bigdl-core-cpp 2.5.0b20240725__py3-none-win_amd64.whl → 2.5.0b20240726__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. bigdl/cpp/convert-hf-to-gguf.py +1106 -320
  2. bigdl/cpp/gguf-py/gguf/__init__.py +2 -0
  3. bigdl/cpp/gguf-py/gguf/constants.py +442 -173
  4. bigdl/cpp/gguf-py/gguf/gguf.py +1 -1
  5. bigdl/cpp/gguf-py/gguf/gguf_reader.py +29 -8
  6. bigdl/cpp/gguf-py/gguf/gguf_writer.py +472 -156
  7. bigdl/cpp/gguf-py/gguf/lazy.py +24 -49
  8. bigdl/cpp/gguf-py/gguf/tensor_mapping.py +195 -23
  9. bigdl/cpp/libs/baby-llama.exe +0 -0
  10. bigdl/cpp/libs/batched-bench.exe +0 -0
  11. bigdl/cpp/libs/batched.exe +0 -0
  12. bigdl/cpp/libs/beam-search.exe +0 -0
  13. bigdl/cpp/libs/benchmark.exe +0 -0
  14. bigdl/cpp/libs/common.lib +0 -0
  15. bigdl/cpp/libs/convert-llama2c-to-ggml.exe +0 -0
  16. bigdl/cpp/libs/dist/windows-amd64/ollama_runners/cpu/ollama_llama_server.exe +0 -0
  17. bigdl/cpp/libs/dist/windows-amd64/ollama_runners/cpu_avx/ollama_llama_server.exe +0 -0
  18. bigdl/cpp/libs/dist/windows-amd64/ollama_runners/cpu_avx2/ollama_llama_server.exe +0 -0
  19. bigdl/cpp/libs/embedding.exe +0 -0
  20. bigdl/cpp/libs/export-lora.exe +0 -0
  21. bigdl/cpp/libs/finetune.exe +0 -0
  22. bigdl/cpp/libs/ggml_shared.dll +0 -0
  23. bigdl/cpp/libs/gguf.exe +0 -0
  24. bigdl/cpp/libs/gritlm.exe +0 -0
  25. bigdl/cpp/libs/imatrix.exe +0 -0
  26. bigdl/cpp/libs/infill.exe +0 -0
  27. bigdl/cpp/libs/llama-bench.exe +0 -0
  28. bigdl/cpp/libs/llama.dll +0 -0
  29. bigdl/cpp/libs/llava-cli.exe +0 -0
  30. bigdl/cpp/libs/llava_shared.dll +0 -0
  31. bigdl/cpp/libs/lookahead.exe +0 -0
  32. bigdl/cpp/libs/lookup.exe +0 -0
  33. bigdl/cpp/libs/ls-sycl-device.exe +0 -0
  34. bigdl/cpp/libs/main.exe +0 -0
  35. bigdl/cpp/libs/ollama.exe +0 -0
  36. bigdl/cpp/libs/parallel.exe +0 -0
  37. bigdl/cpp/libs/passkey.exe +0 -0
  38. bigdl/cpp/libs/perplexity.exe +0 -0
  39. bigdl/cpp/libs/q8dot.exe +0 -0
  40. bigdl/cpp/libs/quantize-stats.exe +0 -0
  41. bigdl/cpp/libs/quantize.exe +0 -0
  42. bigdl/cpp/libs/save-load-state.exe +0 -0
  43. bigdl/cpp/libs/server.exe +0 -0
  44. bigdl/cpp/libs/simple.exe +0 -0
  45. bigdl/cpp/libs/speculative.exe +0 -0
  46. bigdl/cpp/libs/tokenize.exe +0 -0
  47. bigdl/cpp/libs/train-text-from-scratch.exe +0 -0
  48. bigdl/cpp/libs/vdot.exe +0 -0
  49. {bigdl_core_cpp-2.5.0b20240725.dist-info → bigdl_core_cpp-2.5.0b20240726.dist-info}/METADATA +1 -1
  50. bigdl_core_cpp-2.5.0b20240726.dist-info/RECORD +61 -0
  51. bigdl_core_cpp-2.5.0b20240725.dist-info/RECORD +0 -61
  52. {bigdl_core_cpp-2.5.0b20240725.data → bigdl_core_cpp-2.5.0b20240726.data}/scripts/init-llama-cpp.bat +0 -0
  53. {bigdl_core_cpp-2.5.0b20240725.data → bigdl_core_cpp-2.5.0b20240726.data}/scripts/init-llama-cpp.ps1 +0 -0
  54. {bigdl_core_cpp-2.5.0b20240725.data → bigdl_core_cpp-2.5.0b20240726.data}/scripts/init-ollama.bat +0 -0
  55. {bigdl_core_cpp-2.5.0b20240725.dist-info → bigdl_core_cpp-2.5.0b20240726.dist-info}/WHEEL +0 -0
  56. {bigdl_core_cpp-2.5.0b20240725.dist-info → bigdl_core_cpp-2.5.0b20240726.dist-info}/top_level.txt +0 -0
@@ -5,7 +5,10 @@ import os
5
5
  import shutil
6
6
  import struct
7
7
  import tempfile
8
+ from dataclasses import dataclass
8
9
  from enum import Enum, auto
10
+ from math import prod
11
+ from pathlib import Path
9
12
  from io import BufferedWriter
10
13
  from typing import IO, Any, Sequence, Mapping
11
14
  from string import ascii_letters, digits
@@ -30,17 +33,39 @@ from .quants import quant_shape_from_byte_shape
30
33
  logger = logging.getLogger(__name__)
31
34
 
32
35
 
36
+ SHARD_NAME_FORMAT = "{:s}-{:05d}-of-{:05d}.gguf"
37
+
38
+
39
+ @dataclass
40
+ class TensorInfo:
41
+ shape: Sequence[int]
42
+ dtype: GGMLQuantizationType
43
+ nbytes: int
44
+ tensor: np.ndarray[Any, Any] | None = None
45
+
46
+
47
+ @dataclass
48
+ class GGUFValue:
49
+ value: Any
50
+ type: GGUFValueType
51
+
52
+
33
53
  class WriterState(Enum):
54
+ NO_FILE = auto()
34
55
  EMPTY = auto()
35
56
  HEADER = auto()
36
57
  KV_DATA = auto()
37
58
  TI_DATA = auto()
59
+ WEIGHTS = auto()
38
60
 
39
61
 
40
62
  class GGUFWriter:
41
- fout: BufferedWriter
63
+ fout: list[BufferedWriter] | None
64
+ path: Path | None
42
65
  temp_file: tempfile.SpooledTemporaryFile[bytes] | None
43
- tensors: list[np.ndarray[Any, Any]]
66
+ tensors: list[dict[str, TensorInfo]]
67
+ kv_data: list[dict[str, GGUFValue]]
68
+ state: WriterState
44
69
  _simple_value_packing = {
45
70
  GGUFValueType.UINT8: "B",
46
71
  GGUFValueType.INT8: "b",
@@ -56,141 +81,238 @@ class GGUFWriter:
56
81
  }
57
82
 
58
83
  def __init__(
59
- self, path: os.PathLike[str] | str, arch: str, use_temp_file: bool = True,
60
- endianess: GGUFEndian = GGUFEndian.LITTLE,
84
+ self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False, endianess: GGUFEndian = GGUFEndian.LITTLE,
85
+ split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False
61
86
  ):
62
- self.fout = open(path, "wb")
87
+ self.fout = None
88
+ self.path = Path(path) if path else None
63
89
  self.arch = arch
64
90
  self.endianess = endianess
65
- self.offset_tensor = 0
66
91
  self.data_alignment = GGUF_DEFAULT_ALIGNMENT
67
- self.kv_data = bytearray()
68
- self.kv_data_count = 0
69
- self.ti_data = bytearray()
70
- self.ti_data_count = 0
71
- self.ti_names = set()
72
92
  self.use_temp_file = use_temp_file
73
93
  self.temp_file = None
74
- self.tensors = []
94
+ self.tensors = [{}]
95
+ self.kv_data = [{}]
96
+ self.split_max_tensors = split_max_tensors
97
+ self.split_max_size = split_max_size
98
+ self.dry_run = dry_run
99
+ self.small_first_shard = small_first_shard
75
100
  logger.info("gguf: This GGUF file is for {0} Endian only".format(
76
101
  "Big" if self.endianess == GGUFEndian.BIG else "Little",
77
102
  ))
78
- self.state = WriterState.EMPTY
103
+ self.state = WriterState.NO_FILE
104
+
105
+ if self.small_first_shard:
106
+ self.tensors.append({})
79
107
 
80
108
  self.add_architecture()
81
109
 
82
- def write_header_to_file(self) -> None:
110
+ def get_total_parameter_count(self) -> tuple[int, int, int, int]:
111
+ total_params = 0
112
+ shared_params = 0
113
+ expert_params = 0
114
+
115
+ expert_sum = 0
116
+ n_expert_tensors = 0
117
+
118
+ last_lora_a: tuple[str, TensorInfo] | None = None
119
+
120
+ for tensors in self.tensors:
121
+ for name, info in tensors.items():
122
+
123
+ shape = info.shape
124
+
125
+ if name.endswith(".lora_a"):
126
+ last_lora_a = (name, info)
127
+ continue
128
+ elif name.endswith(".lora_b"):
129
+ if last_lora_a is None or last_lora_a[0] != name[:-1] + "a":
130
+ # Bail when the LoRA pair can't be found trivially
131
+ logger.warning("can't measure LoRA size correctly, tensor order is unusual")
132
+ return 0, 0, 0, 0
133
+ else:
134
+ shape = (*shape[:-1], last_lora_a[1].shape[-1])
135
+
136
+ size = prod(shape)
137
+
138
+ if "_exps." in name:
139
+ expert_params += (size // shape[-3])
140
+ expert_sum += shape[-3]
141
+ n_expert_tensors += 1
142
+ else:
143
+ shared_params += size
144
+
145
+ total_params += size
146
+
147
+ # Hopefully this should work even for variable-expert-count models
148
+ expert_count = (expert_sum // n_expert_tensors) if n_expert_tensors > 0 else 0
149
+
150
+ # Negate the total to signal it's likely not exact
151
+ if last_lora_a is not None:
152
+ total_params = -total_params
153
+
154
+ # NOTE: keep the output in the same order as accepted by 'size_label' in gguf-py/gguf/utility.py
155
+ return total_params, shared_params, expert_params, expert_count
156
+
157
+ def format_shard_names(self, path: Path) -> list[Path]:
158
+ if len(self.tensors) == 1:
159
+ return [path]
160
+ return [path.with_name(SHARD_NAME_FORMAT.format(path.stem, i + 1, len(self.tensors))) for i in range(len(self.tensors))]
161
+
162
+ def open_output_file(self, path: Path | None = None) -> None:
163
+ if self.state is WriterState.EMPTY and self.fout is not None and (path is None or path == self.path):
164
+ # allow calling this multiple times as long as the path is the same
165
+ return
166
+
167
+ if self.state is not WriterState.NO_FILE:
168
+ raise ValueError(f'Expected output file to be not yet opened, got {self.state}')
169
+
170
+ if path is not None:
171
+ self.path = path
172
+
173
+ if self.path is not None:
174
+ filenames = self.print_plan()
175
+ self.fout = [open(filename, "wb") for filename in filenames]
176
+ self.state = WriterState.EMPTY
177
+
178
+ def print_plan(self) -> list[Path]:
179
+ logger.info("Writing the following files:")
180
+ assert self.path is not None
181
+ filenames = self.format_shard_names(self.path)
182
+ assert len(filenames) == len(self.tensors)
183
+ for name, tensors in zip(filenames, self.tensors):
184
+ logger.info(f"{name}: n_tensors = {len(tensors)}, total_size = {GGUFWriter.format_n_bytes_to_str(sum(ti.nbytes for ti in tensors.values()))}")
185
+
186
+ if self.dry_run:
187
+ logger.info("Dry run, not writing files")
188
+ for name in filenames:
189
+ print(name) # noqa: NP100
190
+ exit()
191
+
192
+ return filenames
193
+
194
+ def add_shard_kv_data(self) -> None:
195
+ if len(self.tensors) == 1:
196
+ return
197
+
198
+ total_tensors = sum(len(t) for t in self.tensors)
199
+ assert self.fout is not None
200
+ total_splits = len(self.fout)
201
+ self.kv_data.extend({} for _ in range(len(self.kv_data), total_splits))
202
+ for i, kv_data in enumerate(self.kv_data):
203
+ kv_data[Keys.Split.LLM_KV_SPLIT_NO] = GGUFValue(i, GGUFValueType.UINT16)
204
+ kv_data[Keys.Split.LLM_KV_SPLIT_COUNT] = GGUFValue(total_splits, GGUFValueType.UINT16)
205
+ kv_data[Keys.Split.LLM_KV_SPLIT_TENSORS_COUNT] = GGUFValue(total_tensors, GGUFValueType.INT32)
206
+
207
+ def write_header_to_file(self, path: Path | None = None) -> None:
208
+ if len(self.tensors) == 1 and (self.split_max_tensors != 0 or self.split_max_size != 0):
209
+ logger.warning("Model fails split requirements, not splitting")
210
+
211
+ self.open_output_file(path)
212
+
83
213
  if self.state is not WriterState.EMPTY:
84
214
  raise ValueError(f'Expected output file to be empty, got {self.state}')
85
215
 
86
- self._write_packed("<I", GGUF_MAGIC, skip_pack_prefix = True)
87
- self._write_packed("I", GGUF_VERSION)
88
- self._write_packed("Q", self.ti_data_count)
89
- self._write_packed("Q", self.kv_data_count)
90
- self.flush()
216
+ assert self.fout is not None
217
+ assert len(self.fout) == len(self.tensors)
218
+ assert len(self.kv_data) == 1
219
+
220
+ self.add_shard_kv_data()
221
+
222
+ for fout, tensors, kv_data in zip(self.fout, self.tensors, self.kv_data):
223
+ fout.write(self._pack("<I", GGUF_MAGIC, skip_pack_prefix = True))
224
+ fout.write(self._pack("I", GGUF_VERSION))
225
+ fout.write(self._pack("Q", len(tensors)))
226
+ fout.write(self._pack("Q", len(kv_data)))
227
+ fout.flush()
91
228
  self.state = WriterState.HEADER
92
229
 
93
230
  def write_kv_data_to_file(self) -> None:
94
231
  if self.state is not WriterState.HEADER:
95
232
  raise ValueError(f'Expected output file to contain the header, got {self.state}')
233
+ assert self.fout is not None
234
+
235
+ for fout, kv_data in zip(self.fout, self.kv_data):
236
+ kv_bytes = bytearray()
237
+
238
+ for key, val in kv_data.items():
239
+ kv_bytes += self._pack_val(key, GGUFValueType.STRING, add_vtype=False)
240
+ kv_bytes += self._pack_val(val.value, val.type, add_vtype=True)
241
+
242
+ fout.write(kv_bytes)
96
243
 
97
- self.fout.write(self.kv_data)
98
244
  self.flush()
99
245
  self.state = WriterState.KV_DATA
100
246
 
101
247
  def write_ti_data_to_file(self) -> None:
102
248
  if self.state is not WriterState.KV_DATA:
103
249
  raise ValueError(f'Expected output file to contain KV data, got {self.state}')
104
-
105
- self.fout.write(self.ti_data)
106
- self.flush()
250
+ assert self.fout is not None
251
+
252
+ for fout, tensors in zip(self.fout, self.tensors):
253
+ ti_data = bytearray()
254
+ offset_tensor = 0
255
+
256
+ for name, ti in tensors.items():
257
+ ti_data += self._pack_val(name, GGUFValueType.STRING, add_vtype=False)
258
+ n_dims = len(ti.shape)
259
+ ti_data += self._pack("I", n_dims)
260
+ for j in range(n_dims):
261
+ ti_data += self._pack("Q", ti.shape[n_dims - 1 - j])
262
+ ti_data += self._pack("I", ti.dtype)
263
+ ti_data += self._pack("Q", offset_tensor)
264
+ offset_tensor += GGUFWriter.ggml_pad(ti.nbytes, self.data_alignment)
265
+
266
+ fout.write(ti_data)
267
+ fout.flush()
107
268
  self.state = WriterState.TI_DATA
108
269
 
109
- def add_key(self, key: str) -> None:
110
- self.add_val(key, GGUFValueType.STRING, add_vtype=False)
270
+ def add_key_value(self, key: str, val: Any, vtype: GGUFValueType) -> None:
271
+ if any(key in kv_data for kv_data in self.kv_data):
272
+ raise ValueError(f'Duplicated key name {key!r}')
273
+
274
+ self.kv_data[0][key] = GGUFValue(value=val, type=vtype)
111
275
 
112
276
  def add_uint8(self, key: str, val: int) -> None:
113
- self.add_key(key)
114
- self.add_val(val, GGUFValueType.UINT8)
277
+ self.add_key_value(key,val, GGUFValueType.UINT8)
115
278
 
116
279
  def add_int8(self, key: str, val: int) -> None:
117
- self.add_key(key)
118
- self.add_val(val, GGUFValueType.INT8)
280
+ self.add_key_value(key, val, GGUFValueType.INT8)
119
281
 
120
282
  def add_uint16(self, key: str, val: int) -> None:
121
- self.add_key(key)
122
- self.add_val(val, GGUFValueType.UINT16)
283
+ self.add_key_value(key, val, GGUFValueType.UINT16)
123
284
 
124
285
  def add_int16(self, key: str, val: int) -> None:
125
- self.add_key(key)
126
- self.add_val(val, GGUFValueType.INT16)
286
+ self.add_key_value(key, val, GGUFValueType.INT16)
127
287
 
128
288
  def add_uint32(self, key: str, val: int) -> None:
129
- self.add_key(key)
130
- self.add_val(val, GGUFValueType.UINT32)
289
+ self.add_key_value(key, val, GGUFValueType.UINT32)
131
290
 
132
291
  def add_int32(self, key: str, val: int) -> None:
133
- self.add_key(key)
134
- self.add_val(val, GGUFValueType.INT32)
292
+ self.add_key_value(key, val, GGUFValueType.INT32)
135
293
 
136
294
  def add_float32(self, key: str, val: float) -> None:
137
- self.add_key(key)
138
- self.add_val(val, GGUFValueType.FLOAT32)
295
+ self.add_key_value(key, val, GGUFValueType.FLOAT32)
139
296
 
140
297
  def add_uint64(self, key: str, val: int) -> None:
141
- self.add_key(key)
142
- self.add_val(val, GGUFValueType.UINT64)
298
+ self.add_key_value(key, val, GGUFValueType.UINT64)
143
299
 
144
300
  def add_int64(self, key: str, val: int) -> None:
145
- self.add_key(key)
146
- self.add_val(val, GGUFValueType.INT64)
301
+ self.add_key_value(key, val, GGUFValueType.INT64)
147
302
 
148
303
  def add_float64(self, key: str, val: float) -> None:
149
- self.add_key(key)
150
- self.add_val(val, GGUFValueType.FLOAT64)
304
+ self.add_key_value(key, val, GGUFValueType.FLOAT64)
151
305
 
152
306
  def add_bool(self, key: str, val: bool) -> None:
153
- self.add_key(key)
154
- self.add_val(val, GGUFValueType.BOOL)
307
+ self.add_key_value(key, val, GGUFValueType.BOOL)
155
308
 
156
309
  def add_string(self, key: str, val: str) -> None:
157
310
  if not val:
158
311
  return
159
- self.add_key(key)
160
- self.add_val(val, GGUFValueType.STRING)
312
+ self.add_key_value(key, val, GGUFValueType.STRING)
161
313
 
162
314
  def add_array(self, key: str, val: Sequence[Any]) -> None:
163
- if not isinstance(val, Sequence):
164
- raise ValueError("Value must be a sequence for array type")
165
-
166
- self.add_key(key)
167
- self.add_val(val, GGUFValueType.ARRAY)
168
-
169
- def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True) -> None:
170
- if vtype is None:
171
- vtype = GGUFValueType.get_type(val)
172
-
173
- if add_vtype:
174
- self.kv_data += self._pack("I", vtype)
175
- self.kv_data_count += 1
176
-
177
- pack_fmt = self._simple_value_packing.get(vtype)
178
- if pack_fmt is not None:
179
- self.kv_data += self._pack(pack_fmt, val, skip_pack_prefix = vtype == GGUFValueType.BOOL)
180
- elif vtype == GGUFValueType.STRING:
181
- encoded_val = val.encode("utf-8") if isinstance(val, str) else val
182
- self.kv_data += self._pack("Q", len(encoded_val))
183
- self.kv_data += encoded_val
184
- elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and val:
185
- ltype = GGUFValueType.get_type(val[0])
186
- if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
187
- raise ValueError("All items in a GGUF array should be of the same type")
188
- self.kv_data += self._pack("I", ltype)
189
- self.kv_data += self._pack("Q", len(val))
190
- for item in val:
191
- self.add_val(item, add_vtype=False)
192
- else:
193
- raise ValueError("Invalid GGUF metadata value type or value")
315
+ self.add_key_value(key, val, GGUFValueType.ARRAY)
194
316
 
195
317
  @staticmethod
196
318
  def ggml_pad(x: int, n: int) -> int:
@@ -200,16 +322,12 @@ class GGUFWriter:
200
322
  self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype,
201
323
  tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
202
324
  ) -> None:
203
- if self.state is not WriterState.EMPTY:
204
- raise ValueError(f'Expected output file to be empty, got {self.state}')
325
+ if self.state is not WriterState.NO_FILE:
326
+ raise ValueError(f'Expected output file to be not yet opened, got {self.state}')
205
327
 
206
- if name in self.ti_names:
207
- raise ValueError(f'Duplicated tensor name {name}')
208
- self.ti_names.add(name)
328
+ if any(name in tensors for tensors in self.tensors):
329
+ raise ValueError(f'Duplicated tensor name {name!r}')
209
330
 
210
- encoded_name = name.encode("utf-8")
211
- self.ti_data += self._pack("Q", len(encoded_name))
212
- self.ti_data += encoded_name
213
331
  if raw_dtype is None:
214
332
  if tensor_dtype == np.float16:
215
333
  dtype = GGMLQuantizationType.F16
@@ -231,14 +349,19 @@ class GGUFWriter:
231
349
  dtype = raw_dtype
232
350
  if tensor_dtype == np.uint8:
233
351
  tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype)
234
- n_dims = len(tensor_shape)
235
- self.ti_data += self._pack("I", n_dims)
236
- for i in range(n_dims):
237
- self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
238
- self.ti_data += self._pack("I", dtype)
239
- self.ti_data += self._pack("Q", self.offset_tensor)
240
- self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
241
- self.ti_data_count += 1
352
+
353
+ # make sure there is at least one tensor before splitting
354
+ if len(self.tensors[-1]) > 0:
355
+ if ( # split when over tensor limit
356
+ self.split_max_tensors != 0
357
+ and len(self.tensors[-1]) >= self.split_max_tensors
358
+ ) or ( # split when over size limit
359
+ self.split_max_size != 0
360
+ and sum(ti.nbytes for ti in self.tensors[-1].values()) + tensor_nbytes > self.split_max_size
361
+ ):
362
+ self.tensors.append({})
363
+
364
+ self.tensors[-1][name] = TensorInfo(shape=tensor_shape, dtype=dtype, nbytes=tensor_nbytes)
242
365
 
243
366
  def add_tensor(
244
367
  self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None,
@@ -252,10 +375,10 @@ class GGUFWriter:
252
375
  self.temp_file = fp
253
376
 
254
377
  shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape
255
- self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
378
+ self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype=raw_dtype)
256
379
 
257
380
  if self.temp_file is None:
258
- self.tensors.append(tensor)
381
+ self.tensors[-1][name].tensor = tensor
259
382
  return
260
383
 
261
384
  tensor.tofile(self.temp_file)
@@ -267,100 +390,205 @@ class GGUFWriter:
267
390
  fp.write(bytes([0] * pad))
268
391
 
269
392
  def write_tensor_data(self, tensor: np.ndarray[Any, Any]) -> None:
270
- if self.state is not WriterState.TI_DATA:
271
- raise ValueError(f'Expected output file to contain tensor info, got {self.state}')
393
+ if self.state is not WriterState.TI_DATA and self.state is not WriterState.WEIGHTS:
394
+ raise ValueError(f'Expected output file to contain tensor info or weights, got {self.state}')
395
+ assert self.fout is not None
272
396
 
273
397
  if self.endianess == GGUFEndian.BIG:
274
398
  tensor.byteswap(inplace=True)
275
- self.write_padding(self.fout, self.fout.tell())
276
- tensor.tofile(self.fout)
277
- self.write_padding(self.fout, tensor.nbytes)
399
+
400
+ file_id = -1
401
+ for i, tensors in enumerate(self.tensors):
402
+ if len(tensors) > 0:
403
+ file_id = i
404
+ break
405
+
406
+ fout = self.fout[file_id]
407
+
408
+ # pop the first tensor info
409
+ # TODO: cleaner way to get the first key
410
+ first_tensor_name = [name for name, _ in zip(self.tensors[file_id].keys(), range(1))][0]
411
+ ti = self.tensors[file_id].pop(first_tensor_name)
412
+ assert ti.nbytes == tensor.nbytes
413
+
414
+ self.write_padding(fout, fout.tell())
415
+ tensor.tofile(fout)
416
+ self.write_padding(fout, tensor.nbytes)
417
+
418
+ self.state = WriterState.WEIGHTS
278
419
 
279
420
  def write_tensors_to_file(self, *, progress: bool = False) -> None:
280
421
  self.write_ti_data_to_file()
281
422
 
282
- self.write_padding(self.fout, self.fout.tell())
423
+ assert self.fout is not None
424
+
425
+ for fout in self.fout:
426
+ self.write_padding(fout, fout.tell())
283
427
 
284
428
  if self.temp_file is None:
285
- self.tensors.reverse() # to pop from the "beginning" in constant time
429
+ shard_bar = None
430
+ bar = None
286
431
 
287
432
  if progress:
288
433
  from tqdm import tqdm
289
434
 
290
- total_bytes = sum(t.nbytes for t in self.tensors)
435
+ total_bytes = sum(ti.nbytes for t in self.tensors for ti in t.values())
291
436
 
437
+ if len(self.fout) > 1:
438
+ shard_bar = tqdm(desc=f"Shard (0/{len(self.fout)})", total=None, unit="byte", unit_scale=True)
292
439
  bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
293
440
 
294
- while True:
295
- try:
296
- tensor = self.tensors.pop()
297
- except IndexError:
298
- break
299
- tensor.tofile(self.fout)
300
- bar.update(tensor.nbytes)
301
- self.write_padding(self.fout, tensor.nbytes)
302
- return
303
- while True:
304
- try:
305
- tensor = self.tensors.pop()
306
- except IndexError:
307
- break
308
- tensor.tofile(self.fout)
309
- self.write_padding(self.fout, tensor.nbytes)
310
- return
441
+ for i, (fout, tensors) in enumerate(zip(self.fout, self.tensors)):
442
+ if shard_bar is not None:
443
+ shard_bar.set_description(f"Shard ({i + 1}/{len(self.fout)})")
444
+ total = sum(ti.nbytes for ti in tensors.values())
445
+ shard_bar.reset(total=(total if total > 0 else None))
446
+
447
+ # relying on the fact that Python dicts preserve insertion order (since 3.7)
448
+ for ti in tensors.values():
449
+ assert ti.tensor is not None # can only iterate once over the tensors
450
+ assert ti.tensor.nbytes == ti.nbytes
451
+ ti.tensor.tofile(fout)
452
+ if shard_bar is not None:
453
+ shard_bar.update(ti.nbytes)
454
+ if bar is not None:
455
+ bar.update(ti.nbytes)
456
+ self.write_padding(fout, ti.nbytes)
457
+ ti.tensor = None
458
+ else:
459
+ self.temp_file.seek(0)
311
460
 
312
- self.temp_file.seek(0)
461
+ shutil.copyfileobj(self.temp_file, self.fout[0 if not self.small_first_shard else 1])
462
+ self.flush()
463
+ self.temp_file.close()
313
464
 
314
- shutil.copyfileobj(self.temp_file, self.fout)
315
- self.flush()
316
- self.temp_file.close()
465
+ self.state = WriterState.WEIGHTS
317
466
 
318
467
  def flush(self) -> None:
319
- self.fout.flush()
468
+ assert self.fout is not None
469
+ for fout in self.fout:
470
+ fout.flush()
320
471
 
321
472
  def close(self) -> None:
322
- self.fout.close()
473
+ if self.fout is not None:
474
+ for fout in self.fout:
475
+ fout.close()
476
+ self.fout = None
477
+
478
+ def add_type(self, type_name: str) -> None:
479
+ self.add_string(Keys.General.TYPE, type_name)
323
480
 
324
481
  def add_architecture(self) -> None:
325
482
  self.add_string(Keys.General.ARCHITECTURE, self.arch)
326
483
 
484
+ def add_quantization_version(self, quantization_version: int) -> None:
485
+ self.add_uint32(Keys.General.QUANTIZATION_VERSION, quantization_version)
486
+
487
+ def add_custom_alignment(self, alignment: int) -> None:
488
+ self.data_alignment = alignment
489
+ self.add_uint32(Keys.General.ALIGNMENT, alignment)
490
+
491
+ def add_file_type(self, ftype: int) -> None:
492
+ self.add_uint32(Keys.General.FILE_TYPE, ftype)
493
+
494
+ def add_name(self, name: str) -> None:
495
+ self.add_string(Keys.General.NAME, name)
496
+
327
497
  def add_author(self, author: str) -> None:
328
498
  self.add_string(Keys.General.AUTHOR, author)
329
499
 
330
500
  def add_version(self, version: str) -> None:
331
501
  self.add_string(Keys.General.VERSION, version)
332
502
 
333
- def add_tensor_data_layout(self, layout: str) -> None:
334
- self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
503
+ def add_organization(self, organization: str) -> None:
504
+ self.add_string(Keys.General.ORGANIZATION, organization)
335
505
 
336
- def add_url(self, url: str) -> None:
337
- self.add_string(Keys.General.URL, url)
506
+ def add_finetune(self, finetune: str) -> None:
507
+ self.add_string(Keys.General.FINETUNE, finetune)
508
+
509
+ def add_basename(self, basename: str) -> None:
510
+ self.add_string(Keys.General.BASENAME, basename)
338
511
 
339
512
  def add_description(self, description: str) -> None:
340
513
  self.add_string(Keys.General.DESCRIPTION, description)
341
514
 
342
- def add_licence(self, licence: str) -> None:
343
- self.add_string(Keys.General.LICENSE, licence)
515
+ def add_quantized_by(self, quantized: str) -> None:
516
+ self.add_string(Keys.General.QUANTIZED_BY, quantized)
517
+
518
+ def add_size_label(self, size_label: str) -> None:
519
+ self.add_string(Keys.General.SIZE_LABEL, size_label)
520
+
521
+ def add_license(self, license: str) -> None:
522
+ self.add_string(Keys.General.LICENSE, license)
523
+
524
+ def add_license_name(self, license: str) -> None:
525
+ self.add_string(Keys.General.LICENSE_NAME, license)
526
+
527
+ def add_license_link(self, license: str) -> None:
528
+ self.add_string(Keys.General.LICENSE_LINK, license)
529
+
530
+ def add_url(self, url: str) -> None:
531
+ self.add_string(Keys.General.URL, url)
532
+
533
+ def add_doi(self, doi: str) -> None:
534
+ self.add_string(Keys.General.DOI, doi)
535
+
536
+ def add_uuid(self, uuid: str) -> None:
537
+ self.add_string(Keys.General.UUID, uuid)
538
+
539
+ def add_repo_url(self, repo_url: str) -> None:
540
+ self.add_string(Keys.General.REPO_URL, repo_url)
344
541
 
345
542
  def add_source_url(self, url: str) -> None:
346
543
  self.add_string(Keys.General.SOURCE_URL, url)
347
544
 
348
- def add_source_hf_repo(self, repo: str) -> None:
349
- self.add_string(Keys.General.SOURCE_HF_REPO, repo)
545
+ def add_source_doi(self, doi: str) -> None:
546
+ self.add_string(Keys.General.SOURCE_DOI, doi)
350
547
 
351
- def add_file_type(self, ftype: int) -> None:
352
- self.add_uint32(Keys.General.FILE_TYPE, ftype)
548
+ def add_source_uuid(self, uuid: str) -> None:
549
+ self.add_string(Keys.General.SOURCE_UUID, uuid)
353
550
 
354
- def add_name(self, name: str) -> None:
355
- self.add_string(Keys.General.NAME, name)
551
+ def add_source_repo_url(self, repo_url: str) -> None:
552
+ self.add_string(Keys.General.SOURCE_REPO_URL, repo_url)
356
553
 
357
- def add_quantization_version(self, quantization_version: int) -> None:
358
- self.add_uint32(
359
- Keys.General.QUANTIZATION_VERSION, quantization_version)
554
+ def add_base_model_count(self, source_count: int) -> None:
555
+ self.add_uint32(Keys.General.BASE_MODEL_COUNT, source_count)
360
556
 
361
- def add_custom_alignment(self, alignment: int) -> None:
362
- self.data_alignment = alignment
363
- self.add_uint32(Keys.General.ALIGNMENT, alignment)
557
+ def add_base_model_name(self, source_id: int, name: str) -> None:
558
+ self.add_string(Keys.General.BASE_MODEL_NAME.format(id=source_id), name)
559
+
560
+ def add_base_model_author(self, source_id: int, author: str) -> None:
561
+ self.add_string(Keys.General.BASE_MODEL_AUTHOR.format(id=source_id), author)
562
+
563
+ def add_base_model_version(self, source_id: int, version: str) -> None:
564
+ self.add_string(Keys.General.BASE_MODEL_VERSION.format(id=source_id), version)
565
+
566
+ def add_base_model_organization(self, source_id: int, organization: str) -> None:
567
+ self.add_string(Keys.General.BASE_MODEL_ORGANIZATION.format(id=source_id), organization)
568
+
569
+ def add_base_model_url(self, source_id: int, url: str) -> None:
570
+ self.add_string(Keys.General.BASE_MODEL_URL.format(id=source_id), url)
571
+
572
+ def add_base_model_doi(self, source_id: int, doi: str) -> None:
573
+ self.add_string(Keys.General.BASE_MODEL_DOI.format(id=source_id), doi)
574
+
575
+ def add_base_model_uuid(self, source_id: int, uuid: str) -> None:
576
+ self.add_string(Keys.General.BASE_MODEL_UUID.format(id=source_id), uuid)
577
+
578
+ def add_base_model_repo_url(self, source_id: int, repo_url: str) -> None:
579
+ self.add_string(Keys.General.BASE_MODEL_REPO_URL.format(id=source_id), repo_url)
580
+
581
+ def add_tags(self, tags: Sequence[str]) -> None:
582
+ self.add_array(Keys.General.TAGS, tags)
583
+
584
+ def add_languages(self, languages: Sequence[str]) -> None:
585
+ self.add_array(Keys.General.LANGUAGES, languages)
586
+
587
+ def add_datasets(self, datasets: Sequence[str]) -> None:
588
+ self.add_array(Keys.General.DATASETS, datasets)
589
+
590
+ def add_tensor_data_layout(self, layout: str) -> None:
591
+ self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
364
592
 
365
593
  def add_vocab_size(self, size: int) -> None:
366
594
  self.add_uint32(Keys.LLM.VOCAB_SIZE.format(arch=self.arch), size)
@@ -374,17 +602,38 @@ class GGUFWriter:
374
602
  def add_block_count(self, length: int) -> None:
375
603
  self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length)
376
604
 
377
- def add_feed_forward_length(self, length: int) -> None:
378
- self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
605
+ def add_leading_dense_block_count(self, length: int) -> None:
606
+ self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length)
607
+
608
+ def add_feed_forward_length(self, length: int | Sequence[int]) -> None:
609
+ if isinstance(length, int):
610
+ self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
611
+ else:
612
+ self.add_array(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
613
+
614
+ def add_expert_feed_forward_length(self, length: int) -> None:
615
+ self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
616
+
617
+ def add_expert_shared_feed_forward_length(self, length: int) -> None:
618
+ self.add_uint32(Keys.LLM.EXPERT_SHARED_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
379
619
 
380
620
  def add_parallel_residual(self, use: bool) -> None:
381
621
  self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
382
622
 
383
- def add_head_count(self, count: int) -> None:
384
- self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
623
+ def add_decoder_start_token_id(self, id: int) -> None:
624
+ self.add_uint32(Keys.LLM.DECODER_START_TOKEN_ID.format(arch=self.arch), id)
385
625
 
386
- def add_head_count_kv(self, count: int) -> None:
387
- self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
626
+ def add_head_count(self, count: int | Sequence[int]) -> None:
627
+ if isinstance(count, int):
628
+ self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
629
+ else:
630
+ self.add_array(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
631
+
632
+ def add_head_count_kv(self, count: int | Sequence[int]) -> None:
633
+ if isinstance(count, int):
634
+ self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
635
+ else:
636
+ self.add_array(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
388
637
 
389
638
  def add_key_length(self, length: int) -> None:
390
639
  self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length)
@@ -401,12 +650,24 @@ class GGUFWriter:
401
650
  def add_logit_scale(self, value: float) -> None:
402
651
  self.add_float32(Keys.LLM.LOGIT_SCALE.format(arch=self.arch), value)
403
652
 
653
+ def add_attn_logit_softcapping(self, value: float) -> None:
654
+ self.add_float32(Keys.LLM.ATTN_LOGIT_SOFTCAPPING.format(arch=self.arch), value)
655
+
656
+ def add_final_logit_softcapping(self, value: float) -> None:
657
+ self.add_float32(Keys.LLM.FINAL_LOGIT_SOFTCAPPING.format(arch=self.arch), value)
658
+
404
659
  def add_expert_count(self, count: int) -> None:
405
660
  self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count)
406
661
 
407
662
  def add_expert_used_count(self, count: int) -> None:
408
663
  self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count)
409
664
 
665
+ def add_expert_shared_count(self, count: int) -> None:
666
+ self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count)
667
+
668
+ def add_expert_weights_scale(self, value: float) -> None:
669
+ self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)
670
+
410
671
  def add_layer_norm_eps(self, value: float) -> None:
411
672
  self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
412
673
 
@@ -416,6 +677,15 @@ class GGUFWriter:
416
677
  def add_causal_attention(self, value: bool) -> None:
417
678
  self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)
418
679
 
680
+ def add_q_lora_rank(self, length: int) -> None:
681
+ self.add_uint32(Keys.Attention.Q_LORA_RANK.format(arch=self.arch), length)
682
+
683
+ def add_kv_lora_rank(self, length: int) -> None:
684
+ self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length)
685
+
686
+ def add_relative_attn_buckets_count(self, value: int) -> None:
687
+ self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value)
688
+
419
689
  def add_sliding_window(self, value: int) -> None:
420
690
  self.add_uint32(Keys.Attention.SLIDING_WINDOW.format(arch=self.arch), value)
421
691
 
@@ -434,7 +704,7 @@ class GGUFWriter:
434
704
  def add_rope_scaling_factor(self, value: float) -> None:
435
705
  self.add_float32(Keys.Rope.SCALING_FACTOR.format(arch=self.arch), value)
436
706
 
437
- def add_rope_scaling_attn_factors(self, value: Sequence[float]) -> None:
707
+ def add_rope_scaling_attn_factors(self, value: float) -> None:
438
708
  self.add_float32(Keys.Rope.SCALING_ATTN_FACTOR.format(arch=self.arch), value)
439
709
 
440
710
  def add_rope_scaling_orig_ctx_len(self, value: int) -> None:
@@ -443,6 +713,9 @@ class GGUFWriter:
443
713
  def add_rope_scaling_finetuned(self, value: bool) -> None:
444
714
  self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value)
445
715
 
716
+ def add_rope_scaling_yarn_log_mul(self, value: float) -> None:
717
+ self.add_float32(Keys.Rope.SCALING_YARN_LOG_MUL.format(arch=self.arch), value)
718
+
446
719
  def add_ssm_conv_kernel(self, value: int) -> None:
447
720
  self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value)
448
721
 
@@ -506,6 +779,12 @@ class GGUFWriter:
506
779
  def add_add_space_prefix(self, value: bool) -> None:
507
780
  self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)
508
781
 
782
+ def add_remove_extra_whitespaces(self, value: bool) -> None:
783
+ self.add_bool(Keys.Tokenizer.REMOVE_EXTRA_WS, value)
784
+
785
+ def add_precompiled_charsmap(self, charsmap: Sequence[bytes]) -> None:
786
+ self.add_array(Keys.Tokenizer.PRECOMPILED_CHARSMAP, charsmap)
787
+
509
788
  def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None:
510
789
  if not isinstance(value, str):
511
790
  template_default = None
@@ -553,5 +832,42 @@ class GGUFWriter:
553
832
  pack_prefix = '<' if self.endianess == GGUFEndian.LITTLE else '>'
554
833
  return struct.pack(f'{pack_prefix}{fmt}', value)
555
834
 
556
- def _write_packed(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> None:
557
- self.fout.write(self._pack(fmt, value, skip_pack_prefix))
835
+ def _pack_val(self, val: Any, vtype: GGUFValueType, add_vtype: bool) -> bytes:
836
+ kv_data = bytearray()
837
+
838
+ if add_vtype:
839
+ kv_data += self._pack("I", vtype)
840
+
841
+ pack_fmt = self._simple_value_packing.get(vtype)
842
+ if pack_fmt is not None:
843
+ kv_data += self._pack(pack_fmt, val, skip_pack_prefix = vtype == GGUFValueType.BOOL)
844
+ elif vtype == GGUFValueType.STRING:
845
+ encoded_val = val.encode("utf-8") if isinstance(val, str) else val
846
+ kv_data += self._pack("Q", len(encoded_val))
847
+ kv_data += encoded_val
848
+ elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and val:
849
+ if isinstance(val, bytes):
850
+ ltype = GGUFValueType.UINT8
851
+ else:
852
+ ltype = GGUFValueType.get_type(val[0])
853
+ if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
854
+ raise ValueError("All items in a GGUF array should be of the same type")
855
+ kv_data += self._pack("I", ltype)
856
+ kv_data += self._pack("Q", len(val))
857
+ for item in val:
858
+ kv_data += self._pack_val(item, ltype, add_vtype=False)
859
+ else:
860
+ raise ValueError("Invalid GGUF metadata value type or value")
861
+
862
+ return kv_data
863
+
864
+ @staticmethod
865
+ def format_n_bytes_to_str(num: int) -> str:
866
+ if num == 0:
867
+ return "negligible - metadata only"
868
+ fnum = float(num)
869
+ for unit in ("", "K", "M", "G"):
870
+ if abs(fnum) < 1000.0:
871
+ return f"{fnum:3.1f}{unit}"
872
+ fnum /= 1000.0
873
+ return f"{fnum:.1f}T - over 1TB, split recommended"