQeLaI86nA_ky2GnFC6H2Fw1zyMDILKnpYC2eo,5739
218
218
  intel_npu_acceleration_library/nn/llm.py,sha256=P6dz36Yf6BHtzWcftaghC6QaMI_WeRfQwrCbO7fD6hk,15002
219
219
  intel_npu_acceleration_library/nn/module.py,sha256=klVK4A0O-7fLzEIhGhE6_eVgvyVK_NakAqpDq08Ju1Y,12637
220
- bigdl_core_npu-2.6.0b20241105.dist-info/METADATA,sha256=oHu4TyzXM8nRKk22YP-rr6UofT6PbYGfc1QHChOA7xk,1543
221
- bigdl_core_npu-2.6.0b20241105.dist-info/WHEEL,sha256=WutsMqxRjo8PALJe8NWxuOYrO2lUIIHDIxhZ8tjc8BY,101
222
- bigdl_core_npu-2.6.0b20241105.dist-info/top_level.txt,sha256=CH3qQoleRBC1eThu8mCEMxYNKdzJuXCtmeCXRKskt7A,31
223
- bigdl_core_npu-2.6.0b20241105.dist-info/RECORD,,
220
+ bigdl_core_npu-2.6.0b20241108.dist-info/METADATA,sha256=d_jei2y4aVOvau7R12HIsSeydXiJcG0yDjxuGh5Rx6Q,1543
221
+ bigdl_core_npu-2.6.0b20241108.dist-info/WHEEL,sha256=WutsMqxRjo8PALJe8NWxuOYrO2lUIIHDIxhZ8tjc8BY,101
222
+ bigdl_core_npu-2.6.0b20241108.dist-info/top_level.txt,sha256=CH3qQoleRBC1eThu8mCEMxYNKdzJuXCtmeCXRKskt7A,31
223
+ bigdl_core_npu-2.6.0b20241108.dist-info/RECORD,,
@@ -3,4 +3,4 @@
3
3
  # SPDX-License-Identifier: Apache 2.0
4
4
  #
5
5
 
6
- __version__ = "2.6.0b20241105"
6
+ __version__ = "2.6.0b20241108"
@@ -143,6 +143,15 @@ def init_network_factory(lib: ctypes.CDLL):
143
143
  ]
144
144
  lib.slice.restype = handler
145
145
 
146
+ lib.simple_slice.argtypes = [
147
+ handler,
148
+ handler,
149
+ handler,
150
+ handler,
151
+ handler
152
+ ]
153
+ lib.simple_slice.restype = handler
154
+
146
155
  lib.compile.argtypes = [handler, ctypes.c_int]
147
156
  lib.compile.restype = handler
148
157
 
@@ -556,6 +556,46 @@ class NNFactory(BaseNPUBackendWithPrefetch):
556
556
  end_mask_ptr.size,
557
557
  end_mask_ptr,
558
558
  )
559
+
560
+ @return_tensor
561
+ def simple_slice(
562
+ self,
563
+ input_node: ctypes._Pointer,
564
+ begin: Sequence[int],
565
+ end: Sequence[int],
566
+ step: Optional[Sequence[int]] = None,
567
+ ) -> ctypes._Pointer:
568
+ """Generate an unsqueeze layer.
569
+
570
+ Args:
571
+ input_node (ctypes._Pointer): layer input node
572
+ begin (Sequence[int]): begin
573
+ end (Sequence[int]): end
574
+ stride (Optional[Sequence[int]]): stride
575
+
576
+ Raises:
577
+ ValueError: begin and end must have the same length
578
+
579
+ Returns:
580
+ ctypes._Pointer: output node
581
+ """
582
+ if len(begin) != len(end):
583
+ raise ValueError("begin and end must have the same length")
584
+
585
+ if step is None:
586
+ step = [1] * len(begin)
587
+
588
+ begin = self.constant(begin).node # type: ignore
589
+ end = self.constant(end).node # type: ignore
590
+ step = self.constant(step).node # type: ignore
591
+
592
+ return backend_lib.simple_slice(
593
+ self._mm,
594
+ input_node,
595
+ begin,
596
+ end,
597
+ step
598
+ )
559
599
 
560
600
  @return_tensor
561
601
  def concat(