bigdl-core-cpp 2.6.0b20241204__py3-none-win_amd64.whl → 2.6.0b20241211__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- bigdl/cpp/convert_hf_to_gguf.py +404 -37
- bigdl/cpp/convert_hf_to_gguf_update.py +25 -6
- bigdl/cpp/convert_llama_ggml_to_gguf.py +0 -4
- bigdl/cpp/convert_lora_to_gguf.py +11 -1
- bigdl/cpp/gguf-py/gguf/constants.py +276 -81
- bigdl/cpp/gguf-py/gguf/gguf_writer.py +25 -1
- bigdl/cpp/gguf-py/gguf/lazy.py +0 -1
- bigdl/cpp/gguf-py/gguf/quants.py +81 -0
- bigdl/cpp/gguf-py/gguf/tensor_mapping.py +135 -23
- bigdl/cpp/libs/common.lib +0 -0
- bigdl/cpp/libs/ggml.dll +0 -0
- bigdl/cpp/libs/llama-batched.exe +0 -0
- bigdl/cpp/libs/llama-bench.exe +0 -0
- bigdl/cpp/libs/llama-cli.exe +0 -0
- bigdl/cpp/libs/llama-embedding.exe +0 -0
- bigdl/cpp/libs/llama-gguf.exe +0 -0
- bigdl/cpp/libs/llama-llava-cli.exe +0 -0
- bigdl/cpp/libs/llama-lookup.exe +0 -0
- bigdl/cpp/libs/llama-ls-sycl-device.exe +0 -0
- bigdl/cpp/libs/llama-minicpmv-cli.exe +0 -0
- bigdl/cpp/libs/llama-perplexity.exe +0 -0
- bigdl/cpp/libs/llama-quantize.exe +0 -0
- bigdl/cpp/libs/llama-server.exe +0 -0
- bigdl/cpp/libs/llama-simple.exe +0 -0
- bigdl/cpp/libs/llama-speculative.exe +0 -0
- bigdl/cpp/libs/llama-tokenize.exe +0 -0
- bigdl/cpp/libs/llama.dll +0 -0
- bigdl/cpp/libs/llava_shared.dll +0 -0
- bigdl/cpp/libs/ollama.exe +0 -0
- {bigdl_core_cpp-2.6.0b20241204.dist-info → bigdl_core_cpp-2.6.0b20241211.dist-info}/METADATA +1 -1
- bigdl_core_cpp-2.6.0b20241211.dist-info/RECORD +45 -0
- bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu/ggml.dll +0 -0
- bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu/llama.dll +0 -0
- bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu/ollama_llama_server.exe +0 -0
- bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu_avx/ggml.dll +0 -0
- bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu_avx/llama.dll +0 -0
- bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu_avx/ollama_llama_server.exe +0 -0
- bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu_avx2/ggml.dll +0 -0
- bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu_avx2/llama.dll +0 -0
- bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu_avx2/ollama_llama_server.exe +0 -0
- bigdl_core_cpp-2.6.0b20241204.dist-info/RECORD +0 -54
- {bigdl_core_cpp-2.6.0b20241204.data → bigdl_core_cpp-2.6.0b20241211.data}/scripts/init-llama-cpp.bat +0 -0
- {bigdl_core_cpp-2.6.0b20241204.data → bigdl_core_cpp-2.6.0b20241211.data}/scripts/init-llama-cpp.ps1 +0 -0
- {bigdl_core_cpp-2.6.0b20241204.data → bigdl_core_cpp-2.6.0b20241211.data}/scripts/init-ollama.bat +0 -0
- {bigdl_core_cpp-2.6.0b20241204.dist-info → bigdl_core_cpp-2.6.0b20241211.dist-info}/WHEEL +0 -0
- {bigdl_core_cpp-2.6.0b20241204.dist-info → bigdl_core_cpp-2.6.0b20241211.dist-info}/top_level.txt +0 -0
bigdl/cpp/gguf-py/gguf/quants.py
CHANGED
@@ -574,6 +574,87 @@ class Q6_K(__Quant, qtype=GGMLQuantizationType.Q6_K):
|
|
574
574
|
return (d * q).reshape((n_blocks, QK_K))
|
575
575
|
|
576
576
|
|
577
|
+
class TQ1_0(__Quant, qtype=GGMLQuantizationType.TQ1_0):
|
578
|
+
@classmethod
|
579
|
+
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
580
|
+
n_blocks = blocks.shape[0]
|
581
|
+
|
582
|
+
d = abs(blocks).max(axis=-1, keepdims=True)
|
583
|
+
with np.errstate(divide="ignore"):
|
584
|
+
id = np.where(d == 0, 0, 1 / d)
|
585
|
+
qs = np_roundf(blocks * id)
|
586
|
+
qs = (qs.astype(np.int8) + np.int8(1)).astype(np.uint8)
|
587
|
+
|
588
|
+
qs0, qs1, qh = qs[..., :(32 * 5)], qs[..., (32 * 5):(48 * 5)], qs[..., (48 * 5):]
|
589
|
+
qs0 = qs0.reshape((n_blocks, -1, 5, 32)) * np.array([81, 27, 9, 3, 1], dtype=np.uint8).reshape((1, 1, 5, 1))
|
590
|
+
qs0 = np.sum(qs0, axis=-2).reshape((n_blocks, -1))
|
591
|
+
qs1 = qs1.reshape((n_blocks, -1, 5, 16)) * np.array([81, 27, 9, 3, 1], dtype=np.uint8).reshape((1, 1, 5, 1))
|
592
|
+
qs1 = np.sum(qs1, axis=-2).reshape((n_blocks, -1))
|
593
|
+
qh = qh.reshape((n_blocks, -1, 4, 4)) * np.array([81, 27, 9, 3], dtype=np.uint8).reshape((1, 1, 4, 1))
|
594
|
+
qh = np.sum(qh, axis=-2).reshape((n_blocks, -1))
|
595
|
+
qs = np.concatenate([qs0, qs1, qh], axis=-1)
|
596
|
+
qs = (qs.astype(np.uint16) * 256 + (243 - 1)) // 243
|
597
|
+
|
598
|
+
qs = qs.astype(np.uint8)
|
599
|
+
d = d.astype(np.float16).view(np.uint8)
|
600
|
+
|
601
|
+
return np.concatenate([qs, d], axis=-1)
|
602
|
+
|
603
|
+
@classmethod
|
604
|
+
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
605
|
+
n_blocks = blocks.shape[0]
|
606
|
+
|
607
|
+
qs, rest = np.hsplit(blocks, [(QK_K - 4 * QK_K // 64) // 5])
|
608
|
+
qh, d = np.hsplit(rest, [QK_K // 64])
|
609
|
+
|
610
|
+
d = d.view(np.float16).astype(np.float32)
|
611
|
+
|
612
|
+
qs0, qs1 = qs[..., :32], qs[..., 32:]
|
613
|
+
qs0 = qs0.reshape((n_blocks, -1, 1, 32)) * np.array([1, 3, 9, 27, 81], dtype=np.uint8).reshape((1, 1, 5, 1))
|
614
|
+
qs0 = qs0.reshape((n_blocks, -1))
|
615
|
+
qs1 = qs1.reshape((n_blocks, -1, 1, 16)) * np.array([1, 3, 9, 27, 81], dtype=np.uint8).reshape((1, 1, 5, 1))
|
616
|
+
qs1 = qs1.reshape((n_blocks, -1))
|
617
|
+
qh = qh.reshape((n_blocks, -1, 1, 4)) * np.array([1, 3, 9, 27], dtype=np.uint8).reshape((1, 1, 4, 1))
|
618
|
+
qh = qh.reshape((n_blocks, -1))
|
619
|
+
qs = np.concatenate([qs0, qs1, qh], axis=-1)
|
620
|
+
qs = ((qs.astype(np.uint16) * 3) >> 8).astype(np.int8) - np.int8(1)
|
621
|
+
|
622
|
+
return (d * qs.astype(np.float32))
|
623
|
+
|
624
|
+
|
625
|
+
class TQ2_0(__Quant, qtype=GGMLQuantizationType.TQ2_0):
|
626
|
+
@classmethod
|
627
|
+
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
628
|
+
n_blocks = blocks.shape[0]
|
629
|
+
|
630
|
+
d = abs(blocks).max(axis=-1, keepdims=True)
|
631
|
+
with np.errstate(divide="ignore"):
|
632
|
+
id = np.where(d == 0, 0, 1 / d)
|
633
|
+
qs = np_roundf(blocks * id)
|
634
|
+
qs = (qs.astype(np.int8) + np.int8(1)).astype(np.uint8)
|
635
|
+
|
636
|
+
qs = qs.reshape((n_blocks, -1, 4, 32)) << np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
|
637
|
+
qs = qs[..., 0, :] | qs[..., 1, :] | qs[..., 2, :] | qs[..., 3, :]
|
638
|
+
qs = qs.reshape((n_blocks, -1))
|
639
|
+
|
640
|
+
d = d.astype(np.float16).view(np.uint8)
|
641
|
+
|
642
|
+
return np.concatenate([qs, d], axis=-1)
|
643
|
+
|
644
|
+
@classmethod
|
645
|
+
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
646
|
+
n_blocks = blocks.shape[0]
|
647
|
+
|
648
|
+
qs, d = np.hsplit(blocks, [QK_K // 4])
|
649
|
+
|
650
|
+
d = d.view(np.float16).astype(np.float32)
|
651
|
+
|
652
|
+
qs = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
|
653
|
+
qs = (qs & 0x03).reshape((n_blocks, -1)).astype(np.int8) - np.int8(1)
|
654
|
+
|
655
|
+
return (d * qs.astype(np.float32))
|
656
|
+
|
657
|
+
|
577
658
|
class IQ2_XXS(__Quant, qtype=GGMLQuantizationType.IQ2_XXS):
|
578
659
|
ksigns: bytes = (
|
579
660
|
b"\x00\x81\x82\x03\x84\x05\x06\x87\x88\x09\x0a\x8b\x0c\x8d\x8e\x0f"
|
@@ -13,7 +13,7 @@ class TensorNameMap:
|
|
13
13
|
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
|
14
14
|
"transformer.word_embeddings", # falcon
|
15
15
|
"word_embeddings", # bloom
|
16
|
-
"model.embed_tokens", # llama-hf nemotron
|
16
|
+
"model.embed_tokens", # llama-hf nemotron olmoe
|
17
17
|
"tok_embeddings", # llama-pth
|
18
18
|
"embeddings.word_embeddings", # bert nomic-bert
|
19
19
|
"language_model.embedding.word_embeddings", # persimmon
|
@@ -27,6 +27,7 @@ class TensorNameMap:
|
|
27
27
|
"embedding.word_embeddings", # chatglm
|
28
28
|
"transformer.token_embeddings", # openelm
|
29
29
|
"shared", # t5
|
30
|
+
"rwkv.embeddings", # rwkv
|
30
31
|
),
|
31
32
|
|
32
33
|
# Token type embeddings
|
@@ -40,6 +41,7 @@ class TensorNameMap:
|
|
40
41
|
"embeddings.LayerNorm", # bert
|
41
42
|
"emb_ln", # nomic-bert
|
42
43
|
"transformer.norm", # openelm
|
44
|
+
"rwkv.blocks.0.pre_ln", # rwkv
|
43
45
|
),
|
44
46
|
|
45
47
|
# Position embeddings
|
@@ -52,18 +54,19 @@ class TensorNameMap:
|
|
52
54
|
# Output
|
53
55
|
MODEL_TENSOR.OUTPUT: (
|
54
56
|
"embed_out", # gptneox
|
55
|
-
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone
|
57
|
+
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe
|
56
58
|
"output", # llama-pth bloom internlm2
|
57
59
|
"word_embeddings_for_head", # persimmon
|
58
60
|
"lm_head.linear", # phi2
|
59
61
|
"output_layer", # chatglm
|
62
|
+
"head", # rwkv
|
60
63
|
),
|
61
64
|
|
62
65
|
# Output norm
|
63
66
|
MODEL_TENSOR.OUTPUT_NORM: (
|
64
67
|
"gpt_neox.final_layer_norm", # gptneox
|
65
68
|
"transformer.ln_f", # gpt2 gpt-j falcon jais exaone
|
66
|
-
"model.norm", # llama-hf baichuan internlm2
|
69
|
+
"model.norm", # llama-hf baichuan internlm2 olmoe
|
67
70
|
"norm", # llama-pth
|
68
71
|
"transformer.norm_f", # mpt dbrx
|
69
72
|
"ln_f", # refact bloom qwen gpt2
|
@@ -76,6 +79,7 @@ class TensorNameMap:
|
|
76
79
|
"encoder.final_layernorm", # chatglm
|
77
80
|
"transformer.norm", # openelm
|
78
81
|
"model.norm", # nemotron
|
82
|
+
"rwkv.ln_out", # rwkv
|
79
83
|
),
|
80
84
|
|
81
85
|
# Rope frequencies
|
@@ -83,6 +87,9 @@ class TensorNameMap:
|
|
83
87
|
"rope.freqs", # llama-pth
|
84
88
|
"rotary_pos_emb.inv_freq", # chatglm
|
85
89
|
),
|
90
|
+
|
91
|
+
MODEL_TENSOR.ROPE_FACTORS_LONG: (),
|
92
|
+
MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
|
86
93
|
}
|
87
94
|
|
88
95
|
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
@@ -94,7 +101,7 @@ class TensorNameMap:
|
|
94
101
|
"transformer.h.{bid}.input_layernorm", # falcon7b
|
95
102
|
"h.{bid}.input_layernorm", # bloom
|
96
103
|
"transformer.h.{bid}.ln_mlp", # falcon40b
|
97
|
-
"model.layers.{bid}.input_layernorm", # llama-hf nemotron
|
104
|
+
"model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe
|
98
105
|
"layers.{bid}.attention_norm", # llama-pth
|
99
106
|
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
|
100
107
|
"model.layers.{bid}.ln1", # yi
|
@@ -108,12 +115,14 @@ class TensorNameMap:
|
|
108
115
|
"transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
|
109
116
|
"encoder.layers.{bid}.input_layernorm", # chatglm
|
110
117
|
"transformer.layers.{bid}.attn_norm", # openelm
|
118
|
+
"rwkv.blocks.{bid}.ln1", # rwkv
|
111
119
|
),
|
112
120
|
|
113
121
|
# Attention norm 2
|
114
122
|
MODEL_TENSOR.ATTN_NORM_2: (
|
115
|
-
"transformer.h.{bid}.ln_attn",
|
123
|
+
"transformer.h.{bid}.ln_attn", # falcon40b
|
116
124
|
"encoder.layer.{bid}.layer_norm_1", # jina-v2-code
|
125
|
+
"rwkv.blocks.{bid}.ln2", # rwkv
|
117
126
|
),
|
118
127
|
|
119
128
|
# Attention query-key-value
|
@@ -136,7 +145,7 @@ class TensorNameMap:
|
|
136
145
|
|
137
146
|
# Attention query
|
138
147
|
MODEL_TENSOR.ATTN_Q: (
|
139
|
-
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron
|
148
|
+
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe
|
140
149
|
"layers.{bid}.attention.wq", # llama-pth
|
141
150
|
"encoder.layer.{bid}.attention.self.query", # bert
|
142
151
|
"transformer.h.{bid}.attn.q_proj", # gpt-j
|
@@ -148,7 +157,7 @@ class TensorNameMap:
|
|
148
157
|
|
149
158
|
# Attention key
|
150
159
|
MODEL_TENSOR.ATTN_K: (
|
151
|
-
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron
|
160
|
+
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe
|
152
161
|
"layers.{bid}.attention.wk", # llama-pth
|
153
162
|
"encoder.layer.{bid}.attention.self.key", # bert
|
154
163
|
"transformer.h.{bid}.attn.k_proj", # gpt-j
|
@@ -161,7 +170,7 @@ class TensorNameMap:
|
|
161
170
|
|
162
171
|
# Attention value
|
163
172
|
MODEL_TENSOR.ATTN_V: (
|
164
|
-
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron
|
173
|
+
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe
|
165
174
|
"layers.{bid}.attention.wv", # llama-pth
|
166
175
|
"encoder.layer.{bid}.attention.self.value", # bert
|
167
176
|
"transformer.h.{bid}.attn.v_proj", # gpt-j
|
@@ -179,7 +188,7 @@ class TensorNameMap:
|
|
179
188
|
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
180
189
|
"transformer.h.{bid}.self_attention.dense", # falcon
|
181
190
|
"h.{bid}.self_attention.dense", # bloom
|
182
|
-
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron
|
191
|
+
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe
|
183
192
|
"layers.{bid}.attention.wo", # llama-pth
|
184
193
|
"encoder.layer.{bid}.attention.output.dense", # bert
|
185
194
|
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
@@ -223,7 +232,7 @@ class TensorNameMap:
|
|
223
232
|
"transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
|
224
233
|
"h.{bid}.post_attention_layernorm", # bloom
|
225
234
|
"transformer.blocks.{bid}.norm_2", # mpt
|
226
|
-
"model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron
|
235
|
+
"model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe
|
227
236
|
"layers.{bid}.ffn_norm", # llama-pth
|
228
237
|
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
|
229
238
|
"model.layers.{bid}.ln2", # yi
|
@@ -245,11 +254,12 @@ class TensorNameMap:
|
|
245
254
|
),
|
246
255
|
|
247
256
|
MODEL_TENSOR.FFN_GATE_INP: (
|
248
|
-
"layers.{bid}.feed_forward.gate",
|
249
|
-
"model.layers.{bid}.block_sparse_moe.gate",
|
250
|
-
"model.layers.{bid}.mlp.gate",
|
251
|
-
"transformer.decoder_layer.{bid}.router",
|
252
|
-
"transformer.blocks.{bid}.ffn.router.layer",
|
257
|
+
"layers.{bid}.feed_forward.gate", # mixtral
|
258
|
+
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
|
259
|
+
"model.layers.{bid}.mlp.gate", # qwen2moe olmoe
|
260
|
+
"transformer.decoder_layer.{bid}.router", # Grok
|
261
|
+
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
|
262
|
+
"model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
|
253
263
|
),
|
254
264
|
|
255
265
|
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
|
@@ -289,7 +299,7 @@ class TensorNameMap:
|
|
289
299
|
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
|
290
300
|
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
|
291
301
|
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
|
292
|
-
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
|
302
|
+
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
|
293
303
|
),
|
294
304
|
|
295
305
|
MODEL_TENSOR.FFN_UP_SHEXP: (
|
@@ -321,7 +331,7 @@ class TensorNameMap:
|
|
321
331
|
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
|
322
332
|
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
|
323
333
|
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
|
324
|
-
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
|
334
|
+
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
|
325
335
|
),
|
326
336
|
|
327
337
|
MODEL_TENSOR.FFN_GATE_SHEXP: (
|
@@ -358,10 +368,11 @@ class TensorNameMap:
|
|
358
368
|
),
|
359
369
|
|
360
370
|
MODEL_TENSOR.FFN_DOWN_EXP: (
|
361
|
-
"layers.{bid}.feed_forward.experts.w2",
|
362
|
-
"transformer.decoder_layer.{bid}.moe.linear_1",
|
363
|
-
"transformer.blocks.{bid}.ffn.experts.mlp.w2",
|
364
|
-
"model.layers.{bid}.mlp.experts.down_proj",
|
371
|
+
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
|
372
|
+
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
|
373
|
+
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
|
374
|
+
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
|
375
|
+
"model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
|
365
376
|
),
|
366
377
|
|
367
378
|
MODEL_TENSOR.FFN_DOWN_SHEXP: (
|
@@ -372,7 +383,7 @@ class TensorNameMap:
|
|
372
383
|
MODEL_TENSOR.ATTN_Q_NORM: (
|
373
384
|
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
374
385
|
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
|
375
|
-
"model.layers.{bid}.self_attn.q_norm", # cohere
|
386
|
+
"model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon
|
376
387
|
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
|
377
388
|
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
|
378
389
|
"transformer.layers.{bid}.attn.q_norm", # openelm
|
@@ -381,7 +392,7 @@ class TensorNameMap:
|
|
381
392
|
MODEL_TENSOR.ATTN_K_NORM: (
|
382
393
|
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
|
383
394
|
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
|
384
|
-
"model.layers.{bid}.self_attn.k_norm", # cohere
|
395
|
+
"model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon
|
385
396
|
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
|
386
397
|
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
|
387
398
|
"transformer.layers.{bid}.attn.k_norm", # openelm
|
@@ -434,6 +445,98 @@ class TensorNameMap:
|
|
434
445
|
"backbone.layers.{bid}.mixer.out_proj",
|
435
446
|
),
|
436
447
|
|
448
|
+
MODEL_TENSOR.TIME_MIX_W1: (
|
449
|
+
"rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv v6
|
450
|
+
),
|
451
|
+
|
452
|
+
MODEL_TENSOR.TIME_MIX_W2: (
|
453
|
+
"rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv v6
|
454
|
+
),
|
455
|
+
|
456
|
+
MODEL_TENSOR.TIME_MIX_LERP_X: (
|
457
|
+
"rwkv.blocks.{bid}.attention.time_maa_x", # rwkv v6
|
458
|
+
),
|
459
|
+
|
460
|
+
MODEL_TENSOR.TIME_MIX_LERP_K: (
|
461
|
+
"rwkv.blocks.{bid}.attention.time_maa_k", # rwkv v6
|
462
|
+
),
|
463
|
+
|
464
|
+
MODEL_TENSOR.TIME_MIX_LERP_V: (
|
465
|
+
"rwkv.blocks.{bid}.attention.time_maa_v", # rwkv v6
|
466
|
+
),
|
467
|
+
|
468
|
+
MODEL_TENSOR.TIME_MIX_LERP_R: (
|
469
|
+
"rwkv.blocks.{bid}.attention.time_maa_r", # rwkv v6
|
470
|
+
),
|
471
|
+
|
472
|
+
MODEL_TENSOR.TIME_MIX_LERP_G: (
|
473
|
+
"rwkv.blocks.{bid}.attention.time_maa_g", # rwkv v6
|
474
|
+
),
|
475
|
+
|
476
|
+
MODEL_TENSOR.TIME_MIX_LERP_W: (
|
477
|
+
"rwkv.blocks.{bid}.attention.time_maa_w", # rwkv v6
|
478
|
+
),
|
479
|
+
|
480
|
+
MODEL_TENSOR.TIME_MIX_FIRST: (
|
481
|
+
"rwkv.blocks.{bid}.attention.time_faaaa", # rwkv v6
|
482
|
+
),
|
483
|
+
|
484
|
+
MODEL_TENSOR.TIME_MIX_DECAY: (
|
485
|
+
"rwkv.blocks.{bid}.attention.time_decay", # rwkv v6
|
486
|
+
),
|
487
|
+
|
488
|
+
MODEL_TENSOR.TIME_MIX_DECAY_W1: (
|
489
|
+
"rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv v6
|
490
|
+
),
|
491
|
+
|
492
|
+
MODEL_TENSOR.TIME_MIX_DECAY_W2: (
|
493
|
+
"rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv v6
|
494
|
+
),
|
495
|
+
|
496
|
+
MODEL_TENSOR.TIME_MIX_KEY: (
|
497
|
+
"rwkv.blocks.{bid}.attention.key", # rwkv
|
498
|
+
),
|
499
|
+
|
500
|
+
MODEL_TENSOR.TIME_MIX_VALUE: (
|
501
|
+
"rwkv.blocks.{bid}.attention.value", # rwkv
|
502
|
+
),
|
503
|
+
|
504
|
+
MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
|
505
|
+
"rwkv.blocks.{bid}.attention.receptance", # rwkv
|
506
|
+
),
|
507
|
+
|
508
|
+
MODEL_TENSOR.TIME_MIX_GATE: (
|
509
|
+
"rwkv.blocks.{bid}.attention.gate", # rwkv
|
510
|
+
),
|
511
|
+
|
512
|
+
MODEL_TENSOR.TIME_MIX_LN: (
|
513
|
+
"rwkv.blocks.{bid}.attention.ln_x", # rwkv
|
514
|
+
),
|
515
|
+
|
516
|
+
MODEL_TENSOR.TIME_MIX_OUTPUT: (
|
517
|
+
"rwkv.blocks.{bid}.attention.output", # rwkv
|
518
|
+
),
|
519
|
+
|
520
|
+
MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
|
521
|
+
"rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv v6
|
522
|
+
),
|
523
|
+
|
524
|
+
MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
|
525
|
+
"rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv v6
|
526
|
+
),
|
527
|
+
|
528
|
+
MODEL_TENSOR.CHANNEL_MIX_KEY: (
|
529
|
+
"rwkv.blocks.{bid}.feed_forward.key", # rwkv
|
530
|
+
),
|
531
|
+
|
532
|
+
MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
|
533
|
+
"rwkv.blocks.{bid}.feed_forward.receptance", # rwkv
|
534
|
+
),
|
535
|
+
|
536
|
+
MODEL_TENSOR.CHANNEL_MIX_VALUE: (
|
537
|
+
"rwkv.blocks.{bid}.feed_forward.value", # rwkv
|
538
|
+
),
|
539
|
+
|
437
540
|
MODEL_TENSOR.ATTN_Q_A: (
|
438
541
|
"model.layers.{bid}.self_attn.q_a_proj", # deepseek2
|
439
542
|
),
|
@@ -579,6 +682,15 @@ class TensorNameMap:
|
|
579
682
|
MODEL_TENSOR.ENC_OUTPUT_NORM: (
|
580
683
|
"encoder.final_layer_norm", # t5
|
581
684
|
),
|
685
|
+
|
686
|
+
MODEL_TENSOR.CLS: (
|
687
|
+
"classifier", # jina
|
688
|
+
"classifier.dense", # roberta
|
689
|
+
),
|
690
|
+
|
691
|
+
MODEL_TENSOR.CLS_OUT: (
|
692
|
+
"classifier.out_proj", # roberta
|
693
|
+
),
|
582
694
|
}
|
583
695
|
|
584
696
|
# architecture-specific block mappings
|
bigdl/cpp/libs/common.lib
CHANGED
Binary file
|
bigdl/cpp/libs/ggml.dll
CHANGED
Binary file
|
bigdl/cpp/libs/llama-batched.exe
CHANGED
Binary file
|
bigdl/cpp/libs/llama-bench.exe
CHANGED
Binary file
|
bigdl/cpp/libs/llama-cli.exe
CHANGED
Binary file
|
Binary file
|
bigdl/cpp/libs/llama-gguf.exe
CHANGED
Binary file
|
Binary file
|
bigdl/cpp/libs/llama-lookup.exe
CHANGED
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
bigdl/cpp/libs/llama-server.exe
CHANGED
Binary file
|
bigdl/cpp/libs/llama-simple.exe
CHANGED
Binary file
|
Binary file
|
Binary file
|
bigdl/cpp/libs/llama.dll
CHANGED
Binary file
|
bigdl/cpp/libs/llava_shared.dll
CHANGED
Binary file
|
bigdl/cpp/libs/ollama.exe
CHANGED
Binary file
|
@@ -0,0 +1,45 @@
|
|
1
|
+
bigdl/cpp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
|
+
bigdl/cpp/convert_hf_to_gguf.py,sha256=QcBpqyIsrqLlLFwCp0Z8M3IzMobHygjQY0ZgvFoF_u0,207430
|
3
|
+
bigdl/cpp/convert_hf_to_gguf_update.py,sha256=O1NH13YPWT9Af778goJOg8pccbrc5cOgwYcPOIOqYq0,16612
|
4
|
+
bigdl/cpp/convert_llama_ggml_to_gguf.py,sha256=0dKjRhmFzvWV4e-cuLmaeW14JrWUtZwerBmz8mYyMvI,19556
|
5
|
+
bigdl/cpp/convert_lora_to_gguf.py,sha256=qBJSMA_w3cIN_Mi5pNsi4zI1P5GYIeRi4nZPTpAs8QQ,15461
|
6
|
+
bigdl/cpp/gguf-py/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
7
|
+
bigdl/cpp/gguf-py/gguf/__init__.py,sha256=h5GWs6SMXYR8giWZ7MTZzAc3hYsIJF-HAkdxtgXLOPo,228
|
8
|
+
bigdl/cpp/gguf-py/gguf/constants.py,sha256=8_u4WadRGm7XeN0hxaIzDUgGajyUdHB4XsbslumYS2U,58733
|
9
|
+
bigdl/cpp/gguf-py/gguf/gguf.py,sha256=V5jY968TEJn6GJHVdjzH0_aIkZ1QC967vPdHDKDoxZw,491
|
10
|
+
bigdl/cpp/gguf-py/gguf/gguf_reader.py,sha256=N3LnQQ30t-S0U85-EvZZzIBfHzo0XuyFVUltdg7Sj3c,12680
|
11
|
+
bigdl/cpp/gguf-py/gguf/gguf_writer.py,sha256=tHtbF0ogWwfclKCvO7VyGKoJuCieFrrBx-vVpnruoQA,37092
|
12
|
+
bigdl/cpp/gguf-py/gguf/lazy.py,sha256=YIYxGBWD-oKXU4HOvpHs9eiEn81HUgeSmt1mmHJlbdM,8814
|
13
|
+
bigdl/cpp/gguf-py/gguf/metadata.py,sha256=wtquhynkyH8R7m3zxgeSUe2bnaekJi6HoCMiYJfJBmk,26232
|
14
|
+
bigdl/cpp/gguf-py/gguf/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
15
|
+
bigdl/cpp/gguf-py/gguf/quants.py,sha256=2z6vcK-kBefqZbYNmSEVmdZF_tXHeVb5NC6jCbBdgKc,62040
|
16
|
+
bigdl/cpp/gguf-py/gguf/tensor_mapping.py,sha256=oW7E5hnCWy7IeiQeN0v7xoLWeSatDUgEmKq_ZYlLV8s,35299
|
17
|
+
bigdl/cpp/gguf-py/gguf/utility.py,sha256=LAwLstUlosYQ1oX9LlJZ-1uCmwyNtOFcJfXpkLnju0k,3003
|
18
|
+
bigdl/cpp/gguf-py/gguf/vocab.py,sha256=FtNcm8M5aX9RIr6rRR6UXsUlKMagRUC2xnIWb-xu6rI,19511
|
19
|
+
bigdl/cpp/libs/common.lib,sha256=KiEclGjWr4Re-koAlu_EJ0dx_eJWOZ_-cxynqjEhiMs,4205058
|
20
|
+
bigdl/cpp/libs/ggml.dll,sha256=ZYnnmLc1Ncyn3rDEJrW6LwWYLHU_Obz80O3TGukLZIs,6219776
|
21
|
+
bigdl/cpp/libs/llama-batched.exe,sha256=YiRTTJYU5HzIBRSABWfUsouCYZbUO8A33BJ-sZMN7NM,838656
|
22
|
+
bigdl/cpp/libs/llama-bench.exe,sha256=sCqTPsHULyNLaelX2zsJf5eytVUFTJ0CGIQqhCjbKxA,290304
|
23
|
+
bigdl/cpp/libs/llama-cli.exe,sha256=CfOwSxxDB9Mnjmv3f--NcQ8o8mnJNn35oIpAiMboAwI,929280
|
24
|
+
bigdl/cpp/libs/llama-embedding.exe,sha256=25gJuxi33L9YGz6rqJaB-RwNrPoKJV7TmqkpiFD5D3w,860672
|
25
|
+
bigdl/cpp/libs/llama-gguf.exe,sha256=i9_oh1DcUMvQeYo6vJVxha_clodUD2cmGiLiEajco5w,66560
|
26
|
+
bigdl/cpp/libs/llama-llava-cli.exe,sha256=Qz63VFbVJos_YcBOJ9lZmz4ls4_WOkb-Ja4Zbxl5qwg,1091072
|
27
|
+
bigdl/cpp/libs/llama-lookup.exe,sha256=Xu6BHMpzrXd0KCqbIsxd2v1wYG0tVYl3BQMzCedus74,893952
|
28
|
+
bigdl/cpp/libs/llama-ls-sycl-device.exe,sha256=n3r_ttydRhyAfwo9pXZC3Cx81ffJZJg5Iu9R9ObkM-w,10240
|
29
|
+
bigdl/cpp/libs/llama-minicpmv-cli.exe,sha256=nzshnx0yvRmS8vf4JQcdllN5gnE55yXEKcDvRlVZoc4,1089024
|
30
|
+
bigdl/cpp/libs/llama-perplexity.exe,sha256=2PImsgokgDW2koGU61FADV5BnUhlBAbzZ153bde7aZ4,997376
|
31
|
+
bigdl/cpp/libs/llama-quantize.exe,sha256=Zx5Nofwfm9ITX-b1X2ka9VB8oEeTDcq9FLIUKAB9A6I,139264
|
32
|
+
bigdl/cpp/libs/llama-server.exe,sha256=_DEZ1za1cqW7lg9FqeTf7UMUc-QOVmuvAKaYxyMkDJY,1960960
|
33
|
+
bigdl/cpp/libs/llama-simple.exe,sha256=9CI4Y7tfoXn0zOkUGtNJXcouLpxqqyYdyYKkypxMPUU,834048
|
34
|
+
bigdl/cpp/libs/llama-speculative.exe,sha256=yAFNeNEpxzSEbrEqRZlG9b2h975tGyYWlwOO3GvAmew,896512
|
35
|
+
bigdl/cpp/libs/llama-tokenize.exe,sha256=445caGydC-Tof4OX9xfyYUItyKrCE6dTZJ8mWpb8CFc,102400
|
36
|
+
bigdl/cpp/libs/llama.dll,sha256=na9ZxrYLqG3CmutTL7SCFF__kt2MbbCOQOG-YkWwo6M,2471936
|
37
|
+
bigdl/cpp/libs/llava_shared.dll,sha256=Rxxf-Mq63MDfas2omN-A8Y4Fjk06GmmcaGc1uD69a3g,369152
|
38
|
+
bigdl/cpp/libs/ollama.exe,sha256=8IcEJkzPcoE0r3K2sAacTX6aVfvKI-xu-1ysEOQ8yJA,64879199
|
39
|
+
bigdl_core_cpp-2.6.0b20241211.data/scripts/init-llama-cpp.bat,sha256=U0h6RifZxL3GGJp-0dxdZapQIvXUATSj644CURJL-lg,751
|
40
|
+
bigdl_core_cpp-2.6.0b20241211.data/scripts/init-llama-cpp.ps1,sha256=JFOylLxO4MKpllHhdbPuJ1xHi9azxDpzdJns8JtZpkU,501
|
41
|
+
bigdl_core_cpp-2.6.0b20241211.data/scripts/init-ollama.bat,sha256=2rScaP2-_yWuAnc86NyX-i6pg7BxjvLc96Kt7HuvQVM,603
|
42
|
+
bigdl_core_cpp-2.6.0b20241211.dist-info/METADATA,sha256=eNkNqvxgOYJelp2IlQ17j-t19SmJf1pcKGmQfhyXaBw,652
|
43
|
+
bigdl_core_cpp-2.6.0b20241211.dist-info/WHEEL,sha256=z8gukVdnGwjcwo0VnsfJMrhPu5QJT68VcMWmAgvAufw,97
|
44
|
+
bigdl_core_cpp-2.6.0b20241211.dist-info/top_level.txt,sha256=iGuLfZARD_qANcIMfy0tbbrC3EtCg6BSiH8icc3dLWs,6
|
45
|
+
bigdl_core_cpp-2.6.0b20241211.dist-info/RECORD,,
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
@@ -1,54 +0,0 @@
|
|
1
|
-
bigdl/cpp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
|
-
bigdl/cpp/convert_hf_to_gguf.py,sha256=5DxO33LLwJX4aYpWMwTTTvnZd2JinTWatBwnW54A8iQ,189773
|
3
|
-
bigdl/cpp/convert_hf_to_gguf_update.py,sha256=pKKPaDe8Dhsvcu_ofSPVEgZ6Ojgk8P9bmDIFi1Hm7lo,15503
|
4
|
-
bigdl/cpp/convert_llama_ggml_to_gguf.py,sha256=VyHM3jMYwzM5uQByh-W2DKHEXiwQDk8RBonpdbBL5l8,19734
|
5
|
-
bigdl/cpp/convert_lora_to_gguf.py,sha256=bc-D5-lINVo6SXrt-Lws8wdWeIfwcdA7GBptP3MttcM,14775
|
6
|
-
bigdl/cpp/gguf-py/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
7
|
-
bigdl/cpp/gguf-py/gguf/__init__.py,sha256=h5GWs6SMXYR8giWZ7MTZzAc3hYsIJF-HAkdxtgXLOPo,228
|
8
|
-
bigdl/cpp/gguf-py/gguf/constants.py,sha256=J1dMukNMfNKF_yEbjvOSQpYODfifY05TwdiTQqHw27E,50556
|
9
|
-
bigdl/cpp/gguf-py/gguf/gguf.py,sha256=V5jY968TEJn6GJHVdjzH0_aIkZ1QC967vPdHDKDoxZw,491
|
10
|
-
bigdl/cpp/gguf-py/gguf/gguf_reader.py,sha256=N3LnQQ30t-S0U85-EvZZzIBfHzo0XuyFVUltdg7Sj3c,12680
|
11
|
-
bigdl/cpp/gguf-py/gguf/gguf_writer.py,sha256=VZneSoXRxmxCFP55CMIqBws4XgboeC8sJeGNoMHy6Uc,35976
|
12
|
-
bigdl/cpp/gguf-py/gguf/lazy.py,sha256=kckbqp8tj7NMkDNwePxwI_1WxK6qH5pMk9p7Lu8cj6A,8816
|
13
|
-
bigdl/cpp/gguf-py/gguf/metadata.py,sha256=wtquhynkyH8R7m3zxgeSUe2bnaekJi6HoCMiYJfJBmk,26232
|
14
|
-
bigdl/cpp/gguf-py/gguf/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
15
|
-
bigdl/cpp/gguf-py/gguf/quants.py,sha256=8broI4A53_Zbd8nQ-a6Qcw2TY4T8XgqHhHFq-J6E9eY,58524
|
16
|
-
bigdl/cpp/gguf-py/gguf/tensor_mapping.py,sha256=V2UiBqnPVfFeOK_sg9JY6mXqOLBhCsHGJy7kPHn5jMQ,31548
|
17
|
-
bigdl/cpp/gguf-py/gguf/utility.py,sha256=LAwLstUlosYQ1oX9LlJZ-1uCmwyNtOFcJfXpkLnju0k,3003
|
18
|
-
bigdl/cpp/gguf-py/gguf/vocab.py,sha256=FtNcm8M5aX9RIr6rRR6UXsUlKMagRUC2xnIWb-xu6rI,19511
|
19
|
-
bigdl/cpp/libs/common.lib,sha256=fu4v0lhqD5X44oleXPd2r_Hb7vM6oxu7GWgHZEN5wBA,4057932
|
20
|
-
bigdl/cpp/libs/ggml.dll,sha256=Yqvqkmai6yfxHPNj9tQIGQy5UpDxQr3ovxWN6dXNPjo,5747200
|
21
|
-
bigdl/cpp/libs/llama-batched.exe,sha256=Gmapigvr9e5mRnTKQQoMiOPM0MQ2Oo-Jbv_Aj3C7uBI,771072
|
22
|
-
bigdl/cpp/libs/llama-bench.exe,sha256=bPgiGEdSVK1UTDaTu1UjAx09k4rU9ddnWd5MLFI0G6U,336896
|
23
|
-
bigdl/cpp/libs/llama-cli.exe,sha256=zOZkZowVzARtz_uGGMcZjgN2HWYiPNy-r-hYLnH-S9o,906752
|
24
|
-
bigdl/cpp/libs/llama-embedding.exe,sha256=d4Z12U85skGuHWP2OnsLZb3GWrq7Imf0jlXEFe67aGo,785408
|
25
|
-
bigdl/cpp/libs/llama-gguf.exe,sha256=_SFeDN1R9l-6JlAD4cqDpHvJJQPz9umomskj4WDV1EU,66560
|
26
|
-
bigdl/cpp/libs/llama-llava-cli.exe,sha256=fgf_QoWWvEJUE1jivwfNv-4kNTKlUUpknBWrVO2x41M,1091072
|
27
|
-
bigdl/cpp/libs/llama-lookup.exe,sha256=jk7gecgU4-JMPQzvuZ_5Ua_DADcREsZJJKJDaODv3S4,851968
|
28
|
-
bigdl/cpp/libs/llama-ls-sycl-device.exe,sha256=0T3nyCsh3ipx3MAg2jnKJ9s8zpFcHqUp2VVTKgPFWPU,10240
|
29
|
-
bigdl/cpp/libs/llama-minicpmv-cli.exe,sha256=kAXSj0uQPKQTyilHF9v8O3uzEd_3Fz682UKJQEPBx4Y,1082880
|
30
|
-
bigdl/cpp/libs/llama-perplexity.exe,sha256=QSbQlsT097fzly9acGyuRrFbj-WRPHnoH1aSnfpNuUg,915456
|
31
|
-
bigdl/cpp/libs/llama-quantize.exe,sha256=CMhHE0XPHcX3yGf1dDnRVEsYu6A5p_u9Ehm_2xnwfJk,227840
|
32
|
-
bigdl/cpp/libs/llama-server.exe,sha256=vzkcVuu80vwff2jTbnAbh5oqtCgftNDzhX5H1yaIHss,2143744
|
33
|
-
bigdl/cpp/libs/llama-simple.exe,sha256=dfsypF6HfCj3mzLxGGgb-MNdlb0doLcqJfzTITYKi7o,763392
|
34
|
-
bigdl/cpp/libs/llama-speculative.exe,sha256=Z-QEL9Ica-cigbvXJV-z0ouAzzySSY5QbbGAvJU1IEU,849920
|
35
|
-
bigdl/cpp/libs/llama-tokenize.exe,sha256=qd8XY05zRbbmu9S2YXE-NCjZjYg8HRUkG_fJM0iPz9I,200704
|
36
|
-
bigdl/cpp/libs/llama.dll,sha256=sjV8oupuQX40hruymke6Gr8hpBmbBUnp1_F3XtHevQg,2217984
|
37
|
-
bigdl/cpp/libs/llava_shared.dll,sha256=1gxdRqpsm18_PDOqj6WYhf9QXAG49nz0bqyc-L2LkgE,404480
|
38
|
-
bigdl/cpp/libs/ollama.exe,sha256=kRJZ_YpcUh8dAwmRNX9T_GdPB2Wqkt2B5aknoCm4Gn8,65494851
|
39
|
-
bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu/ggml.dll,sha256=EcgDjYmlAZ1y2onVuQaVzFwmVKORQbAYapdQFrEi77E,5703680
|
40
|
-
bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu/llama.dll,sha256=ccXu6uypObtwy7EOlsGBoFp6RCWqjfnwziCgT_rcfZk,2217984
|
41
|
-
bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu/ollama_llama_server.exe,sha256=djHmEslhDOBSliETcM6xB3fzkyaC_O46w-s3kZOVVEk,1376768
|
42
|
-
bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu_avx/ggml.dll,sha256=X8NcVQRPqasgn6EgagaN3rLshBRZTWB1SeLamJsXXEc,5703680
|
43
|
-
bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu_avx/llama.dll,sha256=-9vr01rKVrFo3g4nvTEOCFeVOj7RMlJed2rLrWaZMV8,2217984
|
44
|
-
bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu_avx/ollama_llama_server.exe,sha256=1gl5SaFXe0W4kq0CJ14ffSl3abx4ux9wiqXfgkxk7lc,1376768
|
45
|
-
bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu_avx2/ggml.dll,sha256=08UQw5mL9lA2QtfOV-Io9cLFhShGk5U6umJkQroSCPU,5703680
|
46
|
-
bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu_avx2/llama.dll,sha256=iqPp4mL-l_v_Bi2rRHxdqraqW89vPyfgL6rR3C18djI,2217984
|
47
|
-
bigdl/cpp/libs/dist/windows-amd64/lib/ollama/runners/cpu_avx2/ollama_llama_server.exe,sha256=uFHFQrpYs6a-nYPbotrkX1Soum3T-gyPiR549E1ukiI,1376768
|
48
|
-
bigdl_core_cpp-2.6.0b20241204.data/scripts/init-llama-cpp.bat,sha256=U0h6RifZxL3GGJp-0dxdZapQIvXUATSj644CURJL-lg,751
|
49
|
-
bigdl_core_cpp-2.6.0b20241204.data/scripts/init-llama-cpp.ps1,sha256=JFOylLxO4MKpllHhdbPuJ1xHi9azxDpzdJns8JtZpkU,501
|
50
|
-
bigdl_core_cpp-2.6.0b20241204.data/scripts/init-ollama.bat,sha256=2rScaP2-_yWuAnc86NyX-i6pg7BxjvLc96Kt7HuvQVM,603
|
51
|
-
bigdl_core_cpp-2.6.0b20241204.dist-info/METADATA,sha256=zybu715duUbDtl0TbBZfoY1k1Rv1FGsHGLd0son1f8g,652
|
52
|
-
bigdl_core_cpp-2.6.0b20241204.dist-info/WHEEL,sha256=z8gukVdnGwjcwo0VnsfJMrhPu5QJT68VcMWmAgvAufw,97
|
53
|
-
bigdl_core_cpp-2.6.0b20241204.dist-info/top_level.txt,sha256=iGuLfZARD_qANcIMfy0tbbrC3EtCg6BSiH8icc3dLWs,6
|
54
|
-
bigdl_core_cpp-2.6.0b20241204.dist-info/RECORD,,
|
{bigdl_core_cpp-2.6.0b20241204.data → bigdl_core_cpp-2.6.0b20241211.data}/scripts/init-llama-cpp.bat
RENAMED
File without changes
|
{bigdl_core_cpp-2.6.0b20241204.data → bigdl_core_cpp-2.6.0b20241211.data}/scripts/init-llama-cpp.ps1
RENAMED
File without changes
|
{bigdl_core_cpp-2.6.0b20241204.data → bigdl_core_cpp-2.6.0b20241211.data}/scripts/init-ollama.bat
RENAMED
File without changes
|
File without changes
|
{bigdl_core_cpp-2.6.0b20241204.dist-info → bigdl_core_cpp-2.6.0b20241211.dist-info}/top_level.txt
RENAMED
File without changes
|