bigdl-core-npu 2.5.0__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (223) hide show
  1. bigdl_core_npu-2.5.0.dist-info/METADATA +35 -0
  2. bigdl_core_npu-2.5.0.dist-info/RECORD +223 -0
  3. bigdl_core_npu-2.5.0.dist-info/WHEEL +5 -0
  4. bigdl_core_npu-2.5.0.dist-info/top_level.txt +1 -0
  5. intel_npu_acceleration_library/__init__.py +24 -0
  6. intel_npu_acceleration_library/_version.py +6 -0
  7. intel_npu_acceleration_library/backend/__init__.py +37 -0
  8. intel_npu_acceleration_library/backend/base.py +215 -0
  9. intel_npu_acceleration_library/backend/bindings.py +279 -0
  10. intel_npu_acceleration_library/backend/compression.py +24 -0
  11. intel_npu_acceleration_library/backend/convolution.py +58 -0
  12. intel_npu_acceleration_library/backend/factory.py +944 -0
  13. intel_npu_acceleration_library/backend/linear.py +60 -0
  14. intel_npu_acceleration_library/backend/matmul.py +59 -0
  15. intel_npu_acceleration_library/backend/mlp.py +58 -0
  16. intel_npu_acceleration_library/backend/ops.py +141 -0
  17. intel_npu_acceleration_library/backend/qlinear.py +71 -0
  18. intel_npu_acceleration_library/backend/qmatmul.py +66 -0
  19. intel_npu_acceleration_library/backend/runtime.py +210 -0
  20. intel_npu_acceleration_library/backend/sdpa.py +107 -0
  21. intel_npu_acceleration_library/backend/tensor.py +1050 -0
  22. intel_npu_acceleration_library/backend/utils.py +70 -0
  23. intel_npu_acceleration_library/compiler.py +194 -0
  24. intel_npu_acceleration_library/device.py +230 -0
  25. intel_npu_acceleration_library/dtypes.py +122 -0
  26. intel_npu_acceleration_library/external/openvino/__init__.py +71 -0
  27. intel_npu_acceleration_library/external/openvino/_offline_transformations/__init__.py +20 -0
  28. intel_npu_acceleration_library/external/openvino/_pyopenvino.cp310-win_amd64.pyd +0 -0
  29. intel_npu_acceleration_library/external/openvino/_pyopenvino.cp311-win_amd64.pyd +0 -0
  30. intel_npu_acceleration_library/external/openvino/_pyopenvino.cp312-win_amd64.pyd +0 -0
  31. intel_npu_acceleration_library/external/openvino/_pyopenvino.cp38-win_amd64.pyd +0 -0
  32. intel_npu_acceleration_library/external/openvino/_pyopenvino.cp39-win_amd64.pyd +0 -0
  33. intel_npu_acceleration_library/external/openvino/frontend/__init__.py +34 -0
  34. intel_npu_acceleration_library/external/openvino/frontend/frontend.py +44 -0
  35. intel_npu_acceleration_library/external/openvino/frontend/onnx/__init__.py +15 -0
  36. intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp310-win_amd64.pyd +0 -0
  37. intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp311-win_amd64.pyd +0 -0
  38. intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp312-win_amd64.pyd +0 -0
  39. intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp38-win_amd64.pyd +0 -0
  40. intel_npu_acceleration_library/external/openvino/frontend/onnx/py_onnx_frontend.cp39-win_amd64.pyd +0 -0
  41. intel_npu_acceleration_library/external/openvino/frontend/paddle/__init__.py +15 -0
  42. intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp310-win_amd64.pyd +0 -0
  43. intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp311-win_amd64.pyd +0 -0
  44. intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp312-win_amd64.pyd +0 -0
  45. intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp38-win_amd64.pyd +0 -0
  46. intel_npu_acceleration_library/external/openvino/frontend/paddle/py_paddle_frontend.cp39-win_amd64.pyd +0 -0
  47. intel_npu_acceleration_library/external/openvino/frontend/pytorch/__init__.py +19 -0
  48. intel_npu_acceleration_library/external/openvino/frontend/pytorch/fx_decoder.py +352 -0
  49. intel_npu_acceleration_library/external/openvino/frontend/pytorch/gptq.py +139 -0
  50. intel_npu_acceleration_library/external/openvino/frontend/pytorch/module_extension.py +39 -0
  51. intel_npu_acceleration_library/external/openvino/frontend/pytorch/patch_model.py +98 -0
  52. intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp310-win_amd64.pyd +0 -0
  53. intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp311-win_amd64.pyd +0 -0
  54. intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp312-win_amd64.pyd +0 -0
  55. intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp38-win_amd64.pyd +0 -0
  56. intel_npu_acceleration_library/external/openvino/frontend/pytorch/py_pytorch_frontend.cp39-win_amd64.pyd +0 -0
  57. intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/backend.py +119 -0
  58. intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/backend_utils.py +85 -0
  59. intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/compile.py +141 -0
  60. intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/decompositions.py +116 -0
  61. intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/execute.py +189 -0
  62. intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/op_support.py +289 -0
  63. intel_npu_acceleration_library/external/openvino/frontend/pytorch/torchdynamo/partition.py +118 -0
  64. intel_npu_acceleration_library/external/openvino/frontend/pytorch/ts_decoder.py +536 -0
  65. intel_npu_acceleration_library/external/openvino/frontend/pytorch/utils.py +256 -0
  66. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/__init__.py +16 -0
  67. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/graph_iterator.py +116 -0
  68. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/node_decoder.py +219 -0
  69. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp310-win_amd64.pyd +0 -0
  70. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp311-win_amd64.pyd +0 -0
  71. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp312-win_amd64.pyd +0 -0
  72. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp38-win_amd64.pyd +0 -0
  73. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/py_tensorflow_frontend.cp39-win_amd64.pyd +0 -0
  74. intel_npu_acceleration_library/external/openvino/frontend/tensorflow/utils.py +460 -0
  75. intel_npu_acceleration_library/external/openvino/helpers/__init__.py +6 -0
  76. intel_npu_acceleration_library/external/openvino/helpers/packing.py +87 -0
  77. intel_npu_acceleration_library/external/openvino/preprocess/README.md +60 -0
  78. intel_npu_acceleration_library/external/openvino/preprocess/__init__.py +26 -0
  79. intel_npu_acceleration_library/external/openvino/preprocess/torchvision/__init__.py +15 -0
  80. intel_npu_acceleration_library/external/openvino/preprocess/torchvision/preprocess_converter.py +47 -0
  81. intel_npu_acceleration_library/external/openvino/preprocess/torchvision/requirements.txt +4 -0
  82. intel_npu_acceleration_library/external/openvino/preprocess/torchvision/torchvision_preprocessing.py +347 -0
  83. intel_npu_acceleration_library/external/openvino/properties/__init__.py +21 -0
  84. intel_npu_acceleration_library/external/openvino/properties/_properties.py +55 -0
  85. intel_npu_acceleration_library/external/openvino/properties/device/__init__.py +14 -0
  86. intel_npu_acceleration_library/external/openvino/properties/hint/__init__.py +15 -0
  87. intel_npu_acceleration_library/external/openvino/properties/intel_auto/__init__.py +12 -0
  88. intel_npu_acceleration_library/external/openvino/properties/intel_cpu/__init__.py +8 -0
  89. intel_npu_acceleration_library/external/openvino/properties/intel_gpu/__init__.py +12 -0
  90. intel_npu_acceleration_library/external/openvino/properties/intel_gpu/hint/__init__.py +11 -0
  91. intel_npu_acceleration_library/external/openvino/properties/log/__init__.py +11 -0
  92. intel_npu_acceleration_library/external/openvino/properties/streams/__init__.py +11 -0
  93. intel_npu_acceleration_library/external/openvino/runtime/__init__.py +85 -0
  94. intel_npu_acceleration_library/external/openvino/runtime/exceptions.py +17 -0
  95. intel_npu_acceleration_library/external/openvino/runtime/ie_api.py +631 -0
  96. intel_npu_acceleration_library/external/openvino/runtime/op/__init__.py +18 -0
  97. intel_npu_acceleration_library/external/openvino/runtime/op/util/__init__.py +22 -0
  98. intel_npu_acceleration_library/external/openvino/runtime/opset1/__init__.py +112 -0
  99. intel_npu_acceleration_library/external/openvino/runtime/opset1/ops.py +3067 -0
  100. intel_npu_acceleration_library/external/openvino/runtime/opset10/__init__.py +179 -0
  101. intel_npu_acceleration_library/external/openvino/runtime/opset10/ops.py +173 -0
  102. intel_npu_acceleration_library/external/openvino/runtime/opset11/__init__.py +179 -0
  103. intel_npu_acceleration_library/external/openvino/runtime/opset11/ops.py +107 -0
  104. intel_npu_acceleration_library/external/openvino/runtime/opset12/__init__.py +180 -0
  105. intel_npu_acceleration_library/external/openvino/runtime/opset12/ops.py +120 -0
  106. intel_npu_acceleration_library/external/openvino/runtime/opset13/__init__.py +188 -0
  107. intel_npu_acceleration_library/external/openvino/runtime/opset13/ops.py +399 -0
  108. intel_npu_acceleration_library/external/openvino/runtime/opset14/__init__.py +190 -0
  109. intel_npu_acceleration_library/external/openvino/runtime/opset14/ops.py +171 -0
  110. intel_npu_acceleration_library/external/openvino/runtime/opset15/__init__.py +10 -0
  111. intel_npu_acceleration_library/external/openvino/runtime/opset15/ops.py +85 -0
  112. intel_npu_acceleration_library/external/openvino/runtime/opset2/__init__.py +118 -0
  113. intel_npu_acceleration_library/external/openvino/runtime/opset2/ops.py +216 -0
  114. intel_npu_acceleration_library/external/openvino/runtime/opset3/__init__.py +134 -0
  115. intel_npu_acceleration_library/external/openvino/runtime/opset3/ops.py +638 -0
  116. intel_npu_acceleration_library/external/openvino/runtime/opset4/__init__.py +145 -0
  117. intel_npu_acceleration_library/external/openvino/runtime/opset4/ops.py +464 -0
  118. intel_npu_acceleration_library/external/openvino/runtime/opset5/__init__.py +152 -0
  119. intel_npu_acceleration_library/external/openvino/runtime/opset5/ops.py +372 -0
  120. intel_npu_acceleration_library/external/openvino/runtime/opset6/__init__.py +154 -0
  121. intel_npu_acceleration_library/external/openvino/runtime/opset6/ops.py +189 -0
  122. intel_npu_acceleration_library/external/openvino/runtime/opset7/__init__.py +158 -0
  123. intel_npu_acceleration_library/external/openvino/runtime/opset7/ops.py +169 -0
  124. intel_npu_acceleration_library/external/openvino/runtime/opset8/__init__.py +169 -0
  125. intel_npu_acceleration_library/external/openvino/runtime/opset8/ops.py +783 -0
  126. intel_npu_acceleration_library/external/openvino/runtime/opset9/__init__.py +175 -0
  127. intel_npu_acceleration_library/external/openvino/runtime/opset9/ops.py +341 -0
  128. intel_npu_acceleration_library/external/openvino/runtime/opset_utils.py +22 -0
  129. intel_npu_acceleration_library/external/openvino/runtime/passes/__init__.py +19 -0
  130. intel_npu_acceleration_library/external/openvino/runtime/passes/graph_rewrite.py +33 -0
  131. intel_npu_acceleration_library/external/openvino/runtime/passes/manager.py +26 -0
  132. intel_npu_acceleration_library/external/openvino/runtime/properties/__init__.py +38 -0
  133. intel_npu_acceleration_library/external/openvino/runtime/properties/hint/__init__.py +25 -0
  134. intel_npu_acceleration_library/external/openvino/runtime/utils/__init__.py +7 -0
  135. intel_npu_acceleration_library/external/openvino/runtime/utils/broadcasting.py +44 -0
  136. intel_npu_acceleration_library/external/openvino/runtime/utils/data_helpers/__init__.py +8 -0
  137. intel_npu_acceleration_library/external/openvino/runtime/utils/data_helpers/data_dispatcher.py +429 -0
  138. intel_npu_acceleration_library/external/openvino/runtime/utils/data_helpers/wrappers.py +148 -0
  139. intel_npu_acceleration_library/external/openvino/runtime/utils/decorators.py +70 -0
  140. intel_npu_acceleration_library/external/openvino/runtime/utils/input_validation.py +133 -0
  141. intel_npu_acceleration_library/external/openvino/runtime/utils/node_factory.py +127 -0
  142. intel_npu_acceleration_library/external/openvino/runtime/utils/reduction.py +25 -0
  143. intel_npu_acceleration_library/external/openvino/runtime/utils/types.py +175 -0
  144. intel_npu_acceleration_library/external/openvino/tools/__init__.py +4 -0
  145. intel_npu_acceleration_library/external/openvino/tools/benchmark/__init__.py +3 -0
  146. intel_npu_acceleration_library/external/openvino/tools/benchmark/benchmark.py +186 -0
  147. intel_npu_acceleration_library/external/openvino/tools/benchmark/main.py +695 -0
  148. intel_npu_acceleration_library/external/openvino/tools/benchmark/parameters.py +199 -0
  149. intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/__init__.py +3 -0
  150. intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/constants.py +26 -0
  151. intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/inputs_filling.py +482 -0
  152. intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/logging.py +8 -0
  153. intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/statistics_report.py +296 -0
  154. intel_npu_acceleration_library/external/openvino/tools/benchmark/utils/utils.py +836 -0
  155. intel_npu_acceleration_library/external/openvino/tools/ovc/__init__.py +20 -0
  156. intel_npu_acceleration_library/external/openvino/tools/ovc/__main__.py +10 -0
  157. intel_npu_acceleration_library/external/openvino/tools/ovc/cli_parser.py +633 -0
  158. intel_npu_acceleration_library/external/openvino/tools/ovc/convert.py +102 -0
  159. intel_npu_acceleration_library/external/openvino/tools/ovc/convert_data_type.py +82 -0
  160. intel_npu_acceleration_library/external/openvino/tools/ovc/convert_impl.py +536 -0
  161. intel_npu_acceleration_library/external/openvino/tools/ovc/environment_setup_utils.py +50 -0
  162. intel_npu_acceleration_library/external/openvino/tools/ovc/error.py +49 -0
  163. intel_npu_acceleration_library/external/openvino/tools/ovc/get_ov_update_message.py +16 -0
  164. intel_npu_acceleration_library/external/openvino/tools/ovc/help.py +45 -0
  165. intel_npu_acceleration_library/external/openvino/tools/ovc/logger.py +91 -0
  166. intel_npu_acceleration_library/external/openvino/tools/ovc/main.py +35 -0
  167. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/__init__.py +2 -0
  168. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/analysis.py +46 -0
  169. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/check_config.py +57 -0
  170. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/extractor.py +447 -0
  171. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/layout_utils.py +73 -0
  172. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/moc_emit_ir.py +32 -0
  173. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/offline_transformations.py +107 -0
  174. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/paddle_frontend_utils.py +83 -0
  175. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/pipeline.py +246 -0
  176. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/preprocessing.py +220 -0
  177. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/pytorch_frontend_utils.py +205 -0
  178. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/shape_utils.py +109 -0
  179. intel_npu_acceleration_library/external/openvino/tools/ovc/moc_frontend/type_utils.py +82 -0
  180. intel_npu_acceleration_library/external/openvino/tools/ovc/ovc.py +13 -0
  181. intel_npu_acceleration_library/external/openvino/tools/ovc/telemetry_params.py +6 -0
  182. intel_npu_acceleration_library/external/openvino/tools/ovc/telemetry_stub.py +28 -0
  183. intel_npu_acceleration_library/external/openvino/tools/ovc/telemetry_utils.py +118 -0
  184. intel_npu_acceleration_library/external/openvino/tools/ovc/utils.py +109 -0
  185. intel_npu_acceleration_library/external/openvino/tools/ovc/version.py +80 -0
  186. intel_npu_acceleration_library/external/openvino/torch/__init__.py +5 -0
  187. intel_npu_acceleration_library/external/openvino/utils.py +98 -0
  188. intel_npu_acceleration_library/functional/__init__.py +8 -0
  189. intel_npu_acceleration_library/functional/scaled_dot_product_attention.py +47 -0
  190. intel_npu_acceleration_library/lib/Release/cache.json +113732 -0
  191. intel_npu_acceleration_library/lib/Release/intel_npu_acceleration_library.dll +0 -0
  192. intel_npu_acceleration_library/lib/Release/openvino.dll +0 -0
  193. intel_npu_acceleration_library/lib/Release/openvino_auto_batch_plugin.dll +0 -0
  194. intel_npu_acceleration_library/lib/Release/openvino_auto_plugin.dll +0 -0
  195. intel_npu_acceleration_library/lib/Release/openvino_c.dll +0 -0
  196. intel_npu_acceleration_library/lib/Release/openvino_hetero_plugin.dll +0 -0
  197. intel_npu_acceleration_library/lib/Release/openvino_intel_cpu_plugin.dll +0 -0
  198. intel_npu_acceleration_library/lib/Release/openvino_intel_gpu_plugin.dll +0 -0
  199. intel_npu_acceleration_library/lib/Release/openvino_intel_npu_plugin.dll +0 -0
  200. intel_npu_acceleration_library/lib/Release/openvino_ir_frontend.dll +0 -0
  201. intel_npu_acceleration_library/lib/Release/openvino_onnx_frontend.dll +0 -0
  202. intel_npu_acceleration_library/lib/Release/openvino_paddle_frontend.dll +0 -0
  203. intel_npu_acceleration_library/lib/Release/openvino_pytorch_frontend.dll +0 -0
  204. intel_npu_acceleration_library/lib/Release/openvino_tensorflow_frontend.dll +0 -0
  205. intel_npu_acceleration_library/lib/Release/openvino_tensorflow_lite_frontend.dll +0 -0
  206. intel_npu_acceleration_library/lib/Release/tbb12.dll +0 -0
  207. intel_npu_acceleration_library/lib/Release/tbb12_debug.dll +0 -0
  208. intel_npu_acceleration_library/lib/Release/tbbbind_2_5.dll +0 -0
  209. intel_npu_acceleration_library/lib/Release/tbbbind_2_5_debug.dll +0 -0
  210. intel_npu_acceleration_library/lib/Release/tbbmalloc.dll +0 -0
  211. intel_npu_acceleration_library/lib/Release/tbbmalloc_debug.dll +0 -0
  212. intel_npu_acceleration_library/lib/Release/tbbmalloc_proxy.dll +0 -0
  213. intel_npu_acceleration_library/lib/Release/tbbmalloc_proxy_debug.dll +0 -0
  214. intel_npu_acceleration_library/modelling.py +150 -0
  215. intel_npu_acceleration_library/nn/__init__.py +20 -0
  216. intel_npu_acceleration_library/nn/autograd.py +68 -0
  217. intel_npu_acceleration_library/nn/conv.py +257 -0
  218. intel_npu_acceleration_library/nn/functional.py +1207 -0
  219. intel_npu_acceleration_library/nn/linear.py +162 -0
  220. intel_npu_acceleration_library/nn/llm.py +417 -0
  221. intel_npu_acceleration_library/nn/module.py +393 -0
  222. intel_npu_acceleration_library/optimizations.py +157 -0
  223. intel_npu_acceleration_library/quantization.py +174 -0
@@ -0,0 +1,460 @@
1
+ # Copyright (C) 2018-2024 Intel Corporation
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # flake8: noqa
5
+ # mypy: ignore-errors
6
+
7
+
8
+ import logging as log
9
+ import sys
10
+ from packaging.version import parse, Version
11
+ from typing import List, Dict, Union
12
+
13
+ import numpy as np
14
+ from openvino.runtime import PartialShape, Dimension, Type
15
+
16
+
17
+ # TODO: reuse this method in ovc and remove duplication
18
+ def get_static_shape(shape: [PartialShape, list, tuple], dynamic_value=None):
19
+ # Current function returns list with static dimensions with following logic.
20
+ # For dynamic dimensions return lower boundaries if they are set, otherwise
21
+ # return upper boundaries if they are set. If dimension is fully dynamic then raise error.
22
+ shape_list = []
23
+ for idx, dim in enumerate(shape):
24
+ if isinstance(dim, int):
25
+ if dim == -1:
26
+ shape_list.append(dynamic_value)
27
+ continue
28
+ shape_list.append(dim)
29
+ elif isinstance(dim, np.int64):
30
+ if dim == np.int64(-1):
31
+ shape_list.append(dynamic_value)
32
+ continue
33
+ shape_list.append(dim)
34
+ elif isinstance(dim, tuple):
35
+ # tuple where (min_length, max_length), the format which uses MO cli parser
36
+ assert len(dim) == 2, "Unknown dimension type {}".format(dim)
37
+ if dim[0] > 0:
38
+ shape_list.append(dim[0])
39
+ elif dim[1] < np.iinfo(np.int64).max:
40
+ shape_list.append(dim[1])
41
+ else:
42
+ shape_list.append(dynamic_value)
43
+ continue
44
+ elif isinstance(dim, Dimension):
45
+ if dim.is_static or dim.get_min_length() > 0:
46
+ shape_list.append(dim.get_min_length())
47
+ elif dim.get_max_length() != -1:
48
+ shape_list.append(dim.get_max_length())
49
+ else:
50
+ shape_list.append(dynamic_value)
51
+ continue
52
+ else:
53
+ raise Exception("Unknown dimension type {}".format(dim))
54
+
55
+ return tuple(shape_list)
56
+
57
+
58
+ def get_imported_module_version(imported_module):
59
+ """
60
+ Get imported module version
61
+ :return: version(str) or raise AttributeError exception
62
+ """
63
+ version_attrs = ("__version__", "VERSION", "version")
64
+ installed_version = None
65
+ for attr in version_attrs:
66
+ installed_version = getattr(imported_module, attr, None)
67
+ if isinstance(installed_version, str):
68
+ return installed_version
69
+ else:
70
+ installed_version = None
71
+
72
+ if installed_version is None:
73
+ raise AttributeError("{} module doesn't have version attribute".format(imported_module))
74
+ else:
75
+ return installed_version
76
+
77
+
78
+ # TODO: reuse this method in ovc and remove duplication
79
+ def get_environment_setup(framework):
80
+ """
81
+ Get environment setup such as Python version, TensorFlow version
82
+ :param framework: framework name
83
+ :return: a dictionary of environment variables
84
+ """
85
+ env_setup = dict()
86
+ python_version = "{}.{}.{}".format(sys.version_info.major,
87
+ sys.version_info.minor,
88
+ sys.version_info.micro)
89
+ env_setup['python_version'] = python_version
90
+ try:
91
+ if framework == 'tf':
92
+ exec("import tensorflow")
93
+ env_setup['tensorflow'] = get_imported_module_version(sys.modules["tensorflow"])
94
+ exec("del tensorflow")
95
+ except (AttributeError, ImportError):
96
+ pass
97
+ env_setup['sys_platform'] = sys.platform
98
+ return env_setup
99
+
100
+
101
+ def trace_tf_model_if_needed(input_model, placeholder_shapes, placeholder_data_types, example_input):
102
+ import tensorflow as tf
103
+ if not isinstance(input_model,
104
+ (tf.keras.layers.Layer, tf.Module, tf.keras.Model, tf.types.experimental.GenericFunction)):
105
+ return input_model
106
+ return trace_tf_model(input_model, placeholder_shapes, placeholder_data_types, example_input)
107
+
108
+
109
+ def get_input_spec_from_model(model):
110
+ import tensorflow as tf
111
+ if hasattr(model, "_build_input_shape") and model._build_input_shape is not None:
112
+ if isinstance(model._build_input_shape, list):
113
+ input_spec = [[tf.TensorSpec(shape) for shape in model._build_input_shape]]
114
+ else:
115
+ input_spec = [tf.TensorSpec(model._build_input_shape)]
116
+ else:
117
+ input_spec = [tf.TensorSpec(None)]
118
+ return input_spec
119
+
120
+
121
+ def get_concrete_func(tf_function, example_input, input_needs_packing, error_message, use_example_input=True):
122
+ """
123
+ Runs tracing of TF function and returns a concrete function.
124
+
125
+ :param tf_function: TF function that needs to be traced.
126
+ :param example_input: Example of function input.
127
+ :param input_needs_packing: determines if input needs to be packed in a list before passing to TF function.
128
+ It is used when original function was wrapped in outer TF function, which changes function signature.
129
+ In this case wrapper TF function always expects list of inputs which are unpacked inside subfunction.
130
+ So list/tuple are treated as multiple inputs of original model.
131
+ Non list/tuple are treated as single input, and it needs packing to a list,
132
+ as wrapper function always expect list of inputs.
133
+ :param error_message: Error message which should be shown in case of tracing error.
134
+ :param use_example_input: Determines if example_input should be used.
135
+
136
+ :returns: Object of type tf.types.experimental.ConcreteFunction.
137
+ """
138
+ if input_needs_packing and not isinstance(example_input, (list, tuple)):
139
+ example_input = [example_input]
140
+ try:
141
+ if use_example_input:
142
+ if not input_needs_packing and isinstance(example_input, (list, tuple)):
143
+ concrete_func = tf_function.get_concrete_function(*example_input)
144
+ else:
145
+ concrete_func = tf_function.get_concrete_function(example_input)
146
+
147
+ else:
148
+ concrete_func = tf_function.get_concrete_function()
149
+ except Exception as e:
150
+ raise Exception(error_message.format(e))
151
+ return concrete_func
152
+
153
+
154
+ def get_signature_from_input(keras_model):
155
+ if not hasattr(keras_model, 'input') or getattr(keras_model, 'input') is None:
156
+ return None
157
+ return getattr(keras_model, 'input')
158
+
159
+
160
+ def get_signature_from_input_signature(keras_model):
161
+ if not hasattr(keras_model, 'input_signature') or getattr(keras_model, 'input_signature') is None:
162
+ return None
163
+ return getattr(keras_model, 'input_signature')
164
+
165
+
166
+ def create_generic_function_from_keras_model(keras_model):
167
+ import tensorflow as tf
168
+ assert isinstance(keras_model, (tf.keras.Model, tf.Module)), \
169
+ "[TensorFlow Frontend] internal error: the input model must be of tf.keras.Model or tf.Module model type"
170
+
171
+ keras_input_signature = get_signature_from_input(keras_model)
172
+ if keras_input_signature is None:
173
+ keras_input_signature = get_signature_from_input_signature(keras_model)
174
+ if keras_input_signature is None:
175
+ return None
176
+ tf_input_signature = None
177
+ wrapper_function = None
178
+ if isinstance(keras_input_signature, dict):
179
+ tf_input_signature = []
180
+ for tensor_name, tensor_spec in keras_input_signature.items():
181
+ tf_input_signature.append(tf.TensorSpec(shape=tensor_spec.shape,
182
+ dtype=tensor_spec.dtype,
183
+ name=tensor_name))
184
+ elif isinstance(keras_input_signature, list):
185
+ tf_input_signature = []
186
+ for tensor_spec in keras_input_signature:
187
+ tf_input_signature.append(tf.TensorSpec(shape=tensor_spec.shape,
188
+ dtype=tensor_spec.dtype,
189
+ name=tensor_spec.name))
190
+ else:
191
+ try:
192
+ # single KerasTensor case
193
+ tf_input_signature = []
194
+ tf_input_signature.append(tf.TensorSpec(shape=keras_input_signature.shape,
195
+ dtype=keras_input_signature.dtype,
196
+ name=keras_input_signature.name))
197
+ except:
198
+ tf_input_signature = None
199
+ if tf_input_signature is not None:
200
+ @tf.function(input_signature=tf_input_signature)
201
+ def wrapper_function_dict(*args):
202
+ input_dict = {}
203
+ for ind, tensor_spec in enumerate(tf_input_signature):
204
+ input_dict[tensor_spec.name] = args[ind]
205
+ outputs = keras_model(input_dict)
206
+ # need to wrap the output into dictionary
207
+ # it helps to preserve original keras tensor names
208
+ post_outputs = {}
209
+ if isinstance(outputs, dict):
210
+ for output_name, output_value in outputs.items():
211
+ post_outputs[output_name] = output_value
212
+ else:
213
+ try:
214
+ if isinstance(outputs, list) and isinstance(keras_model.outputs, list) and \
215
+ len(outputs) == len(keras_model.outputs):
216
+ for output_value, output_tensor in zip(outputs, keras_model.outputs):
217
+ post_outputs[output_tensor.name] = output_value
218
+ else:
219
+ post_outputs[keras_model.output.name] = outputs
220
+ except:
221
+ post_outputs = outputs
222
+ return post_outputs
223
+
224
+ wrapper_function = wrapper_function_dict
225
+ return wrapper_function
226
+
227
+
228
+ def trace_tf_model(model, input_shapes, input_types, example_input):
229
+ import tensorflow as tf
230
+ if isinstance(model.__call__, tf.types.experimental.GenericFunction):
231
+ tf_function = model.__call__
232
+ input_needs_packing = False
233
+ elif isinstance(model, tf.types.experimental.GenericFunction):
234
+ tf_function = model
235
+ input_needs_packing = False
236
+ elif isinstance(model, (tf.keras.Model, tf.Module)):
237
+ tf_function = create_generic_function_from_keras_model(model)
238
+ if tf_function is not None:
239
+ input_needs_packing = False
240
+ else:
241
+ # Wrap model to tf.Function.
242
+ # In this case we loose input/output tensor names.
243
+ @tf.function
244
+ def tf_function(args):
245
+ return model(*args)
246
+
247
+ input_needs_packing = True
248
+ else:
249
+ # Wrap model to tf.Function.
250
+ # In this case we loose input/output tensor names.
251
+ @tf.function
252
+ def tf_function(args):
253
+ return model(*args)
254
+
255
+ input_needs_packing = True
256
+
257
+ def are_shapes_defined(shape: Union[List, Dict]):
258
+ if shape is None:
259
+ return False
260
+ assert hasattr(shape, '__len__')
261
+ if len(shape) == 0:
262
+ return False
263
+
264
+ if isinstance(shape, list):
265
+ return np.all([shape is not None for shape in input_shapes])
266
+ elif isinstance(shape, dict):
267
+ return np.all([shape is not None for name, shape in input_shapes.items()])
268
+
269
+ if example_input is not None:
270
+ concrete_func = get_concrete_func(tf_function, example_input, input_needs_packing,
271
+ "Could not trace the TF model with the following error: {}")
272
+ else:
273
+ if isinstance(tf_function, tf.types.experimental.GenericFunction) and \
274
+ tf_function.input_signature is not None:
275
+ concrete_func = get_concrete_func(tf_function, None, input_needs_packing,
276
+ "Could not trace the TF model with the following error: {}",
277
+ use_example_input=False)
278
+ else:
279
+ input_spec = get_input_spec_from_model(model)
280
+ concrete_func = get_concrete_func(tf_function, input_spec, input_needs_packing,
281
+ "Could not trace the TF model with the following error: {}.\n"
282
+ "Please provide 'example_input'.")
283
+
284
+ return concrete_func
285
+
286
+
287
+ def type_supported_by_tf_fe(input_model):
288
+ import tensorflow as tf
289
+ # Types that require tracing
290
+ if isinstance(input_model,
291
+ (tf.keras.layers.Layer, tf.Module, tf.keras.Model, tf.types.experimental.GenericFunction)):
292
+ return True
293
+ # Types that do not require tracing
294
+ if isinstance(input_model, (tf.Graph, tf.types.experimental.ConcreteFunction)):
295
+ return True
296
+ # GraphIterator
297
+ elif model_is_graph_iterator(input_model):
298
+ return True
299
+ return False
300
+
301
+
302
+ def is_variable(func_input, captures):
303
+ import tensorflow as tf
304
+ if func_input.dtype == tf.resource:
305
+ return True
306
+ for capture in captures:
307
+ if id(func_input) == id(capture[1]):
308
+ return True
309
+ return False
310
+
311
+
312
+ def create_tf_graph_iterator(input_model, placeholder_shapes, placeholder_data_types, example_input, share_weights):
313
+ input_model = trace_tf_model_if_needed(input_model, placeholder_shapes, placeholder_data_types, example_input)
314
+
315
+ import tensorflow as tf
316
+ from openvino.frontend.tensorflow.graph_iterator import GraphIteratorTFGraph
317
+ if model_is_graph_iterator(input_model):
318
+ return input_model
319
+ if isinstance(input_model, tf.Graph):
320
+ return GraphIteratorTFGraph(input_model, share_weights)
321
+ elif isinstance(input_model, tf.types.experimental.ConcreteFunction):
322
+ # create a map for inputs to map internal tensor name to external one
323
+ # collect all internal tensor names in a given order
324
+ input_names_map = None
325
+ if hasattr(input_model, 'inputs') and hasattr(input_model, 'structured_input_signature'):
326
+ internal_tensor_names = []
327
+ for func_input in input_model.inputs:
328
+ if is_variable(func_input, input_model.graph.captures):
329
+ continue
330
+ internal_tensor_names.append(func_input.name)
331
+ if len(input_model.structured_input_signature) > 0 and \
332
+ len(internal_tensor_names) == len(input_model.structured_input_signature[0]):
333
+ for internal_name, tensor_spec in zip(internal_tensor_names, input_model.structured_input_signature[0]):
334
+ input_names_map = input_names_map or {}
335
+ if not isinstance(tensor_spec, tf.TensorSpec):
336
+ input_names_map = None
337
+ break
338
+ input_names_map[internal_name] = tensor_spec.name
339
+ elif len(input_model.structured_input_signature) > 1 and \
340
+ len(internal_tensor_names) == len(input_model.structured_input_signature[1]):
341
+ external_tensor_names = sorted(input_model.structured_input_signature[1].keys())
342
+ for internal_name, external_name in zip(internal_tensor_names, external_tensor_names):
343
+ input_names_map = input_names_map or {}
344
+ input_names_map[internal_name] = external_name
345
+
346
+ output_names_map = None
347
+ if hasattr(input_model, 'outputs') and hasattr(input_model, 'structured_outputs') and \
348
+ isinstance(input_model.structured_outputs, dict):
349
+ external_names = sorted(list(input_model.structured_outputs.keys()))
350
+ internal_names = [tensor.name for tensor in input_model.outputs]
351
+ if len(external_names) == len(internal_names):
352
+ for external_name, internal_name in zip(external_names, internal_names):
353
+ output_names_map = output_names_map or {}
354
+ output_names_map[internal_name] = external_name
355
+ else:
356
+ for external_name, internal_tensor in input_model.structured_outputs.items():
357
+ internal_tf_tensor = None
358
+ if isinstance(internal_tensor, tf.Tensor):
359
+ internal_tf_tensor = internal_tensor
360
+ if isinstance(internal_tensor, list) and len(internal_tensor) > 0 and \
361
+ isinstance(internal_tensor[0], tf.Tensor):
362
+ internal_tf_tensor = internal_tensor[0]
363
+ if internal_tf_tensor is None:
364
+ output_names_map = None
365
+ break
366
+ output_names_map = output_names_map or {}
367
+ output_names_map[internal_tf_tensor.name] = external_name
368
+ return GraphIteratorTFGraph(input_model.graph, share_weights, False, input_names_map, output_names_map)
369
+ raise Exception("Could not wrap model of type {} to GraphIteratorTFGraph.".format(type(input_model)))
370
+
371
+
372
+ def extract_model_graph(argv):
373
+ model = argv["input_model"]
374
+ import tensorflow as tf
375
+ trackable_is_imported = False
376
+ try:
377
+ from tensorflow.python.training.tracking.base import Trackable # pylint: disable=no-name-in-module,import-error
378
+ trackable_is_imported = True
379
+ except:
380
+ try:
381
+ from tensorflow.python.trackable.base import Trackable
382
+ trackable_is_imported = True
383
+ except:
384
+ log.warning("Could not import tensorflow.python.training.tracking.base.Trackable type.")
385
+ env_setup = get_environment_setup("tf")
386
+ if isinstance(model, tf.Graph):
387
+ return True
388
+ if isinstance(model, tf.compat.v1.GraphDef):
389
+ graph = tf.Graph()
390
+ with graph.as_default():
391
+ tf.graph_util.import_graph_def(model, name='')
392
+ argv["input_model"] = graph
393
+ return True
394
+ if isinstance(model, tf.compat.v1.Session):
395
+ argv["input_model"] = model.graph
396
+ return True
397
+ if Version(env_setup["tensorflow"]) >= parse("2.6.0") and isinstance(model, (tf.types.experimental.GenericFunction,
398
+ tf.types.experimental.ConcreteFunction)):
399
+ return True
400
+ if isinstance(model, tf.train.Checkpoint):
401
+ if isinstance(model.root, tf.keras.Model):
402
+ argv["input_model"] = model.root
403
+ return True
404
+ else:
405
+ raise Exception("Unknown checkpoint format.")
406
+
407
+ if isinstance(model, (tf.keras.layers.Layer, tf.Module, tf.keras.Model)):
408
+ return True
409
+ if trackable_is_imported and isinstance(model, Trackable):
410
+ if hasattr(model, "signatures") and len(model.signatures.items()):
411
+ if "serving_default" in model.signatures:
412
+ argv["input_model"] = model.signatures["serving_default"]
413
+ elif "default" in model.signatures:
414
+ argv["input_model"] = model.signatures["default"]
415
+ else:
416
+ for signature_name, signature in model.signatures.items():
417
+ argv["input_model"] = model.signatures[signature_name]
418
+ log.warning("Could not find the default signature. "
419
+ "The following signature was used for conversion: {}".format(signature_name))
420
+ break
421
+
422
+ elif hasattr(model, "graph"):
423
+ argv["input_model"] = model.graph
424
+ else:
425
+ raise Exception("Could not find signature of graph in a Trackable object.")
426
+ return True
427
+ if model_is_graph_iterator(model):
428
+ return True
429
+ return False
430
+
431
+
432
+ def model_is_graph_iterator(model):
433
+ try:
434
+ from openvino.frontend.tensorflow.graph_iterator import GraphIteratorTFGraph
435
+ except:
436
+ return False
437
+ return isinstance(model, GraphIteratorTFGraph)
438
+
439
+
440
+ def tf_type_to_ov_type(val):
441
+ import tensorflow as tf # pylint: disable=import-error
442
+ if not isinstance(val, tf.dtypes.DType):
443
+ raise Exception("The provided type is not a TF type {}.".format(val))
444
+
445
+ tf_to_ov_type = {
446
+ tf.float32: Type.f32,
447
+ tf.float16: Type.f16,
448
+ tf.float64: Type.f64,
449
+ tf.bfloat16: Type.bf16,
450
+ tf.uint8: Type.u8,
451
+ tf.int8: Type.i8,
452
+ tf.int16: Type.i16,
453
+ tf.int32: Type.i32,
454
+ tf.int64: Type.i64,
455
+ tf.bool: Type.boolean,
456
+ tf.string: Type.string
457
+ }
458
+ if val not in tf_to_ov_type:
459
+ raise Exception("The provided data type is not supported by OpenVino {}.".format(val))
460
+ return tf_to_ov_type[val]
@@ -0,0 +1,6 @@
1
+ # Copyright (C) 2018-2024 Intel Corporation
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # flake8: noqa
5
+
6
+ from openvino.helpers.packing import pack_data, unpack_data
@@ -0,0 +1,87 @@
1
+ # Copyright (C) 2018-2024 Intel Corporation
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # flake8: noqa
5
+
6
+ import numpy as np
7
+ from typing import Union
8
+ from openvino.runtime import Type, Shape
9
+
10
+
11
+ def pack_data(array: np.ndarray, type: Type) -> np.ndarray:
12
+ """Represent array values as u1,u4 or i4 openvino element type and pack them into uint8 numpy array.
13
+
14
+ If the number of elements in array is odd we pad them with zero value to be able to fit the bit
15
+ sequence into the uint8 array.
16
+
17
+ Example: two uint8 values - [7, 8] can be represented as uint4 values and be packed into one int8
18
+ value - [120], because [7, 8] bit representation is [0111, 1000] will be viewed
19
+ as [01111000], which is bit representation of [120].
20
+
21
+ :param array: numpy array with values to pack.
22
+ :type array: numpy array
23
+ :param type: Type to interpret the array values. Type must be u1, u4, i4 or nf4.
24
+ :type type: openvino.runtime.Type
25
+ """
26
+ assert type in [Type.u1, Type.u4, Type.i4, Type.nf4], "Packing algorithm for the" "data types stored in 1, 2 or 4 bits"
27
+
28
+ minimum_regular_dtype = np.int8 if type == Type.i4 else np.uint8
29
+ casted_to_regular_type = array.astype(dtype=minimum_regular_dtype, casting="unsafe")
30
+ if not np.array_equal(casted_to_regular_type, array):
31
+ raise RuntimeError(f'The conversion of array "{array}" to dtype' f' "{casted_to_regular_type}" results in rounding')
32
+
33
+ data_size = casted_to_regular_type.size
34
+ num_bits = type.bitwidth
35
+
36
+ assert num_bits < 8 and 8 % num_bits == 0, "Packing algorithm for the" "data types stored in 1, 2 or 4 bits"
37
+ num_values_fitting_into_uint8 = 8 // num_bits
38
+ pad = (-data_size) % num_values_fitting_into_uint8
39
+
40
+ flattened = casted_to_regular_type.flatten()
41
+ padded = np.concatenate((flattened, np.zeros([pad], dtype=minimum_regular_dtype))) # type: ignore
42
+ assert padded.size % num_values_fitting_into_uint8 == 0
43
+
44
+ bit_order_little = (padded[:, None] & (1 << np.arange(num_bits)) > 0).astype(minimum_regular_dtype)
45
+ bit_order_big = np.flip(bit_order_little, axis=1) # type: ignore
46
+ bit_order_big_flattened = bit_order_big.flatten()
47
+
48
+ return np.packbits(bit_order_big_flattened)
49
+
50
+
51
+ def unpack_data(array: np.ndarray, type: Type, shape: Union[list, Shape]) -> np.ndarray:
52
+ """Extract openvino element type values from array into new uint8/int8 array given shape.
53
+
54
+ Example: uint8 value [120] can be represented as two u4 values and be unpacked into [7, 8]
55
+ because [120] bit representation is [01111000] will be viewed as [0111, 1000],
56
+ which is bit representation of [7, 8].
57
+
58
+ :param array: numpy array to unpack.
59
+ :type array: numpy array
60
+ :param type: Type to extract from array values. Type must be u1, u4, i4 or nf4.
61
+ :type type: openvino.runtime.Type
62
+ :param shape: the new shape for the unpacked array.
63
+ :type shape: Union[list, openvino.runtime.Shape]
64
+ """
65
+ assert type in [Type.u1, Type.u4, Type.i4, Type.nf4], "Unpacking algorithm for the" "data types stored in 1, 2 or 4 bits"
66
+ unpacked = np.unpackbits(array.view(np.uint8))
67
+ shape = list(shape)
68
+ if type.bitwidth == 1:
69
+ return np.resize(unpacked, shape)
70
+ else:
71
+ unpacked = unpacked.reshape(-1, type.bitwidth)
72
+ padding_shape = (unpacked.shape[0], 8 - type.bitwidth)
73
+ padding = np.ndarray(padding_shape, np.uint8) # type: np.ndarray
74
+ if type == Type.i4:
75
+ for axis, bits in enumerate(unpacked):
76
+ if bits[0] == 1:
77
+ padding[axis] = np.ones((padding_shape[1],), np.uint8)
78
+ else:
79
+ padding[axis] = np.zeros((padding_shape[1],), np.uint8)
80
+ else:
81
+ padding = np.zeros(padding_shape, np.uint8)
82
+ padded = np.concatenate((padding, unpacked), 1) # type: ignore
83
+ packed = np.packbits(padded, 1)
84
+ if type == Type.i4:
85
+ return np.resize(packed, shape).astype(dtype=np.int8)
86
+ else:
87
+ return np.resize(packed, shape)
@@ -0,0 +1,60 @@
1
+ # Torchvision to OpenVINO preprocessing converter
2
+
3
+ The Torchvision to OpenVINO preprocessing converter enables the use of an existing `torchvision.transforms` object to automatically translate it to OpenVINO preprocessing. It is then being embedded into the model, resulting in better inference performance.
4
+
5
+
6
+ ## Supported transforms
7
+
8
+ Currently, the torchvision to OpenVINO preprocessing converter does not support all torchvision transforms.
9
+
10
+ Supported operations:
11
+ - `transforms.Compose`
12
+ - `transforms.Normalize`
13
+ - `transforms.ConvertImageDtype`
14
+ - `transforms.Grayscale`
15
+ - `transforms.Pad`
16
+ - `transforms.ToTensor`
17
+ - `transforms.CenterCrop`
18
+ - `transforms.Resize`
19
+
20
+ ## Example usage
21
+
22
+ ```python
23
+ preprocess_pipeline = torchvision.transforms.Compose(
24
+ [
25
+ torchvision.transforms.Resize(256, interpolation=transforms.InterpolationMode.NEAREST),
26
+ torchvision.transforms.CenterCrop((216, 218)),
27
+ torchvision.transforms.Pad((2, 3, 4, 5), fill=3),
28
+ torchvision.transforms.ToTensor(),
29
+ torchvision.transforms.ConvertImageDtype(torch.float32),
30
+ torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
31
+ ]
32
+ )
33
+
34
+ torch_model = SimpleConvnet(input_channels=3)
35
+
36
+ torch.onnx.export(torch_model, torch.randn(1, 3, 224, 224), "test_convnet.onnx", verbose=False, input_names=["input"], output_names=["output"])
37
+ core = Core()
38
+ ov_model = core.read_model(model="test_convnet.onnx")
39
+
40
+ test_input = np.random.randint(255, size=(260, 260, 3), dtype=np.uint16)
41
+ ov_model = PreprocessConverter.from_torchvision(
42
+ model=ov_model, transform=preprocess_pipeline, input_example=Image.fromarray(test_input.astype("uint8"), "RGB")
43
+ )
44
+ ov_model = core.compile_model(ov_model, "CPU")
45
+ ov_input = np.expand_dims(test_input, axis=0)
46
+ output = ov_model.output(0)
47
+ ov_result = ov_model(ov_input)[output]
48
+ ```
49
+
50
+ ## Key contacts
51
+
52
+ If you have any questions, feature requests or want us to review your PRs, send us a message or ping us on GitHub via [openvino-ie-python-api-maintainers](https://github.com/orgs/openvinotoolkit/teams/openvino-ie-python-api-maintainers). You can always directly contact everyone from this group.
53
+
54
+ ## See also
55
+
56
+ * [OpenVINO™ README](../../../README.md)
57
+ * [OpenVINO™ Core Components](../../README.md)
58
+ * [OpenVINO™ Python API Reference](https://docs.openvino.ai/2024/api/ie_python_api/api.html)
59
+ * [OpenVINO™ Python API Advanced Inference](https://docs.openvino.ai/2024/openvino-workflow/running-inference/integrate-openvino-with-your-application/python-api-advanced-inference.html)
60
+ * [OpenVINO™ Python API Exclusives](https://docs.openvino.ai/2024/openvino-workflow/running-inference/integrate-openvino-with-your-application/python-api-exclusives.html)
@@ -0,0 +1,26 @@
1
+ # Copyright (C) 2018-2024 Intel Corporation
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ """
5
+ Package: openvino
6
+ Low level wrappers for the PrePostProcessing C++ API.
7
+ """
8
+
9
+ # flake8: noqa
10
+
11
+ from openvino._pyopenvino import get_version
12
+
13
+ __version__ = get_version()
14
+
15
+ # main classes
16
+ from openvino._pyopenvino.preprocess import InputInfo
17
+ from openvino._pyopenvino.preprocess import OutputInfo
18
+ from openvino._pyopenvino.preprocess import InputTensorInfo
19
+ from openvino._pyopenvino.preprocess import OutputTensorInfo
20
+ from openvino._pyopenvino.preprocess import InputModelInfo
21
+ from openvino._pyopenvino.preprocess import OutputModelInfo
22
+ from openvino._pyopenvino.preprocess import PrePostProcessor
23
+ from openvino._pyopenvino.preprocess import PreProcessSteps
24
+ from openvino._pyopenvino.preprocess import PostProcessSteps
25
+ from openvino._pyopenvino.preprocess import ColorFormat
26
+ from openvino._pyopenvino.preprocess import ResizeAlgorithm
@@ -0,0 +1,15 @@
1
+ # Copyright (C) 2018-2024 Intel Corporation
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ """
5
+ Package: openvino
6
+ Torchvision to OpenVINO preprocess converter.
7
+ """
8
+
9
+ # flake8: noqa
10
+
11
+ from openvino._pyopenvino import get_version as _get_version
12
+
13
+ __version__ = _get_version()
14
+
15
+ from .preprocess_converter import PreprocessConverter