bigdl-core-cpp 2.1.0b20230202__py3-none-manylinux2010_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. bigdl/cpp/__init__.py +0 -0
  2. bigdl/cpp/cli/init-llama-cpp +14 -0
  3. bigdl/cpp/cli/init-ollama +8 -0
  4. bigdl/cpp/convert-hf-to-gguf.py +2858 -0
  5. bigdl/cpp/convert.py +1714 -0
  6. bigdl/cpp/gguf-py/__init__.py +0 -0
  7. bigdl/cpp/gguf-py/gguf/__init__.py +7 -0
  8. bigdl/cpp/gguf-py/gguf/constants.py +1033 -0
  9. bigdl/cpp/gguf-py/gguf/gguf.py +15 -0
  10. bigdl/cpp/gguf-py/gguf/gguf_reader.py +296 -0
  11. bigdl/cpp/gguf-py/gguf/gguf_writer.py +554 -0
  12. bigdl/cpp/gguf-py/gguf/lazy.py +236 -0
  13. bigdl/cpp/gguf-py/gguf/py.typed +0 -0
  14. bigdl/cpp/gguf-py/gguf/quants.py +123 -0
  15. bigdl/cpp/gguf-py/gguf/tensor_mapping.py +463 -0
  16. bigdl/cpp/gguf-py/gguf/vocab.py +165 -0
  17. bigdl/cpp/libs/baby-llama +0 -0
  18. bigdl/cpp/libs/batched +0 -0
  19. bigdl/cpp/libs/batched-bench +0 -0
  20. bigdl/cpp/libs/benchmark +0 -0
  21. bigdl/cpp/libs/embedding +0 -0
  22. bigdl/cpp/libs/export-lora +0 -0
  23. bigdl/cpp/libs/finetune +0 -0
  24. bigdl/cpp/libs/gguf +0 -0
  25. bigdl/cpp/libs/gritlm +0 -0
  26. bigdl/cpp/libs/imatrix +0 -0
  27. bigdl/cpp/libs/infill +0 -0
  28. bigdl/cpp/libs/llama-bench +0 -0
  29. bigdl/cpp/libs/llava-cli +0 -0
  30. bigdl/cpp/libs/lookahead +0 -0
  31. bigdl/cpp/libs/lookup +0 -0
  32. bigdl/cpp/libs/ls-sycl-device +0 -0
  33. bigdl/cpp/libs/main +0 -0
  34. bigdl/cpp/libs/ollama +0 -0
  35. bigdl/cpp/libs/parallel +0 -0
  36. bigdl/cpp/libs/perplexity +0 -0
  37. bigdl/cpp/libs/quantize +0 -0
  38. bigdl/cpp/libs/quantize-stats +0 -0
  39. bigdl/cpp/libs/save-load-state +0 -0
  40. bigdl/cpp/libs/server +0 -0
  41. bigdl/cpp/libs/simple +0 -0
  42. bigdl/cpp/libs/speculative +0 -0
  43. bigdl/cpp/libs/tokenize +0 -0
  44. bigdl/cpp/libs/train-text-from-scratch +0 -0
  45. bigdl_core_cpp-2.1.0b20230202.data/scripts/init-llama-cpp +14 -0
  46. bigdl_core_cpp-2.1.0b20230202.data/scripts/init-ollama +8 -0
  47. bigdl_core_cpp-2.1.0b20230202.dist-info/METADATA +18 -0
  48. bigdl_core_cpp-2.1.0b20230202.dist-info/RECORD +50 -0
  49. bigdl_core_cpp-2.1.0b20230202.dist-info/WHEEL +5 -0
  50. bigdl_core_cpp-2.1.0b20230202.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2858 @@
1
+ #!/usr/bin/env python3
2
+
3
+ from __future__ import annotations
4
+
5
+ import logging
6
+ import argparse
7
+ import contextlib
8
+ import json
9
+ import os
10
+ import re
11
+ import sys
12
+ from enum import IntEnum
13
+ from pathlib import Path
14
+ from hashlib import sha256
15
+ from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
16
+
17
+ import math
18
+ import numpy as np
19
+ import torch
20
+
21
+ if TYPE_CHECKING:
22
+ from torch import Tensor
23
+
24
+ if 'NO_LOCAL_GGUF' not in os.environ:
25
+ sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
26
+ import gguf
27
+
28
+ from convert import LlamaHfVocab
29
+
30
+ logger = logging.getLogger("hf-to-gguf")
31
+
32
+ logger = logging.getLogger("hf-to-gguf")
33
+
34
+
35
+ ###### MODEL DEFINITIONS ######
36
+
37
+ class SentencePieceTokenTypes(IntEnum):
38
+ NORMAL = 1
39
+ UNKNOWN = 2
40
+ CONTROL = 3
41
+ USER_DEFINED = 4
42
+ UNUSED = 5
43
+ BYTE = 6
44
+
45
+
46
+ AnyModel = TypeVar("AnyModel", bound="type[Model]")
47
+
48
+
49
+ class Model:
50
+ _model_classes: dict[str, type[Model]] = {}
51
+
52
+ dir_model: Path
53
+ ftype: int
54
+ is_big_endian: bool
55
+ endianess: gguf.GGUFEndian
56
+ use_temp_file: bool
57
+ lazy: bool
58
+ part_names: list[str]
59
+ is_safetensors: bool
60
+ hparams: dict[str, Any]
61
+ block_count: int
62
+ tensor_map: gguf.TensorNameMap
63
+ tensor_names: set[str] | None
64
+ fname_out: Path
65
+ gguf_writer: gguf.GGUFWriter
66
+
67
+ # subclasses should define this!
68
+ model_arch: gguf.MODEL_ARCH
69
+
70
+ def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool):
71
+ if type(self) is Model:
72
+ raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
73
+ self.dir_model = dir_model
74
+ self.ftype = ftype
75
+ self.is_big_endian = is_big_endian
76
+ self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
77
+ self.use_temp_file = use_temp_file
78
+ self.lazy = not eager
79
+ self.part_names = Model.get_model_part_names(self.dir_model, ".safetensors")
80
+ self.is_safetensors = len(self.part_names) > 0
81
+ if not self.is_safetensors:
82
+ self.part_names = Model.get_model_part_names(self.dir_model, ".bin")
83
+ self.hparams = Model.load_hparams(self.dir_model)
84
+ self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
85
+ self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
86
+ self.tensor_names = None
87
+ if self.ftype == gguf.LlamaFileType.GUESSED:
88
+ # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
89
+ _, first_tensor = next(self.get_tensors())
90
+ if first_tensor.dtype == torch.float16:
91
+ logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
92
+ self.ftype = gguf.LlamaFileType.MOSTLY_F16
93
+ else:
94
+ logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
95
+ self.ftype = gguf.LlamaFileType.MOSTLY_BF16
96
+ ftype_up: str = self.ftype.name.partition("_")[2].upper()
97
+ ftype_lw: str = ftype_up.lower()
98
+ # allow templating the file name with the output ftype, useful with the "auto" ftype
99
+ self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
100
+ self.gguf_writer = gguf.GGUFWriter(self.fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
101
+
102
+ @classmethod
103
+ def __init_subclass__(cls):
104
+ # can't use an abstract property, because overriding it without type errors
105
+ # would require using decorated functions instead of simply defining the property
106
+ if "model_arch" not in cls.__dict__:
107
+ raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
108
+
109
+ def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
110
+ key = next((k for k in keys if k in self.hparams), None)
111
+ if key is not None:
112
+ return self.hparams[key]
113
+ if optional:
114
+ return None
115
+ raise KeyError(f"could not find any of: {keys}")
116
+
117
+ def set_vocab(self):
118
+ self._set_vocab_gpt2()
119
+
120
+ def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
121
+ tensor_names_from_parts: set[str] = set()
122
+
123
+ if len(self.part_names) > 1:
124
+ self.tensor_names = set()
125
+ index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
126
+ index_name += ".index.json"
127
+ logger.info(f"gguf: loading model weight map from '{index_name}'")
128
+ with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
129
+ index: dict[str, Any] = json.load(f)
130
+ weight_map = index.get("weight_map")
131
+ if weight_map is None or not isinstance(weight_map, dict):
132
+ raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
133
+ self.tensor_names.update(weight_map.keys())
134
+ else:
135
+ self.tensor_names = tensor_names_from_parts
136
+
137
+ for part_name in self.part_names:
138
+ logger.info(f"gguf: loading model part '{part_name}'")
139
+ ctx: ContextManager[Any]
140
+ if self.is_safetensors:
141
+ from safetensors import safe_open
142
+ ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
143
+ else:
144
+ ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
145
+
146
+ with ctx as model_part:
147
+ tensor_names_from_parts.update(model_part.keys())
148
+
149
+ for name in model_part.keys():
150
+ data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
151
+ if self.lazy:
152
+ data = LazyTorchTensor.from_eager(data)
153
+ yield name, data
154
+
155
+ # only verify tensor name presence; it doesn't matter if they are not in the right files
156
+ if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
157
+ raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
158
+
159
+ def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
160
+ if key not in gguf.MODEL_TENSORS[self.model_arch]:
161
+ raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
162
+ name: str = gguf.TENSOR_NAMES[key]
163
+ if "{bid}" in name:
164
+ assert bid is not None
165
+ name = name.format(bid=bid)
166
+ return name + suffix
167
+
168
+ def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
169
+ if key not in gguf.MODEL_TENSORS[self.model_arch]:
170
+ return False
171
+ key_name: str = gguf.TENSOR_NAMES[key]
172
+ if "{bid}" in key_name:
173
+ if bid is None:
174
+ return False
175
+ key_name = key_name.format(bid=bid)
176
+ else:
177
+ if bid is not None:
178
+ return False
179
+ return name == (key_name + suffix)
180
+
181
+ def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
182
+ new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
183
+ if new_name is None:
184
+ raise ValueError(f"Can not map tensor {name!r}")
185
+ return new_name
186
+
187
+ def set_gguf_parameters(self):
188
+ self.gguf_writer.add_name(self.dir_model.name)
189
+ self.gguf_writer.add_block_count(self.block_count)
190
+
191
+ if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
192
+ self.gguf_writer.add_context_length(n_ctx)
193
+ logger.info(f"gguf: context length = {n_ctx}")
194
+
195
+ n_embd = self.find_hparam(["hidden_size", "n_embd"])
196
+ self.gguf_writer.add_embedding_length(n_embd)
197
+ logger.info(f"gguf: embedding length = {n_embd}")
198
+
199
+ if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
200
+ self.gguf_writer.add_feed_forward_length(n_ff)
201
+ logger.info(f"gguf: feed forward length = {n_ff}")
202
+
203
+ n_head = self.find_hparam(["num_attention_heads", "n_head"])
204
+ self.gguf_writer.add_head_count(n_head)
205
+ logger.info(f"gguf: head count = {n_head}")
206
+
207
+ if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
208
+ self.gguf_writer.add_head_count_kv(n_head_kv)
209
+ logger.info(f"gguf: key-value head count = {n_head_kv}")
210
+
211
+ if (rope_theta := self.hparams.get("rope_theta")) is not None:
212
+ self.gguf_writer.add_rope_freq_base(rope_theta)
213
+ logger.info(f"gguf: rope theta = {rope_theta}")
214
+ if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
215
+ self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
216
+ logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
217
+ if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
218
+ self.gguf_writer.add_layer_norm_eps(f_norm_eps)
219
+ logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
220
+ if (n_experts := self.hparams.get("num_local_experts")) is not None:
221
+ self.gguf_writer.add_expert_count(n_experts)
222
+ logger.info(f"gguf: expert count = {n_experts}")
223
+ if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
224
+ self.gguf_writer.add_expert_used_count(n_experts_used)
225
+ logger.info(f"gguf: experts used count = {n_experts_used}")
226
+
227
+ self.gguf_writer.add_file_type(self.ftype)
228
+ logger.info(f"gguf: file type = {self.ftype}")
229
+
230
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
231
+ del bid # unused
232
+
233
+ return [(self.map_tensor_name(name), data_torch)]
234
+
235
+ def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
236
+ del name, new_name, bid, n_dims # unused
237
+
238
+ return False
239
+
240
+ def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
241
+ del name, new_name, bid, n_dims # unused
242
+
243
+ return False
244
+
245
+ def write_tensors(self):
246
+ max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
247
+
248
+ for name, data_torch in self.get_tensors():
249
+ # we don't need these
250
+ if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
251
+ continue
252
+
253
+ old_dtype = data_torch.dtype
254
+
255
+ # convert any unsupported data types to float32
256
+ if data_torch.dtype not in (torch.float16, torch.float32):
257
+ data_torch = data_torch.to(torch.float32)
258
+
259
+ # use the first number-like part of the tensor name as the block id
260
+ bid = None
261
+ for part in name.split("."):
262
+ if part.isdecimal():
263
+ bid = int(part)
264
+ break
265
+
266
+ for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
267
+ data: np.ndarray = data # type hint
268
+ n_dims = len(data.shape)
269
+ data_dtype = data.dtype
270
+ data_qtype: gguf.GGMLQuantizationType | None = None
271
+
272
+ # when both are True, f32 should win
273
+ extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
274
+ extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
275
+
276
+ # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
277
+ # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
278
+ extra_f32 = any(cond for cond in (
279
+ extra_f32,
280
+ n_dims == 1,
281
+ new_name.endswith("_norm.weight"),
282
+ ))
283
+
284
+ # Some tensor types are always in float32
285
+ extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
286
+ gguf.MODEL_TENSOR.FFN_GATE_INP,
287
+ gguf.MODEL_TENSOR.POS_EMBD,
288
+ gguf.MODEL_TENSOR.TOKEN_TYPES,
289
+ ))
290
+
291
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
292
+ extra_f16 = any(cond for cond in (
293
+ extra_f16,
294
+ (name.endswith(".weight") and n_dims >= 2),
295
+ ))
296
+
297
+ if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
298
+ if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
299
+ data = gguf.quantize_bf16(data)
300
+ assert data.dtype == np.int16
301
+ data_qtype = gguf.GGMLQuantizationType.BF16
302
+
303
+ elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
304
+ data = gguf.quantize_q8_0(data)
305
+ assert data.dtype == np.uint8
306
+ data_qtype = gguf.GGMLQuantizationType.Q8_0
307
+
308
+ else: # default to float16 for quantized tensors
309
+ if data_dtype != np.float16:
310
+ data = data.astype(np.float16)
311
+ data_qtype = gguf.GGMLQuantizationType.F16
312
+
313
+ if data_qtype is None: # by default, convert to float32
314
+ if data_dtype != np.float32:
315
+ data = data.astype(np.float32)
316
+ data_qtype = gguf.GGMLQuantizationType.F32
317
+
318
+ shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
319
+
320
+ # reverse shape to make it similar to the internal ggml dimension order
321
+ shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
322
+
323
+ # n_dims is implicit in the shape
324
+ logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
325
+
326
+ self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
327
+
328
+ def write(self):
329
+ self.write_tensors()
330
+ self.gguf_writer.write_header_to_file()
331
+ self.gguf_writer.write_kv_data_to_file()
332
+ self.gguf_writer.write_tensors_to_file(progress=True)
333
+ self.gguf_writer.close()
334
+
335
+ def write_vocab(self):
336
+ self.gguf_writer.write_header_to_file()
337
+ self.gguf_writer.write_kv_data_to_file()
338
+ self.gguf_writer.close()
339
+
340
+ @staticmethod
341
+ def get_model_part_names(dir_model: Path, suffix: str) -> list[str]:
342
+ part_names: list[str] = []
343
+ for filename in os.listdir(dir_model):
344
+ if filename.endswith(suffix):
345
+ part_names.append(filename)
346
+
347
+ part_names.sort()
348
+
349
+ return part_names
350
+
351
+ @staticmethod
352
+ def load_hparams(dir_model: Path):
353
+ with open(dir_model / "config.json", "r", encoding="utf-8") as f:
354
+ return json.load(f)
355
+
356
+ @classmethod
357
+ def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
358
+ assert names
359
+
360
+ def func(modelcls: AnyModel) -> AnyModel:
361
+ for name in names:
362
+ cls._model_classes[name] = modelcls
363
+ return modelcls
364
+ return func
365
+
366
+ @classmethod
367
+ def from_model_architecture(cls, arch: str) -> type[Model]:
368
+ try:
369
+ return cls._model_classes[arch]
370
+ except KeyError:
371
+ raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
372
+
373
+ # used for GPT-2 BPE and WordPiece vocabs
374
+ def get_vocab_base(self) -> tuple[list[str], list[int], str]:
375
+ tokens: list[str] = []
376
+ toktypes: list[int] = []
377
+
378
+ from transformers import AutoTokenizer
379
+ tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
380
+ vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
381
+ assert max(tokenizer.vocab.values()) < vocab_size
382
+
383
+ tokpre = self.get_vocab_base_pre(tokenizer)
384
+
385
+ reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
386
+ added_vocab = tokenizer.get_added_vocab()
387
+
388
+ for i in range(vocab_size):
389
+ if i not in reverse_vocab:
390
+ tokens.append(f"[PAD{i}]")
391
+ toktypes.append(gguf.TokenType.USER_DEFINED)
392
+ elif reverse_vocab[i] in added_vocab:
393
+ tokens.append(reverse_vocab[i])
394
+ if tokenizer.added_tokens_decoder[i].special:
395
+ toktypes.append(gguf.TokenType.CONTROL)
396
+ else:
397
+ toktypes.append(gguf.TokenType.USER_DEFINED)
398
+ else:
399
+ tokens.append(reverse_vocab[i])
400
+ toktypes.append(gguf.TokenType.NORMAL)
401
+
402
+ return tokens, toktypes, tokpre
403
+
404
+ # NOTE: this function is generated by convert-hf-to-gguf-update.py
405
+ # do not modify it manually!
406
+ # ref: https://github.com/ggerganov/llama.cpp/pull/6920
407
+ # Marker: Start get_vocab_base_pre
408
+ def get_vocab_base_pre(self, tokenizer) -> str:
409
+ # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
410
+ # is specific for the BPE pre-tokenizer used by the model
411
+ # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
412
+ # use in llama.cpp to implement the same pre-tokenizer
413
+
414
+ chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
415
+
416
+ chktok = tokenizer.encode(chktxt)
417
+ chkhsh = sha256(str(chktok).encode()).hexdigest()
418
+
419
+ logger.debug(f"chktok: {chktok}")
420
+ logger.debug(f"chkhsh: {chkhsh}")
421
+
422
+ res = None
423
+
424
+ # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
425
+ # or pull the latest version of the model from Huggingface
426
+ # don't edit the hashes manually!
427
+ if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
428
+ # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
429
+ res = "llama-bpe"
430
+ if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
431
+ # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
432
+ res = "deepseek-llm"
433
+ if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
434
+ # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
435
+ res = "deepseek-coder"
436
+ if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
437
+ # ref: https://huggingface.co/tiiuae/falcon-7b
438
+ res = "falcon"
439
+ if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
440
+ # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
441
+ res = "bert-bge"
442
+ if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
443
+ # ref: https://huggingface.co/mosaicml/mpt-7b
444
+ res = "mpt"
445
+ if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
446
+ # ref: https://huggingface.co/bigcode/starcoder2-3b
447
+ res = "starcoder"
448
+ if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
449
+ # ref: https://huggingface.co/openai-community/gpt2
450
+ res = "gpt-2"
451
+ if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
452
+ # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
453
+ res = "stablelm2"
454
+ if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
455
+ # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
456
+ res = "refact"
457
+ if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
458
+ # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
459
+ res = "command-r"
460
+ if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
461
+ # ref: https://huggingface.co/Qwen/Qwen1.5-7B
462
+ res = "qwen2"
463
+ if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
464
+ # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
465
+ res = "olmo"
466
+ if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
467
+ # ref: https://huggingface.co/databricks/dbrx-base
468
+ res = "dbrx"
469
+ if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
470
+ # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
471
+ res = "jina-v2-en"
472
+ if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
473
+ # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
474
+ res = "jina-v2-es"
475
+ if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
476
+ # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
477
+ res = "jina-v2-de"
478
+ if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
479
+ # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
480
+ res = "smaug-bpe"
481
+
482
+ if res is None:
483
+ logger.warning("\n")
484
+ logger.warning("**************************************************************************************")
485
+ logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
486
+ logger.warning("** There are 2 possible reasons for this:")
487
+ logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
488
+ logger.warning("** - the pre-tokenization config has changed upstream")
489
+ logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
490
+ logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
491
+ logger.warning("**")
492
+ logger.warning(f"** chkhsh: {chkhsh}")
493
+ logger.warning("**************************************************************************************")
494
+ logger.warning("\n")
495
+ raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
496
+
497
+ logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
498
+ logger.debug(f"chkhsh: {chkhsh}")
499
+
500
+ return res
501
+ # Marker: End get_vocab_base_pre
502
+
503
+ def _set_vocab_gpt2(self) -> None:
504
+ tokens, toktypes, tokpre = self.get_vocab_base()
505
+ self.gguf_writer.add_tokenizer_model("gpt2")
506
+ self.gguf_writer.add_tokenizer_pre(tokpre)
507
+ self.gguf_writer.add_token_list(tokens)
508
+ self.gguf_writer.add_token_types(toktypes)
509
+
510
+ special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
511
+ special_vocab.add_to_gguf(self.gguf_writer)
512
+
513
+ def _set_vocab_qwen(self):
514
+ dir_model = self.dir_model
515
+ hparams = self.hparams
516
+ tokens: list[str] = []
517
+ toktypes: list[int] = []
518
+
519
+ from transformers import AutoTokenizer
520
+ tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
521
+ vocab_size = hparams["vocab_size"]
522
+ assert max(tokenizer.get_vocab().values()) < vocab_size
523
+
524
+ tokpre = self.get_vocab_base_pre(tokenizer)
525
+
526
+ merges = []
527
+ vocab = {}
528
+ mergeable_ranks = tokenizer.mergeable_ranks
529
+ for token, rank in mergeable_ranks.items():
530
+ vocab[QwenModel.token_bytes_to_string(token)] = rank
531
+ if len(token) == 1:
532
+ continue
533
+ merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
534
+ assert len(merged) == 2
535
+ merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
536
+
537
+ # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
538
+ added_vocab = tokenizer.special_tokens
539
+ reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
540
+
541
+ for i in range(vocab_size):
542
+ if i not in reverse_vocab:
543
+ tokens.append(f"[PAD{i}]")
544
+ toktypes.append(gguf.TokenType.USER_DEFINED)
545
+ elif reverse_vocab[i] in added_vocab:
546
+ tokens.append(reverse_vocab[i])
547
+ toktypes.append(gguf.TokenType.CONTROL)
548
+ else:
549
+ tokens.append(reverse_vocab[i])
550
+ toktypes.append(gguf.TokenType.NORMAL)
551
+
552
+ self.gguf_writer.add_tokenizer_model("gpt2")
553
+ self.gguf_writer.add_tokenizer_pre(tokpre)
554
+ self.gguf_writer.add_token_list(tokens)
555
+ self.gguf_writer.add_token_types(toktypes)
556
+
557
+ special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
558
+ special_vocab.merges = merges
559
+ # only add special tokens when they were not already loaded from config.json
560
+ if len(special_vocab.special_token_ids) == 0:
561
+ special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
562
+ special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
563
+ # this one is usually not in config.json anyway
564
+ special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
565
+ special_vocab.add_to_gguf(self.gguf_writer)
566
+
567
+ def _set_vocab_sentencepiece(self):
568
+ from sentencepiece import SentencePieceProcessor
569
+
570
+ tokenizer_path = self.dir_model / 'tokenizer.model'
571
+
572
+ tokens: list[bytes] = []
573
+ scores: list[float] = []
574
+ toktypes: list[int] = []
575
+
576
+ if not tokenizer_path.is_file():
577
+ raise FileNotFoundError(f"File not found: {tokenizer_path}")
578
+
579
+ tokenizer = SentencePieceProcessor()
580
+ tokenizer.LoadFromFile(str(tokenizer_path))
581
+
582
+ vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
583
+
584
+ tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
585
+ scores: list[float] = [-10000.0] * vocab_size
586
+ toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
587
+
588
+ for token_id in range(tokenizer.vocab_size()):
589
+ piece = tokenizer.IdToPiece(token_id)
590
+ text = piece.encode("utf-8")
591
+ score = tokenizer.GetScore(token_id)
592
+
593
+ toktype = SentencePieceTokenTypes.NORMAL
594
+ if tokenizer.IsUnknown(token_id):
595
+ toktype = SentencePieceTokenTypes.UNKNOWN
596
+ elif tokenizer.IsControl(token_id):
597
+ toktype = SentencePieceTokenTypes.CONTROL
598
+ elif tokenizer.IsUnused(token_id):
599
+ toktype = SentencePieceTokenTypes.UNUSED
600
+ elif tokenizer.IsByte(token_id):
601
+ toktype = SentencePieceTokenTypes.BYTE
602
+
603
+ tokens[token_id] = text
604
+ scores[token_id] = score
605
+ toktypes[token_id] = toktype
606
+
607
+ added_tokens_file = self.dir_model / 'added_tokens.json'
608
+ if added_tokens_file.is_file():
609
+ with open(added_tokens_file, "r", encoding="utf-8") as f:
610
+ added_tokens_json = json.load(f)
611
+ for key in added_tokens_json:
612
+ token_id = added_tokens_json[key]
613
+ if (token_id >= vocab_size):
614
+ logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
615
+ continue
616
+
617
+ tokens[token_id] = key.encode("utf-8")
618
+ scores[token_id] = -1000.0
619
+ toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
620
+
621
+ if vocab_size > len(tokens):
622
+ pad_count = vocab_size - len(tokens)
623
+ logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
624
+ for i in range(1, pad_count + 1):
625
+ tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
626
+ scores.append(-1000.0)
627
+ toktypes.append(SentencePieceTokenTypes.UNUSED)
628
+
629
+ self.gguf_writer.add_tokenizer_model("llama")
630
+ self.gguf_writer.add_tokenizer_pre("default")
631
+ self.gguf_writer.add_token_list(tokens)
632
+ self.gguf_writer.add_token_scores(scores)
633
+ self.gguf_writer.add_token_types(toktypes)
634
+
635
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
636
+ special_vocab.add_to_gguf(self.gguf_writer)
637
+
638
+ def _set_vocab_llama_hf(self):
639
+ vocab = LlamaHfVocab(self.dir_model)
640
+ tokens = []
641
+ scores = []
642
+ toktypes = []
643
+
644
+ for text, score, toktype in vocab.all_tokens():
645
+ tokens.append(text)
646
+ scores.append(score)
647
+ toktypes.append(toktype)
648
+
649
+ assert len(tokens) == vocab.vocab_size
650
+
651
+ self.gguf_writer.add_tokenizer_model("llama")
652
+ self.gguf_writer.add_tokenizer_pre("default")
653
+ self.gguf_writer.add_token_list(tokens)
654
+ self.gguf_writer.add_token_scores(scores)
655
+ self.gguf_writer.add_token_types(toktypes)
656
+
657
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
658
+ special_vocab.add_to_gguf(self.gguf_writer)
659
+
660
+
661
+ @Model.register("GPTNeoXForCausalLM")
662
+ class GPTNeoXModel(Model):
663
+ model_arch = gguf.MODEL_ARCH.GPTNEOX
664
+
665
+ def set_gguf_parameters(self):
666
+ block_count = self.hparams["num_hidden_layers"]
667
+
668
+ self.gguf_writer.add_name(self.dir_model.name)
669
+ self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
670
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
671
+ self.gguf_writer.add_block_count(block_count)
672
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
673
+ self.gguf_writer.add_rope_dimension_count(
674
+ int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
675
+ )
676
+ self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
677
+ self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
678
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
679
+
680
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
681
+ del bid # unused
682
+
683
+ n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
684
+ n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
685
+
686
+ tensors: list[tuple[str, Tensor]] = []
687
+
688
+ if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
689
+ # Map bloom-style qkv_linear to gpt-style qkv_linear
690
+ # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
691
+ # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
692
+ qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
693
+ data_torch = torch.cat(
694
+ (
695
+ qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
696
+ qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
697
+ qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
698
+ ),
699
+ dim=0,
700
+ )
701
+ logger.info("re-format attention.linear_qkv.weight")
702
+ elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
703
+ qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
704
+ data_torch = torch.cat(
705
+ (
706
+ qkv_bias[:, 0, :].reshape((n_embed,)),
707
+ qkv_bias[:, 1, :].reshape((n_embed,)),
708
+ qkv_bias[:, 2, :].reshape((n_embed,)),
709
+ ),
710
+ dim=0,
711
+ )
712
+ logger.info("re-format attention.linear_qkv.bias")
713
+
714
+ tensors.append((self.map_tensor_name(name), data_torch))
715
+
716
+ return tensors
717
+
718
+
719
+ @Model.register("BloomForCausalLM")
720
+ class BloomModel(Model):
721
+ model_arch = gguf.MODEL_ARCH.BLOOM
722
+
723
+ def set_gguf_parameters(self):
724
+ self.gguf_writer.add_name("Bloom")
725
+ n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
726
+ n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
727
+ self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
728
+ self.gguf_writer.add_embedding_length(n_embed)
729
+ self.gguf_writer.add_feed_forward_length(4 * n_embed)
730
+ self.gguf_writer.add_block_count(self.hparams["n_layer"])
731
+ self.gguf_writer.add_head_count(n_head)
732
+ self.gguf_writer.add_head_count_kv(n_head)
733
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
734
+ self.gguf_writer.add_file_type(self.ftype)
735
+
736
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
737
+ del bid # unused
738
+
739
+ n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
740
+ n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
741
+
742
+ name = re.sub(r'transformer\.', '', name)
743
+
744
+ tensors: list[tuple[str, Tensor]] = []
745
+
746
+ if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
747
+ # Map bloom-style qkv_linear to gpt-style qkv_linear
748
+ # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
749
+ # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
750
+ qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
751
+ data_torch = torch.cat(
752
+ (
753
+ qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
754
+ qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
755
+ qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
756
+ ),
757
+ dim=0,
758
+ )
759
+ logger.info("re-format attention.linear_qkv.weight")
760
+ elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
761
+ qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
762
+ data_torch = torch.cat(
763
+ (
764
+ qkv_bias[:, 0, :].reshape((n_embed,)),
765
+ qkv_bias[:, 1, :].reshape((n_embed,)),
766
+ qkv_bias[:, 2, :].reshape((n_embed,)),
767
+ ),
768
+ dim=0,
769
+ )
770
+ logger.info("re-format attention.linear_qkv.bias")
771
+
772
+ tensors.append((self.map_tensor_name(name), data_torch))
773
+
774
+ if name == "word_embeddings.weight":
775
+ assert self.tensor_names is not None
776
+
777
+ # TODO: tie them at runtime, don't duplicate in the model file
778
+ if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
779
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
780
+
781
+ return tensors
782
+
783
+
784
+ @Model.register("MPTForCausalLM")
785
+ class MPTModel(Model):
786
+ model_arch = gguf.MODEL_ARCH.MPT
787
+
788
+ def set_vocab(self):
789
+ try:
790
+ self._set_vocab_gpt2()
791
+ except Exception:
792
+ # Fallback for SEA-LION model
793
+ self._set_vocab_sentencepiece()
794
+ self.gguf_writer.add_add_bos_token(False)
795
+ self.gguf_writer.add_pad_token_id(3)
796
+ self.gguf_writer.add_eos_token_id(1)
797
+ self.gguf_writer.add_unk_token_id(0)
798
+
799
+ def set_gguf_parameters(self):
800
+ block_count = self.hparams["n_layers"]
801
+ self.gguf_writer.add_name(self.dir_model.name)
802
+ self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
803
+ self.gguf_writer.add_embedding_length(self.hparams["d_model"])
804
+ self.gguf_writer.add_block_count(block_count)
805
+ self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
806
+ self.gguf_writer.add_head_count(self.hparams["n_heads"])
807
+ if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
808
+ self.gguf_writer.add_head_count_kv(kv_n_heads)
809
+ self.gguf_writer.add_layer_norm_eps(1e-5)
810
+ if self.hparams["attn_config"]["clip_qkv"] is not None:
811
+ self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
812
+ if self.hparams["attn_config"]["alibi"]:
813
+ self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
814
+ else:
815
+ self.gguf_writer.add_max_alibi_bias(0.0)
816
+
817
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
818
+ del bid # unused
819
+
820
+ if "scales" in name:
821
+ new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
822
+ new_name = new_name.replace("scales", "act.scales")
823
+ else:
824
+ new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
825
+
826
+ return [(new_name, data_torch)]
827
+
828
+
829
+ @Model.register("OrionForCausalLM")
830
+ class OrionModel(Model):
831
+ model_arch = gguf.MODEL_ARCH.ORION
832
+
833
+ def set_vocab(self):
834
+ self._set_vocab_sentencepiece()
835
+
836
+ def set_gguf_parameters(self):
837
+ block_count = self.hparams["num_hidden_layers"]
838
+ head_count = self.hparams["num_attention_heads"]
839
+ head_count_kv = self.hparams.get("num_key_value_heads", head_count)
840
+ hf_repo = self.hparams.get("_name_or_path", "")
841
+
842
+ ctx_length = 0
843
+ if "max_sequence_length" in self.hparams:
844
+ ctx_length = self.hparams["max_sequence_length"]
845
+ elif "max_position_embeddings" in self.hparams:
846
+ ctx_length = self.hparams["max_position_embeddings"]
847
+ elif "model_max_length" in self.hparams:
848
+ ctx_length = self.hparams["model_max_length"]
849
+ else:
850
+ raise ValueError("gguf: can not find ctx length parameter.")
851
+
852
+ self.gguf_writer.add_file_type(self.ftype)
853
+ self.gguf_writer.add_name(self.dir_model.name)
854
+ self.gguf_writer.add_source_hf_repo(hf_repo)
855
+ self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
856
+ self.gguf_writer.add_context_length(ctx_length)
857
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
858
+ self.gguf_writer.add_block_count(block_count)
859
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
860
+ self.gguf_writer.add_head_count(head_count)
861
+ self.gguf_writer.add_head_count_kv(head_count_kv)
862
+ # note: config provides rms norm but it is actually layer norm
863
+ # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
864
+ self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
865
+
866
+
867
+ @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
868
+ class BaichuanModel(Model):
869
+ model_arch = gguf.MODEL_ARCH.BAICHUAN
870
+
871
+ def set_vocab(self):
872
+ self._set_vocab_sentencepiece()
873
+
874
+ def set_gguf_parameters(self):
875
+ block_count = self.hparams["num_hidden_layers"]
876
+ head_count = self.hparams["num_attention_heads"]
877
+ head_count_kv = self.hparams.get("num_key_value_heads", head_count)
878
+ hf_repo = self.hparams.get("_name_or_path", "")
879
+
880
+ ctx_length = 0
881
+ if "max_sequence_length" in self.hparams:
882
+ ctx_length = self.hparams["max_sequence_length"]
883
+ elif "max_position_embeddings" in self.hparams:
884
+ ctx_length = self.hparams["max_position_embeddings"]
885
+ elif "model_max_length" in self.hparams:
886
+ ctx_length = self.hparams["model_max_length"]
887
+ else:
888
+ raise ValueError("gguf: can not find ctx length parameter.")
889
+
890
+ self.gguf_writer.add_name(self.dir_model.name)
891
+ self.gguf_writer.add_source_hf_repo(hf_repo)
892
+ self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
893
+ self.gguf_writer.add_context_length(ctx_length)
894
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
895
+ self.gguf_writer.add_block_count(block_count)
896
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
897
+ self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
898
+ self.gguf_writer.add_head_count(head_count)
899
+ self.gguf_writer.add_head_count_kv(head_count_kv)
900
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
901
+ self.gguf_writer.add_file_type(self.ftype)
902
+
903
+ if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
904
+ if self.hparams["rope_scaling"].get("type") == "linear":
905
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
906
+ self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
907
+
908
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
909
+ head_count = self.hparams["num_attention_heads"]
910
+ head_count_kv = self.hparams.get("num_key_value_heads", head_count)
911
+
912
+ tensors: list[tuple[str, Tensor]] = []
913
+
914
+ if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
915
+ logger.info(f"Unpacking and permuting layer {bid}")
916
+ tensors = [
917
+ (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
918
+ self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
919
+ (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
920
+ self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
921
+ (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
922
+ self._reverse_hf_part(data_torch, 2)),
923
+ ]
924
+ else:
925
+ tensors = [(self.map_tensor_name(name), data_torch)]
926
+
927
+ return tensors
928
+
929
+ def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
930
+ if n_kv_head is not None and n_head != n_kv_head:
931
+ n_head //= n_kv_head
932
+
933
+ return (
934
+ weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
935
+ .swapaxes(1, 2)
936
+ .reshape(weights.shape)
937
+ )
938
+
939
+ def _reverse_hf_permute_part(
940
+ self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
941
+ ) -> Tensor:
942
+ r = weights.shape[0] // 3
943
+ return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
944
+
945
+ def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
946
+ r = weights.shape[0] // 3
947
+ return weights[r * n_part:r * n_part + r, ...]
948
+
949
+
950
+ @Model.register("XverseForCausalLM")
951
+ class XverseModel(Model):
952
+ model_arch = gguf.MODEL_ARCH.XVERSE
953
+
954
+ def set_vocab(self):
955
+ assert (self.dir_model / "tokenizer.json").is_file()
956
+ dir_model = self.dir_model
957
+ hparams = self.hparams
958
+
959
+ tokens: list[bytes] = []
960
+ toktypes: list[int] = []
961
+
962
+ from transformers import AutoTokenizer
963
+ tokenizer = AutoTokenizer.from_pretrained(dir_model)
964
+ vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
965
+ assert max(tokenizer.vocab.values()) < vocab_size
966
+
967
+ reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
968
+ added_vocab = tokenizer.get_added_vocab()
969
+
970
+ for token_id in range(vocab_size):
971
+ token_text = reverse_vocab[token_id].encode('utf-8')
972
+ # replace "\x00" to string with length > 0
973
+ if token_text == b"\x00":
974
+ toktype = gguf.TokenType.BYTE # special
975
+ token_text = f"<{token_text}>".encode('utf-8')
976
+ elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
977
+ toktype = gguf.TokenType.BYTE # special
978
+ elif reverse_vocab[token_id] in added_vocab:
979
+ if tokenizer.added_tokens_decoder[token_id].special:
980
+ toktype = gguf.TokenType.CONTROL
981
+ else:
982
+ toktype = gguf.TokenType.USER_DEFINED
983
+ else:
984
+ toktype = gguf.TokenType.NORMAL
985
+
986
+ tokens.append(token_text)
987
+ toktypes.append(toktype)
988
+
989
+ self.gguf_writer.add_tokenizer_model("llama")
990
+ self.gguf_writer.add_tokenizer_pre("default")
991
+ self.gguf_writer.add_token_list(tokens)
992
+ self.gguf_writer.add_token_types(toktypes)
993
+
994
+ special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
995
+ special_vocab.add_to_gguf(self.gguf_writer)
996
+
997
+ def set_gguf_parameters(self):
998
+ block_count = self.hparams["num_hidden_layers"]
999
+ head_count = self.hparams["num_attention_heads"]
1000
+ head_count_kv = self.hparams.get("num_key_value_heads", head_count)
1001
+ hf_repo = self.hparams.get("_name_or_path", "")
1002
+
1003
+ ctx_length = 0
1004
+ if "max_sequence_length" in self.hparams:
1005
+ ctx_length = self.hparams["max_sequence_length"]
1006
+ elif "max_position_embeddings" in self.hparams:
1007
+ ctx_length = self.hparams["max_position_embeddings"]
1008
+ elif "model_max_length" in self.hparams:
1009
+ ctx_length = self.hparams["model_max_length"]
1010
+ else:
1011
+ raise ValueError("gguf: can not find ctx length parameter.")
1012
+
1013
+ self.gguf_writer.add_name(self.dir_model.name)
1014
+ self.gguf_writer.add_source_hf_repo(hf_repo)
1015
+ self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
1016
+ self.gguf_writer.add_context_length(ctx_length)
1017
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
1018
+ self.gguf_writer.add_block_count(block_count)
1019
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
1020
+ self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
1021
+ self.gguf_writer.add_head_count(head_count)
1022
+ self.gguf_writer.add_head_count_kv(head_count_kv)
1023
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
1024
+ self.gguf_writer.add_file_type(self.ftype)
1025
+
1026
+ if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
1027
+ if self.hparams["rope_scaling"].get("type") == "linear":
1028
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
1029
+ self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
1030
+
1031
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
1032
+ del bid # unused
1033
+
1034
+ head_count = self.hparams["num_attention_heads"]
1035
+ head_count_kv = self.hparams.get("num_key_value_heads", head_count)
1036
+
1037
+ # HF models permute some of the tensors, so we need to undo that
1038
+ if name.endswith("q_proj.weight"):
1039
+ data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
1040
+ if name.endswith("k_proj.weight"):
1041
+ data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
1042
+
1043
+ return [(self.map_tensor_name(name), data_torch)]
1044
+
1045
+ def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
1046
+ if n_kv_head is not None and n_head != n_kv_head:
1047
+ n_head //= n_kv_head
1048
+
1049
+ return (
1050
+ weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
1051
+ .swapaxes(1, 2)
1052
+ .reshape(weights.shape)
1053
+ )
1054
+
1055
+
1056
+ @Model.register("FalconForCausalLM", "RWForCausalLM")
1057
+ class FalconModel(Model):
1058
+ model_arch = gguf.MODEL_ARCH.FALCON
1059
+
1060
+ def set_gguf_parameters(self):
1061
+ block_count = self.hparams.get("num_hidden_layers")
1062
+ if block_count is None:
1063
+ block_count = self.hparams["n_layer"] # old name
1064
+
1065
+ n_head = self.hparams.get("num_attention_heads")
1066
+ if n_head is None:
1067
+ n_head = self.hparams["n_head"] # old name
1068
+
1069
+ n_head_kv = self.hparams.get("num_kv_heads")
1070
+ if n_head_kv is None:
1071
+ n_head_kv = self.hparams.get("n_head_kv", 1) # old name
1072
+
1073
+ self.gguf_writer.add_name("Falcon")
1074
+ self.gguf_writer.add_context_length(2048) # not in config.json
1075
+ self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
1076
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
1077
+ self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
1078
+ self.gguf_writer.add_block_count(block_count)
1079
+ self.gguf_writer.add_head_count(n_head)
1080
+ self.gguf_writer.add_head_count_kv(n_head_kv)
1081
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
1082
+ self.gguf_writer.add_file_type(self.ftype)
1083
+
1084
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
1085
+ del bid # unused
1086
+
1087
+ # QKV tensor transform
1088
+ # The original query_key_value tensor contains n_head_kv "kv groups",
1089
+ # each consisting of n_head/n_head_kv query weights followed by one key
1090
+ # and one value weight (shared by all query heads in the kv group).
1091
+ # This layout makes it a big pain to work with in GGML.
1092
+ # So we rearrange them here,, so that we have n_head query weights
1093
+ # followed by n_head_kv key weights followed by n_head_kv value weights,
1094
+ # in contiguous fashion.
1095
+ # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
1096
+
1097
+ if "query_key_value" in name:
1098
+ n_head = self.find_hparam(["num_attention_heads", "n_head"])
1099
+ n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
1100
+ head_dim = self.hparams["hidden_size"] // n_head
1101
+
1102
+ qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
1103
+ q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
1104
+ k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
1105
+ v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
1106
+ data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
1107
+
1108
+ return [(self.map_tensor_name(name), data_torch)]
1109
+
1110
+
1111
+ @Model.register("GPTBigCodeForCausalLM")
1112
+ class StarCoderModel(Model):
1113
+ model_arch = gguf.MODEL_ARCH.STARCODER
1114
+
1115
+ def set_gguf_parameters(self):
1116
+ block_count = self.hparams["n_layer"]
1117
+
1118
+ self.gguf_writer.add_name("StarCoder")
1119
+ self.gguf_writer.add_context_length(self.hparams["n_positions"])
1120
+ self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
1121
+ self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
1122
+ self.gguf_writer.add_block_count(block_count)
1123
+ self.gguf_writer.add_head_count(self.hparams["n_head"])
1124
+ self.gguf_writer.add_head_count_kv(1)
1125
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
1126
+ self.gguf_writer.add_file_type(self.ftype)
1127
+
1128
+
1129
+ @Model.register("GPTRefactForCausalLM")
1130
+ class RefactModel(Model):
1131
+ model_arch = gguf.MODEL_ARCH.REFACT
1132
+
1133
+ def set_vocab(self):
1134
+ super().set_vocab()
1135
+
1136
+ # TODO: how to determine special FIM tokens automatically?
1137
+ special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
1138
+ special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
1139
+ special_vocab._set_special_token("prefix", 1)
1140
+ special_vocab._set_special_token("suffix", 3)
1141
+ special_vocab._set_special_token("middle", 2)
1142
+ special_vocab._set_special_token("fsep", 4) # is this correct?
1143
+ special_vocab.add_to_gguf(self.gguf_writer)
1144
+
1145
+ def set_gguf_parameters(self):
1146
+ hidden_dim = self.hparams["n_embd"]
1147
+ inner_dim = 4 * hidden_dim
1148
+ hidden_dim = int(2 * inner_dim / 3)
1149
+ multiple_of = 256
1150
+ ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
1151
+
1152
+ block_count = self.hparams["n_layer"]
1153
+
1154
+ self.gguf_writer.add_name("Refact")
1155
+ # refact uses Alibi. So this is from config.json which might be used by training.
1156
+ self.gguf_writer.add_context_length(self.hparams["n_positions"])
1157
+ self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
1158
+
1159
+ self.gguf_writer.add_feed_forward_length(ff_dim)
1160
+ self.gguf_writer.add_block_count(block_count)
1161
+ self.gguf_writer.add_head_count(self.hparams["n_head"])
1162
+ self.gguf_writer.add_head_count_kv(1)
1163
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
1164
+ self.gguf_writer.add_file_type(self.ftype)
1165
+
1166
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
1167
+ hidden_dim = self.hparams["n_embd"]
1168
+ inner_dim = 4 * hidden_dim
1169
+ hidden_dim = int(2 * inner_dim / 3)
1170
+ multiple_of = 256
1171
+ ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
1172
+ n_head = self.hparams["n_head"]
1173
+ n_head_kv = 1
1174
+ head_dim = self.hparams["n_embd"] // n_head
1175
+
1176
+ tensors: list[tuple[str, Tensor]] = []
1177
+
1178
+ if bid is not None:
1179
+ if name == f"transformer.h.{bid}.attn.kv.weight":
1180
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
1181
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
1182
+ elif name == f"transformer.h.{bid}.attn.q.weight":
1183
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
1184
+ elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
1185
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
1186
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
1187
+
1188
+ if len(tensors) == 0:
1189
+ tensors.append((self.map_tensor_name(name), data_torch))
1190
+
1191
+ return tensors
1192
+
1193
+
1194
+ @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
1195
+ class StableLMModel(Model):
1196
+ model_arch = gguf.MODEL_ARCH.STABLELM
1197
+
1198
+ def set_vocab(self):
1199
+ if (self.dir_model / "tokenizer.json").is_file():
1200
+ self._set_vocab_gpt2()
1201
+ else:
1202
+ # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
1203
+ self._set_vocab_qwen()
1204
+
1205
+ def set_gguf_parameters(self):
1206
+ hparams = self.hparams
1207
+ block_count = hparams["num_hidden_layers"]
1208
+
1209
+ self.gguf_writer.add_name(self.dir_model.name)
1210
+ self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
1211
+ self.gguf_writer.add_embedding_length(hparams["hidden_size"])
1212
+ self.gguf_writer.add_block_count(block_count)
1213
+ self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
1214
+ rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
1215
+ self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
1216
+ self.gguf_writer.add_head_count(hparams["num_attention_heads"])
1217
+ self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
1218
+ self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
1219
+ self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
1220
+ self.gguf_writer.add_file_type(self.ftype)
1221
+
1222
+ _q_norms: list[dict[str, Tensor]] | None = None
1223
+ _k_norms: list[dict[str, Tensor]] | None = None
1224
+
1225
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
1226
+ n_head = self.hparams["num_attention_heads"]
1227
+ n_kv_head = self.hparams["num_key_value_heads"]
1228
+
1229
+ if name.find("q_layernorm.norms") != -1:
1230
+ assert bid is not None
1231
+
1232
+ if self._q_norms is None:
1233
+ self._q_norms = [{} for _ in range(self.block_count)]
1234
+
1235
+ self._q_norms[bid][name] = data_torch
1236
+
1237
+ if len(self._q_norms[bid]) >= n_head:
1238
+ return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
1239
+ else:
1240
+ return []
1241
+
1242
+ if name.find("k_layernorm.norms") != -1:
1243
+ assert bid is not None
1244
+
1245
+ if self._k_norms is None:
1246
+ self._k_norms = [{} for _ in range(self.block_count)]
1247
+
1248
+ self._k_norms[bid][name] = data_torch
1249
+
1250
+ if len(self._k_norms[bid]) >= n_kv_head:
1251
+ return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
1252
+ else:
1253
+ return []
1254
+
1255
+ return [(self.map_tensor_name(name), data_torch)]
1256
+
1257
+ def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
1258
+ datas: list[Tensor] = []
1259
+ # extract the norms in order
1260
+ for xid in range(n_head):
1261
+ ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
1262
+ datas.append(norms[ename])
1263
+ del norms[ename]
1264
+ data_torch = torch.stack(datas, dim=0)
1265
+
1266
+ merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
1267
+ new_name = self.map_tensor_name(merged_name)
1268
+
1269
+ return [(new_name, data_torch)]
1270
+
1271
+ def write_tensors(self):
1272
+ super().write_tensors()
1273
+
1274
+ if self._q_norms is not None or self._k_norms is not None:
1275
+ # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
1276
+ norms = (
1277
+ [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
1278
+ ) + (
1279
+ [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
1280
+ )
1281
+ if len(norms) > 0:
1282
+ raise ValueError(f"Unprocessed norms: {norms}")
1283
+
1284
+ def write_tensors(self):
1285
+ block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
1286
+ tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
1287
+ n_head = self.hparams.get("num_attention_heads")
1288
+ n_kv_head = self.hparams.get("num_key_value_heads")
1289
+ q_norms = dict()
1290
+ k_norms = dict()
1291
+ for name, data_torch in self.get_tensors():
1292
+ # we don't need these
1293
+ if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
1294
+ continue
1295
+
1296
+ old_dtype = data_torch.dtype
1297
+
1298
+ # convert any unsupported data types to float32
1299
+ if data_torch.dtype not in (torch.float16, torch.float32):
1300
+ data_torch = data_torch.to(torch.float32)
1301
+
1302
+ data = data_torch.squeeze().numpy()
1303
+ n_dims = len(data.shape)
1304
+ if name.find("q_layernorm.norms") != -1:
1305
+ q_norms[name] = data
1306
+ if len(q_norms) >= (block_count * n_head):
1307
+ self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm")
1308
+ continue
1309
+ if name.find("k_layernorm.norms") != -1:
1310
+ k_norms[name] = data
1311
+ if len(k_norms) >= (block_count * n_kv_head):
1312
+ self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm")
1313
+ continue
1314
+
1315
+ # map tensor names
1316
+ new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
1317
+ if new_name is None:
1318
+ raise ValueError(f"Can not map tensor {name!r}")
1319
+
1320
+ n_dims = len(data.shape)
1321
+ data_dtype = data.dtype
1322
+
1323
+ # if f32 desired, convert any float16 to float32
1324
+ if self.ftype == 0 and data_dtype == np.float16:
1325
+ data = data.astype(np.float32)
1326
+
1327
+ # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
1328
+ if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
1329
+ data = data.astype(np.float32)
1330
+
1331
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
1332
+ if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
1333
+ data = data.astype(np.float16)
1334
+
1335
+ logger.debug(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
1336
+
1337
+ self.gguf_writer.add_tensor(new_name, data)
1338
+
1339
+ def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"):
1340
+ for bid in range(block_count):
1341
+ datas = []
1342
+ for xid in range(n_head):
1343
+ ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
1344
+ datas.append(norms[ename])
1345
+ del norms[ename]
1346
+ data = np.stack(datas, axis=0)
1347
+ data_dtype = data.dtype
1348
+ merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
1349
+ new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
1350
+ if new_name is None:
1351
+ raise ValueError(f"Can not map tensor {name!r}")
1352
+ if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
1353
+ data = data.astype(np.float32)
1354
+
1355
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
1356
+ if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
1357
+ data = data.astype(np.float16)
1358
+
1359
+ logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
1360
+
1361
+ self.gguf_writer.add_tensor(new_name, data)
1362
+
1363
+
1364
+ @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
1365
+ class LlamaModel(Model):
1366
+ model_arch = gguf.MODEL_ARCH.LLAMA
1367
+
1368
+ def set_vocab(self):
1369
+ try:
1370
+ self. _set_vocab_sentencepiece()
1371
+ except FileNotFoundError:
1372
+ try:
1373
+ self._set_vocab_llama_hf()
1374
+ except (FileNotFoundError, TypeError):
1375
+ # Llama 3
1376
+ self._set_vocab_gpt2()
1377
+
1378
+ # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
1379
+ if self.hparams.get("vocab_size", 32000) == 32016:
1380
+ special_vocab = gguf.SpecialVocab(
1381
+ self.dir_model, load_merges=False,
1382
+ special_token_types = ['prefix', 'suffix', 'middle', 'eot']
1383
+ )
1384
+ special_vocab._set_special_token("prefix", 32007)
1385
+ special_vocab._set_special_token("suffix", 32008)
1386
+ special_vocab._set_special_token("middle", 32009)
1387
+ special_vocab._set_special_token("eot", 32010)
1388
+ special_vocab.add_to_gguf(self.gguf_writer)
1389
+
1390
+ def set_gguf_parameters(self):
1391
+ super().set_gguf_parameters()
1392
+ hparams = self.hparams
1393
+ self.gguf_writer.add_vocab_size(hparams["vocab_size"])
1394
+ self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
1395
+
1396
+ if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
1397
+ if self.hparams["rope_scaling"].get("type") == "linear":
1398
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
1399
+ self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
1400
+
1401
+ @staticmethod
1402
+ def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
1403
+ if n_head_kv is not None and n_head != n_head_kv:
1404
+ n_head = n_head_kv
1405
+ return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
1406
+ .swapaxes(1, 2)
1407
+ .reshape(weights.shape))
1408
+
1409
+ _experts: list[dict[str, Tensor]] | None = None
1410
+
1411
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
1412
+ n_head = self.hparams["num_attention_heads"]
1413
+ n_kv_head = self.hparams.get("num_key_value_heads")
1414
+
1415
+ if name.endswith("q_proj.weight"):
1416
+ data_torch = LlamaModel.permute(data_torch, n_head, n_head)
1417
+ if name.endswith("k_proj.weight"):
1418
+ data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
1419
+
1420
+ # process the experts separately
1421
+ if name.find("block_sparse_moe.experts") != -1:
1422
+ n_experts = self.hparams["num_local_experts"]
1423
+
1424
+ assert bid is not None
1425
+
1426
+ if self._experts is None:
1427
+ self._experts = [{} for _ in range(self.block_count)]
1428
+
1429
+ self._experts[bid][name] = data_torch
1430
+
1431
+ if len(self._experts[bid]) >= n_experts * 3:
1432
+ tensors: list[tuple[str, Tensor]] = []
1433
+
1434
+ # merge the experts into a single 3d tensor
1435
+ for wid in ["w1", "w2", "w3"]:
1436
+ datas: list[Tensor] = []
1437
+
1438
+ for xid in range(n_experts):
1439
+ ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
1440
+ datas.append(self._experts[bid][ename])
1441
+ del self._experts[bid][ename]
1442
+
1443
+ data_torch = torch.stack(datas, dim=0)
1444
+
1445
+ merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
1446
+
1447
+ new_name = self.map_tensor_name(merged_name)
1448
+
1449
+ tensors.append((new_name, data_torch))
1450
+ return tensors
1451
+ else:
1452
+ return []
1453
+
1454
+ return [(self.map_tensor_name(name), data_torch)]
1455
+
1456
+ def write_tensors(self):
1457
+ super().write_tensors()
1458
+
1459
+ if self._experts is not None:
1460
+ # flatten `list[dict[str, Tensor]]` into `list[str]`
1461
+ experts = [k for d in self._experts for k in d.keys()]
1462
+ if len(experts) > 0:
1463
+ raise ValueError(f"Unprocessed experts: {experts}")
1464
+
1465
+
1466
+ @Model.register("GrokForCausalLM")
1467
+ class GrokModel(Model):
1468
+ model_arch = gguf.MODEL_ARCH.GROK
1469
+
1470
+ def set_vocab(self):
1471
+ self._set_vocab_sentencepiece()
1472
+
1473
+ def __init__(self, *args, **kwargs):
1474
+ super().__init__(*args, **kwargs)
1475
+
1476
+ def set_gguf_parameters(self):
1477
+ super().set_gguf_parameters()
1478
+ self.gguf_writer.add_name("Grok")
1479
+
1480
+ _experts: list[dict[str, Tensor]] | None = None
1481
+
1482
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
1483
+ # process the experts separately
1484
+ if name.find(".moe.") != -1:
1485
+ n_experts = self.hparams["num_local_experts"]
1486
+
1487
+ assert bid is not None
1488
+
1489
+ if self._experts is None:
1490
+ self._experts = [{} for _ in range(self.block_count)]
1491
+
1492
+ self._experts[bid][name] = data_torch
1493
+
1494
+ if len(self._experts[bid]) >= n_experts * 3:
1495
+ tensors: list[tuple[str, Tensor]] = []
1496
+
1497
+ # merge the experts into a single 3d tensor
1498
+ for wid in ["linear", "linear_1", "linear_v"]:
1499
+ datas: list[Tensor] = []
1500
+
1501
+ for xid in range(n_experts):
1502
+ ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
1503
+ datas.append(self._experts[bid][ename])
1504
+ del self._experts[bid][ename]
1505
+
1506
+ data_torch = torch.stack(datas, dim=0)
1507
+
1508
+ merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
1509
+
1510
+ new_name = self.map_tensor_name(merged_name)
1511
+
1512
+ tensors.append((new_name, data_torch))
1513
+ return tensors
1514
+ else:
1515
+ return []
1516
+
1517
+ return [(self.map_tensor_name(name), data_torch)]
1518
+
1519
+
1520
+ @Model.register("DbrxForCausalLM")
1521
+ class DbrxModel(Model):
1522
+ model_arch = gguf.MODEL_ARCH.DBRX
1523
+
1524
+ def set_gguf_parameters(self):
1525
+ ffn_config = self.hparams["ffn_config"]
1526
+ attn_config = self.hparams["attn_config"]
1527
+ self.gguf_writer.add_name(self.hparams["model_type"])
1528
+ self.gguf_writer.add_block_count(self.hparams["n_layers"])
1529
+
1530
+ self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
1531
+ self.gguf_writer.add_embedding_length(self.hparams["d_model"])
1532
+ self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
1533
+
1534
+ self.gguf_writer.add_head_count(self.hparams["n_heads"])
1535
+ self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
1536
+
1537
+ self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
1538
+
1539
+ self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
1540
+ self.gguf_writer.add_file_type(self.ftype)
1541
+
1542
+ self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
1543
+ self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
1544
+
1545
+ self.gguf_writer.add_layer_norm_eps(1e-5)
1546
+
1547
+ self.gguf_writer.add_file_type(self.ftype)
1548
+ logger.info(f"gguf: file type = {self.ftype}")
1549
+
1550
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
1551
+ del bid # unused
1552
+
1553
+ n_expert = self.hparams["ffn_config"]["moe_num_experts"]
1554
+ n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
1555
+ n_embd = self.hparams["d_model"]
1556
+
1557
+ # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
1558
+ # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
1559
+ # But llama.cpp moe graph works differently
1560
+ # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
1561
+ # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
1562
+ exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
1563
+ "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
1564
+ "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
1565
+ experts = False
1566
+
1567
+ for exp_tensor_name in exp_tensor_names.keys():
1568
+ if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
1569
+ experts = True
1570
+ data_torch = data_torch.view(n_expert, n_ff, n_embd)
1571
+ if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
1572
+ data_torch = data_torch.permute(*permute_tensor)
1573
+ break
1574
+
1575
+ # map tensor names
1576
+ # In MoE models the ffn tensors are typically most of the model weights,
1577
+ # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
1578
+ # Every other model has the weight names ending in .weight,
1579
+ # let's assume that is the convention which is not the case for dbrx:
1580
+ # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
1581
+ new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
1582
+
1583
+ return [(new_name, data_torch)]
1584
+
1585
+ def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
1586
+ del name, new_name, bid # unused
1587
+
1588
+ return n_dims > 1
1589
+
1590
+
1591
+ @Model.register("MiniCPMForCausalLM")
1592
+ class MiniCPMModel(Model):
1593
+ model_arch = gguf.MODEL_ARCH.MINICPM
1594
+
1595
+ def set_gguf_parameters(self):
1596
+ block_count = self.hparams["num_hidden_layers"]
1597
+ self.gguf_writer.add_name("MiniCPM")
1598
+ self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
1599
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
1600
+ self.gguf_writer.add_block_count(block_count)
1601
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
1602
+ self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
1603
+ self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
1604
+ self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
1605
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
1606
+ self.gguf_writer.add_file_type(self.ftype)
1607
+
1608
+ def set_vocab(self):
1609
+ self._set_vocab_llama_hf()
1610
+
1611
+ def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
1612
+ if n_kv_head is not None and n_head != n_kv_head:
1613
+ n_head //= n_kv_head
1614
+
1615
+ return (
1616
+ weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
1617
+ .swapaxes(1, 2)
1618
+ .reshape(weights.shape)
1619
+ )
1620
+
1621
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
1622
+ del bid # unused
1623
+
1624
+ n_head = self.hparams["num_attention_heads"]
1625
+ n_kv_head = self.hparams.get("num_key_value_heads")
1626
+
1627
+ # HF models permute some of the tensors, so we need to undo that
1628
+ if name.endswith(("q_proj.weight")):
1629
+ data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
1630
+ if name.endswith(("k_proj.weight")):
1631
+ data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
1632
+
1633
+ return [(self.map_tensor_name(name), data_torch)]
1634
+
1635
+
1636
+ @Model.register("QWenLMHeadModel")
1637
+ class QwenModel(Model):
1638
+ model_arch = gguf.MODEL_ARCH.QWEN
1639
+
1640
+ @staticmethod
1641
+ def token_bytes_to_string(b):
1642
+ from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
1643
+ byte_encoder = bytes_to_unicode()
1644
+ return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
1645
+
1646
+ @staticmethod
1647
+ def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
1648
+ parts = [bytes([b]) for b in token]
1649
+ while True:
1650
+ min_idx = None
1651
+ min_rank = None
1652
+ for i, pair in enumerate(zip(parts[:-1], parts[1:])):
1653
+ rank = mergeable_ranks.get(pair[0] + pair[1])
1654
+ if rank is not None and (min_rank is None or rank < min_rank):
1655
+ min_idx = i
1656
+ min_rank = rank
1657
+ if min_rank is None or (max_rank is not None and min_rank >= max_rank):
1658
+ break
1659
+ assert min_idx is not None
1660
+ parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
1661
+ return parts
1662
+
1663
+ def set_vocab(self):
1664
+ self._set_vocab_qwen()
1665
+
1666
+ def set_gguf_parameters(self):
1667
+ self.gguf_writer.add_name("Qwen")
1668
+ self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
1669
+ self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
1670
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
1671
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
1672
+ self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
1673
+ self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
1674
+ self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
1675
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
1676
+ self.gguf_writer.add_file_type(self.ftype)
1677
+
1678
+
1679
+ @Model.register("Qwen2ForCausalLM")
1680
+ class Qwen2Model(Model):
1681
+ model_arch = gguf.MODEL_ARCH.QWEN2
1682
+
1683
+ def set_vocab(self):
1684
+ try:
1685
+ self._set_vocab_sentencepiece()
1686
+ except FileNotFoundError:
1687
+ self._set_vocab_gpt2()
1688
+
1689
+
1690
+ @Model.register("Qwen2MoeForCausalLM")
1691
+ class Qwen2MoeModel(Model):
1692
+ model_arch = gguf.MODEL_ARCH.QWEN2MOE
1693
+
1694
+ def set_gguf_parameters(self):
1695
+ super().set_gguf_parameters()
1696
+ if (n_experts := self.hparams.get("num_experts")) is not None:
1697
+ self.gguf_writer.add_expert_count(n_experts)
1698
+
1699
+ _experts: list[dict[str, Tensor]] | None = None
1700
+
1701
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
1702
+ # process the experts separately
1703
+ if name.find("experts") != -1:
1704
+ n_experts = self.hparams["num_experts"]
1705
+ assert bid is not None
1706
+
1707
+ if self._experts is None:
1708
+ self._experts = [{} for _ in range(self.block_count)]
1709
+
1710
+ self._experts[bid][name] = data_torch
1711
+
1712
+ if len(self._experts[bid]) >= n_experts * 3:
1713
+ tensors: list[tuple[str, Tensor]] = []
1714
+
1715
+ # merge the experts into a single 3d tensor
1716
+ for w_name in ["down_proj", "gate_proj", "up_proj"]:
1717
+ datas: list[Tensor] = []
1718
+
1719
+ for xid in range(n_experts):
1720
+ ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
1721
+ datas.append(self._experts[bid][ename])
1722
+ del self._experts[bid][ename]
1723
+
1724
+ data_torch = torch.stack(datas, dim=0)
1725
+
1726
+ merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
1727
+
1728
+ new_name = self.map_tensor_name(merged_name)
1729
+
1730
+ tensors.append((new_name, data_torch))
1731
+ return tensors
1732
+ else:
1733
+ return []
1734
+
1735
+ return [(self.map_tensor_name(name), data_torch)]
1736
+
1737
+ def write_tensors(self):
1738
+ super().write_tensors()
1739
+
1740
+ if self._experts is not None:
1741
+ # flatten `list[dict[str, Tensor]]` into `list[str]`
1742
+ experts = [k for d in self._experts for k in d.keys()]
1743
+ if len(experts) > 0:
1744
+ raise ValueError(f"Unprocessed experts: {experts}")
1745
+
1746
+
1747
+ @Model.register("GPT2LMHeadModel")
1748
+ class GPT2Model(Model):
1749
+ model_arch = gguf.MODEL_ARCH.GPT2
1750
+
1751
+ def set_gguf_parameters(self):
1752
+ self.gguf_writer.add_name(self.dir_model.name)
1753
+ self.gguf_writer.add_block_count(self.hparams["n_layer"])
1754
+ self.gguf_writer.add_context_length(self.hparams["n_ctx"])
1755
+ self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
1756
+ self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
1757
+ self.gguf_writer.add_head_count(self.hparams["n_head"])
1758
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
1759
+ self.gguf_writer.add_file_type(self.ftype)
1760
+
1761
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
1762
+ del bid # unused
1763
+
1764
+ tensors: list[tuple[str, Tensor]] = []
1765
+
1766
+ # we don't need these
1767
+ if name.endswith((".attn.bias", ".attn.masked_bias")):
1768
+ return tensors
1769
+
1770
+ if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
1771
+ data_torch = data_torch.transpose(1, 0)
1772
+
1773
+ new_name = self.map_tensor_name(name)
1774
+
1775
+ tensors.append((new_name, data_torch))
1776
+
1777
+ # note: GPT2 output is tied to (same as) wte in original model
1778
+ if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
1779
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
1780
+
1781
+ return tensors
1782
+
1783
+
1784
+ @Model.register("PhiForCausalLM")
1785
+ class Phi2Model(Model):
1786
+ model_arch = gguf.MODEL_ARCH.PHI2
1787
+
1788
+ def set_gguf_parameters(self):
1789
+ block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
1790
+
1791
+ rot_pct = self.find_hparam(["partial_rotary_factor"])
1792
+ n_embd = self.find_hparam(["hidden_size", "n_embd"])
1793
+ n_head = self.find_hparam(["num_attention_heads", "n_head"])
1794
+
1795
+ self.gguf_writer.add_name("Phi2")
1796
+ self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
1797
+
1798
+ self.gguf_writer.add_embedding_length(n_embd)
1799
+ self.gguf_writer.add_feed_forward_length(4 * n_embd)
1800
+ self.gguf_writer.add_block_count(block_count)
1801
+ self.gguf_writer.add_head_count(n_head)
1802
+ self.gguf_writer.add_head_count_kv(n_head)
1803
+ self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
1804
+ self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
1805
+ self.gguf_writer.add_file_type(self.ftype)
1806
+ self.gguf_writer.add_add_bos_token(False)
1807
+
1808
+
1809
+ @Model.register("Phi3ForCausalLM")
1810
+ class Phi3MiniModel(Model):
1811
+ model_arch = gguf.MODEL_ARCH.PHI3
1812
+
1813
+ def set_vocab(self):
1814
+ from sentencepiece import SentencePieceProcessor
1815
+
1816
+ tokenizer_path = self.dir_model / 'tokenizer.model'
1817
+
1818
+ if not tokenizer_path.is_file():
1819
+ raise ValueError(f'Error: Missing {tokenizer_path}')
1820
+
1821
+ tokenizer = SentencePieceProcessor()
1822
+ tokenizer.LoadFromFile(str(tokenizer_path))
1823
+
1824
+ vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
1825
+
1826
+ tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
1827
+ scores: list[float] = [-10000.0] * vocab_size
1828
+ toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
1829
+
1830
+ for token_id in range(tokenizer.vocab_size()):
1831
+
1832
+ piece = tokenizer.IdToPiece(token_id)
1833
+ text = piece.encode("utf-8")
1834
+ score = tokenizer.GetScore(token_id)
1835
+
1836
+ toktype = SentencePieceTokenTypes.NORMAL
1837
+ if tokenizer.IsUnknown(token_id):
1838
+ toktype = SentencePieceTokenTypes.UNKNOWN
1839
+ elif tokenizer.IsControl(token_id):
1840
+ toktype = SentencePieceTokenTypes.CONTROL
1841
+ elif tokenizer.IsUnused(token_id):
1842
+ toktype = SentencePieceTokenTypes.UNUSED
1843
+ elif tokenizer.IsByte(token_id):
1844
+ toktype = SentencePieceTokenTypes.BYTE
1845
+
1846
+ tokens[token_id] = text
1847
+ scores[token_id] = score
1848
+ toktypes[token_id] = toktype
1849
+
1850
+ added_tokens_file = self.dir_model / 'added_tokens.json'
1851
+ if added_tokens_file.is_file():
1852
+ with open(added_tokens_file, "r", encoding="utf-8") as f:
1853
+ added_tokens_json = json.load(f)
1854
+
1855
+ for key in added_tokens_json:
1856
+ token_id = added_tokens_json[key]
1857
+ if (token_id >= vocab_size):
1858
+ logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
1859
+ continue
1860
+
1861
+ tokens[token_id] = key.encode("utf-8")
1862
+ scores[token_id] = -1000.0
1863
+ toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
1864
+
1865
+ tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
1866
+ if tokenizer_config_file.is_file():
1867
+ with open(tokenizer_config_file, "r", encoding="utf-8") as f:
1868
+ tokenizer_config_json = json.load(f)
1869
+ added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
1870
+ for token_id, foken_data in added_tokens_decoder.items():
1871
+ token_id = int(token_id)
1872
+ token = foken_data["content"].encode("utf-8")
1873
+ if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
1874
+ assert tokens[token_id] == token
1875
+ tokens[token_id] = token
1876
+ scores[token_id] = -1000.0
1877
+ toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
1878
+ if foken_data.get("special"):
1879
+ toktypes[token_id] = SentencePieceTokenTypes.CONTROL
1880
+
1881
+ tokenizer_file = self.dir_model / 'tokenizer.json'
1882
+ if tokenizer_file.is_file():
1883
+ with open(tokenizer_file, "r", encoding="utf-8") as f:
1884
+ tokenizer_json = json.load(f)
1885
+ added_tokens = tokenizer_json.get("added_tokens", [])
1886
+ for foken_data in added_tokens:
1887
+ token_id = int(foken_data["id"])
1888
+ token = foken_data["content"].encode("utf-8")
1889
+ if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
1890
+ assert tokens[token_id] == token
1891
+ tokens[token_id] = token
1892
+ scores[token_id] = -1000.0
1893
+ toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
1894
+ if foken_data.get("special"):
1895
+ toktypes[token_id] = SentencePieceTokenTypes.CONTROL
1896
+
1897
+ self.gguf_writer.add_tokenizer_model("llama")
1898
+ self.gguf_writer.add_tokenizer_pre("default")
1899
+ self.gguf_writer.add_token_list(tokens)
1900
+ self.gguf_writer.add_token_scores(scores)
1901
+ self.gguf_writer.add_token_types(toktypes)
1902
+
1903
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
1904
+ special_vocab.add_to_gguf(self.gguf_writer)
1905
+
1906
+ def set_gguf_parameters(self):
1907
+ block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
1908
+
1909
+ n_embd = self.find_hparam(["hidden_size", "n_embd"])
1910
+ n_head = self.find_hparam(["num_attention_heads", "n_head"])
1911
+ n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
1912
+ rms_eps = self.find_hparam(["rms_norm_eps"])
1913
+ max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
1914
+ orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
1915
+ rope_dims = n_embd // n_head
1916
+
1917
+ self.gguf_writer.add_name("Phi3")
1918
+ self.gguf_writer.add_context_length(max_pos_embds)
1919
+ self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
1920
+ self.gguf_writer.add_embedding_length(n_embd)
1921
+ self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
1922
+ self.gguf_writer.add_block_count(block_count)
1923
+ self.gguf_writer.add_head_count(n_head)
1924
+ self.gguf_writer.add_head_count_kv(n_head_kv)
1925
+ self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
1926
+ self.gguf_writer.add_rope_dimension_count(rope_dims)
1927
+ self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
1928
+ self.gguf_writer.add_file_type(self.ftype)
1929
+
1930
+ # write rope scaling for long context (128k) model
1931
+ rope_scaling = self.find_hparam(['rope_scaling'], True)
1932
+ if (rope_scaling is None):
1933
+ return
1934
+
1935
+ scale = max_pos_embds / orig_max_pos_embds
1936
+
1937
+ rope_scaling_type = rope_scaling.get('type', '').lower()
1938
+ if len(rope_scaling_type) == 0:
1939
+ raise KeyError('Missing the required key rope_scaling.type')
1940
+
1941
+ if rope_scaling_type == 'su':
1942
+ attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
1943
+ elif rope_scaling_type == 'yarn':
1944
+ attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
1945
+ else:
1946
+ raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
1947
+
1948
+ self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
1949
+
1950
+ long_factors = rope_scaling.get('long_factor', None)
1951
+ short_factors = rope_scaling.get('short_factor', None)
1952
+
1953
+ if long_factors is None or short_factors is None:
1954
+ raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
1955
+
1956
+ if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
1957
+ raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
1958
+
1959
+ self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
1960
+ self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
1961
+
1962
+
1963
+ @Model.register("PlamoForCausalLM")
1964
+ class PlamoModel(Model):
1965
+ model_arch = gguf.MODEL_ARCH.PLAMO
1966
+
1967
+ def set_vocab(self):
1968
+ self._set_vocab_sentencepiece()
1969
+
1970
+ def set_gguf_parameters(self):
1971
+ hparams = self.hparams
1972
+ block_count = hparams["num_hidden_layers"]
1973
+
1974
+ self.gguf_writer.add_name("PLaMo")
1975
+ self.gguf_writer.add_context_length(4096) # not in config.json
1976
+ self.gguf_writer.add_embedding_length(hparams["hidden_size"])
1977
+ self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
1978
+ self.gguf_writer.add_block_count(block_count)
1979
+ self.gguf_writer.add_head_count(hparams["num_attention_heads"])
1980
+ self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
1981
+ self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
1982
+ self.gguf_writer.add_file_type(self.ftype)
1983
+
1984
+ def shuffle_attn_q_weight(self, data_torch):
1985
+ assert data_torch.size() == (5120, 5120)
1986
+ data_torch = data_torch.reshape(8, 5, 128, 5120)
1987
+ data_torch = torch.permute(data_torch, (1, 0, 2, 3))
1988
+ data_torch = torch.reshape(data_torch, (5120, 5120))
1989
+ return data_torch
1990
+
1991
+ def shuffle_attn_output_weight(self, data_torch):
1992
+ assert data_torch.size() == (5120, 5120)
1993
+ data_torch = data_torch.reshape(5120, 8, 5, 128)
1994
+ data_torch = torch.permute(data_torch, (0, 2, 1, 3))
1995
+ data_torch = torch.reshape(data_torch, (5120, 5120))
1996
+ return data_torch
1997
+
1998
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
1999
+ del bid # unused
2000
+
2001
+ new_name = self.map_tensor_name(name)
2002
+
2003
+ # shuffle for broadcasting of gqa in ggml_mul_mat
2004
+ if new_name.endswith("attn_q.weight"):
2005
+ data_torch = self.shuffle_attn_q_weight(data_torch)
2006
+ elif new_name.endswith("attn_output.weight"):
2007
+ data_torch = self.shuffle_attn_output_weight(data_torch)
2008
+
2009
+ return [(new_name, data_torch)]
2010
+
2011
+
2012
+ @Model.register("CodeShellForCausalLM")
2013
+ class CodeShellModel(Model):
2014
+ model_arch = gguf.MODEL_ARCH.CODESHELL
2015
+
2016
+ def set_gguf_parameters(self):
2017
+ block_count = self.hparams["n_layer"]
2018
+
2019
+ self.gguf_writer.add_name("CodeShell")
2020
+ self.gguf_writer.add_context_length(self.hparams["n_positions"])
2021
+ self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
2022
+ self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
2023
+ self.gguf_writer.add_block_count(block_count)
2024
+ self.gguf_writer.add_head_count(self.hparams["n_head"])
2025
+ self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
2026
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
2027
+ self.gguf_writer.add_file_type(self.ftype)
2028
+ self.gguf_writer.add_rope_freq_base(10000.0)
2029
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
2030
+ self.gguf_writer.add_rope_scaling_factor(1.0)
2031
+
2032
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
2033
+ del bid # unused
2034
+
2035
+ new_name = self.map_tensor_name(name)
2036
+
2037
+ tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
2038
+
2039
+ if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
2040
+ assert self.tensor_names is not None
2041
+
2042
+ if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
2043
+ # copy tok_embd.weight to output.weight
2044
+ tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
2045
+
2046
+ return tensors
2047
+
2048
+
2049
+ @Model.register("InternLM2ForCausalLM")
2050
+ class InternLM2Model(Model):
2051
+ model_arch = gguf.MODEL_ARCH.INTERNLM2
2052
+
2053
+ def set_vocab(self):
2054
+ # (TODO): Is there a better way?
2055
+ # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
2056
+ # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
2057
+ # recognized as an empty string in C++.
2058
+ from sentencepiece import SentencePieceProcessor
2059
+ from sentencepiece import sentencepiece_model_pb2 as model
2060
+
2061
+ tokenizer_path = self.dir_model / 'tokenizer.model'
2062
+
2063
+ tokens: list[bytes] = []
2064
+ scores: list[float] = []
2065
+ toktypes: list[int] = []
2066
+
2067
+ if not tokenizer_path.is_file():
2068
+ logger.error(f'Error: Missing {tokenizer_path}')
2069
+ sys.exit(1)
2070
+
2071
+ sentencepiece_model = model.ModelProto()
2072
+ sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
2073
+ add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
2074
+
2075
+ tokenizer = SentencePieceProcessor()
2076
+ tokenizer.LoadFromFile(str(tokenizer_path))
2077
+
2078
+ vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
2079
+
2080
+ for token_id in range(vocab_size):
2081
+ piece = tokenizer.IdToPiece(token_id)
2082
+ text = piece.encode("utf-8")
2083
+ score = tokenizer.GetScore(token_id)
2084
+ if text == b"\x00":
2085
+ # (TODO): fixme
2086
+ # Hack here and replace the \x00 characters.
2087
+ logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
2088
+ text = "🐉".encode("utf-8")
2089
+
2090
+ toktype = SentencePieceTokenTypes.NORMAL
2091
+ if tokenizer.IsUnknown(token_id):
2092
+ toktype = SentencePieceTokenTypes.UNKNOWN
2093
+ elif tokenizer.IsControl(token_id):
2094
+ toktype = SentencePieceTokenTypes.CONTROL
2095
+ elif tokenizer.IsUnused(token_id):
2096
+ toktype = SentencePieceTokenTypes.UNUSED
2097
+ elif tokenizer.IsByte(token_id):
2098
+ toktype = SentencePieceTokenTypes.BYTE
2099
+
2100
+ tokens.append(text)
2101
+ scores.append(score)
2102
+ toktypes.append(toktype)
2103
+
2104
+ added_tokens_file = self.dir_model / 'added_tokens.json'
2105
+ if added_tokens_file.is_file():
2106
+ with open(added_tokens_file, "r", encoding="utf-8") as f:
2107
+ added_tokens_json = json.load(f)
2108
+
2109
+ for key in added_tokens_json:
2110
+ tokens.append(key.encode("utf-8"))
2111
+ scores.append(-1000.0)
2112
+ toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
2113
+
2114
+ self.gguf_writer.add_tokenizer_model("llama")
2115
+ self.gguf_writer.add_tokenizer_pre("default")
2116
+ self.gguf_writer.add_token_list(tokens)
2117
+ self.gguf_writer.add_token_scores(scores)
2118
+ self.gguf_writer.add_token_types(toktypes)
2119
+ self.gguf_writer.add_add_space_prefix(add_prefix)
2120
+
2121
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
2122
+ old_eos = special_vocab.special_token_ids["eos"]
2123
+ if "chat" in os.path.basename(self.dir_model.absolute()):
2124
+ # For the chat model, we replace the eos with '<|im_end|>'.
2125
+ # TODO: this is a hack, should be fixed
2126
+ # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
2127
+ special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
2128
+ logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
2129
+ in chat mode so that the conversation can end normally.")
2130
+
2131
+ special_vocab.add_to_gguf(self.gguf_writer)
2132
+
2133
+ def _try_get_sft_eos(self, tokenizer):
2134
+ unused_145_list = tokenizer.Encode('[UNUSED_TOKEN_145]')
2135
+ im_end_list = tokenizer.Encode('<|im_end|>')
2136
+ eos_token = None
2137
+ assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
2138
+ if len(unused_145_list) == 1:
2139
+ eos_token = unused_145_list[0]
2140
+ if len(im_end_list) == 1:
2141
+ eos_token = im_end_list[0]
2142
+ assert eos_token
2143
+ return eos_token
2144
+
2145
+ def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
2146
+ if n_head_kv is not None and n_head != n_head_kv:
2147
+ n_head = n_head_kv
2148
+ return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
2149
+ .swapaxes(1, 2)
2150
+ .reshape(weights.shape))
2151
+
2152
+ def set_gguf_parameters(self):
2153
+ self.gguf_writer.add_name("InternLM2")
2154
+ self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
2155
+ self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
2156
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
2157
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
2158
+ self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
2159
+ self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
2160
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
2161
+ self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
2162
+ self.gguf_writer.add_file_type(self.ftype)
2163
+
2164
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
2165
+ num_heads = self.hparams["num_attention_heads"]
2166
+ num_kv_heads = self.hparams["num_key_value_heads"]
2167
+ hidden_size = self.hparams["hidden_size"]
2168
+ q_per_kv = num_heads // num_kv_heads
2169
+ head_dim = hidden_size // num_heads
2170
+ num_groups = num_heads // q_per_kv
2171
+
2172
+ qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
2173
+
2174
+ if re.match(qkv_pattern, name):
2175
+ bid = re.findall(qkv_pattern, name)[0]
2176
+ qkv = data_torch
2177
+ # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
2178
+ qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
2179
+ q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
2180
+ # The model weights of q and k equire additional reshape.
2181
+ # q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
2182
+ q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
2183
+ # k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
2184
+ k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
2185
+ # v = rearrange(v, " o g n i -> o (g n i)").T
2186
+ v = v.reshape((v.shape[0], -1)).T
2187
+ return [
2188
+ (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
2189
+ (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
2190
+ (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
2191
+ ]
2192
+ else:
2193
+ return [(self.map_tensor_name(name), data_torch)]
2194
+
2195
+
2196
+ @Model.register("BertModel", "CamembertModel")
2197
+ class BertModel(Model):
2198
+ model_arch = gguf.MODEL_ARCH.BERT
2199
+
2200
+ def __init__(self, *args, **kwargs):
2201
+ super().__init__(*args, **kwargs)
2202
+ self.vocab_size = None
2203
+
2204
+ def set_gguf_parameters(self):
2205
+ super().set_gguf_parameters()
2206
+ self.gguf_writer.add_causal_attention(False)
2207
+
2208
+ # get pooling path
2209
+ pooling_path = None
2210
+ module_path = self.dir_model / "modules.json"
2211
+ if module_path.is_file():
2212
+ with open(module_path, encoding="utf-8") as f:
2213
+ modules = json.load(f)
2214
+ for mod in modules:
2215
+ if mod["type"] == "sentence_transformers.models.Pooling":
2216
+ pooling_path = mod["path"]
2217
+ break
2218
+
2219
+ # get pooling type
2220
+ if pooling_path is not None:
2221
+ with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
2222
+ pooling = json.load(f)
2223
+ if pooling["pooling_mode_mean_tokens"]:
2224
+ pooling_type = gguf.PoolingType.MEAN
2225
+ elif pooling["pooling_mode_cls_token"]:
2226
+ pooling_type = gguf.PoolingType.CLS
2227
+ else:
2228
+ raise NotImplementedError("Only MEAN and CLS pooling types supported")
2229
+ self.gguf_writer.add_pooling_type(pooling_type)
2230
+
2231
+ def set_vocab(self):
2232
+ tokens, toktypes, tokpre = self.get_vocab_base()
2233
+ self.vocab_size = len(tokens)
2234
+
2235
+ # we need this to validate the size of the token_type embeddings
2236
+ # though currently we are passing all zeros to the token_type embeddings
2237
+ self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
2238
+
2239
+ # convert to phantom space vocab
2240
+ def phantom(tok):
2241
+ if tok.startswith("[") and tok.endswith("]"):
2242
+ return tok
2243
+ if tok.startswith("##"):
2244
+ return tok[2:]
2245
+ return "\u2581" + tok
2246
+ tokens = list(map(phantom, tokens))
2247
+
2248
+ # add vocab to gguf
2249
+ self.gguf_writer.add_tokenizer_model("bert")
2250
+ self.gguf_writer.add_tokenizer_pre(tokpre)
2251
+ self.gguf_writer.add_token_list(tokens)
2252
+ self.gguf_writer.add_token_types(toktypes)
2253
+
2254
+ # handle special tokens
2255
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
2256
+ special_vocab.add_to_gguf(self.gguf_writer)
2257
+
2258
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
2259
+ del bid # unused
2260
+
2261
+ # we are only using BERT for embeddings so we don't need the pooling layer
2262
+ if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
2263
+ return [] # we don't need these
2264
+
2265
+ return [(self.map_tensor_name(name), data_torch)]
2266
+
2267
+
2268
+ @Model.register("NomicBertModel")
2269
+ class NomicBertModel(BertModel):
2270
+ model_arch = gguf.MODEL_ARCH.NOMIC_BERT
2271
+
2272
+ def __init__(self, *args, **kwargs):
2273
+ super().__init__(*args, **kwargs)
2274
+
2275
+ # the HF config claims n_ctx=8192, but it uses RoPE scaling
2276
+ self.hparams["n_ctx"] = 2048
2277
+
2278
+ # SwigLU activation
2279
+ assert self.hparams["activation_function"] == "swiglu"
2280
+ # this doesn't do anything in the HF version
2281
+ assert self.hparams["causal"] is False
2282
+ # no bias tensors
2283
+ assert self.hparams["qkv_proj_bias"] is False
2284
+ assert self.hparams["mlp_fc1_bias"] is False
2285
+ assert self.hparams["mlp_fc2_bias"] is False
2286
+ # norm at end of layer
2287
+ assert self.hparams["prenorm"] is False
2288
+ # standard RoPE
2289
+ assert self.hparams["rotary_emb_fraction"] == 1.0
2290
+ assert self.hparams["rotary_emb_interleaved"] is False
2291
+ assert self.hparams["rotary_emb_scale_base"] is None
2292
+
2293
+ def set_gguf_parameters(self):
2294
+ super().set_gguf_parameters()
2295
+ self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
2296
+
2297
+
2298
+ @Model.register("GemmaForCausalLM")
2299
+ class GemmaModel(Model):
2300
+ model_arch = gguf.MODEL_ARCH.GEMMA
2301
+
2302
+ def set_vocab(self):
2303
+ self._set_vocab_sentencepiece()
2304
+
2305
+ # TODO: these special tokens should be exported only for the CodeGemma family
2306
+ special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
2307
+ special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
2308
+ special_vocab._set_special_token("prefix", 67)
2309
+ special_vocab._set_special_token("suffix", 69)
2310
+ special_vocab._set_special_token("middle", 68)
2311
+ special_vocab._set_special_token("fsep", 70)
2312
+ special_vocab._set_special_token("eot", 107)
2313
+ special_vocab.add_to_gguf(self.gguf_writer)
2314
+
2315
+ def set_gguf_parameters(self):
2316
+ hparams = self.hparams
2317
+ block_count = hparams["num_hidden_layers"]
2318
+
2319
+ self.gguf_writer.add_name(self.dir_model.name)
2320
+ self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
2321
+ self.gguf_writer.add_embedding_length(hparams["hidden_size"])
2322
+ self.gguf_writer.add_block_count(block_count)
2323
+ self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
2324
+ self.gguf_writer.add_head_count(hparams["num_attention_heads"])
2325
+ self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
2326
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
2327
+ self.gguf_writer.add_key_length(hparams["head_dim"])
2328
+ self.gguf_writer.add_value_length(hparams["head_dim"])
2329
+ self.gguf_writer.add_file_type(self.ftype)
2330
+
2331
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
2332
+ del bid # unused
2333
+
2334
+ # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
2335
+ # To prevent errors, skip loading lm_head.weight.
2336
+ if name == "lm_head.weight":
2337
+ logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
2338
+ return []
2339
+
2340
+ # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
2341
+ if name.endswith("norm.weight"):
2342
+ data_torch = data_torch + 1
2343
+
2344
+ return [(self.map_tensor_name(name), data_torch)]
2345
+
2346
+
2347
+ @Model.register("Starcoder2ForCausalLM")
2348
+ class StarCoder2Model(Model):
2349
+ model_arch = gguf.MODEL_ARCH.STARCODER2
2350
+
2351
+
2352
+ @Model.register("MambaForCausalLM", "MambaLMHeadModel")
2353
+ class MambaModel(Model):
2354
+ model_arch = gguf.MODEL_ARCH.MAMBA
2355
+
2356
+ def set_vocab(self):
2357
+ vocab_size = self.hparams["vocab_size"]
2358
+ # Round vocab size to next multiple of 8
2359
+ pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
2360
+ # pad using ceiling division
2361
+ # ref: https://stackoverflow.com/a/17511341/22827863
2362
+ vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
2363
+ self.hparams["vocab_size"] = vocab_size
2364
+
2365
+ if (self.dir_model / "tokenizer.json").is_file():
2366
+ self._set_vocab_gpt2()
2367
+ elif (self.dir_model / "tokenizer.model").is_file():
2368
+ self._set_vocab_sentencepiece()
2369
+ else:
2370
+ # Use the GPT-NeoX tokenizer when no tokenizer files are present
2371
+ tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
2372
+ logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
2373
+ neox_reader = gguf.GGUFReader(tokenizer_path, "r")
2374
+
2375
+ field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
2376
+ self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2")
2377
+
2378
+ field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
2379
+ self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt")
2380
+
2381
+ field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
2382
+ assert field
2383
+ self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
2384
+
2385
+ field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
2386
+ assert field
2387
+ self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
2388
+
2389
+ field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
2390
+ assert field
2391
+ self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
2392
+
2393
+ field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
2394
+ self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1)
2395
+
2396
+ field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
2397
+ self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0)
2398
+
2399
+ field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
2400
+ self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0)
2401
+
2402
+ field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)
2403
+ self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0)
2404
+
2405
+ def set_gguf_parameters(self):
2406
+ d_model = self.find_hparam(["hidden_size", "d_model"])
2407
+ d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
2408
+ d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
2409
+ d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
2410
+ # ceiling division
2411
+ # ref: https://stackoverflow.com/a/17511341/22827863
2412
+ # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
2413
+ dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
2414
+ rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
2415
+
2416
+ # Fail early for models which don't have a block expansion factor of 2
2417
+ assert d_inner == 2 * d_model
2418
+
2419
+ self.gguf_writer.add_name(self.dir_model.name)
2420
+ self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
2421
+ self.gguf_writer.add_embedding_length(d_model)
2422
+ self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
2423
+ self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
2424
+ self.gguf_writer.add_block_count(self.hparams["n_layer"])
2425
+ self.gguf_writer.add_ssm_conv_kernel(d_conv)
2426
+ self.gguf_writer.add_ssm_inner_size(d_inner)
2427
+ self.gguf_writer.add_ssm_state_size(d_state)
2428
+ self.gguf_writer.add_ssm_time_step_rank(dt_rank)
2429
+ self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
2430
+ self.gguf_writer.add_file_type(self.ftype)
2431
+
2432
+ _tok_embd = None
2433
+
2434
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
2435
+ del bid # unused
2436
+
2437
+ output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
2438
+ tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
2439
+
2440
+ new_name = self.map_tensor_name(name)
2441
+
2442
+ if name.endswith(".A_log"):
2443
+ logger.debug("A_log --> A ==> " + new_name)
2444
+ data_torch = -torch.exp(data_torch)
2445
+
2446
+ # assuming token_embd.weight is seen before output.weight
2447
+ if self._tok_embd is not None and new_name == output_name:
2448
+ if torch.equal(self._tok_embd, data_torch):
2449
+ logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
2450
+ return []
2451
+ elif new_name == tok_embd_name:
2452
+ self._tok_embd = data_torch
2453
+
2454
+ return [(new_name, data_torch)]
2455
+
2456
+ def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
2457
+ del n_dims # unused
2458
+
2459
+ return bid is not None and new_name in (
2460
+ self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
2461
+ gguf.MODEL_TENSOR.SSM_CONV1D,
2462
+ gguf.MODEL_TENSOR.SSM_X,
2463
+ gguf.MODEL_TENSOR.SSM_DT,
2464
+ gguf.MODEL_TENSOR.SSM_A,
2465
+ gguf.MODEL_TENSOR.SSM_D,
2466
+ ]
2467
+ )
2468
+
2469
+
2470
+ @Model.register("CohereForCausalLM")
2471
+ class CommandR2Model(Model):
2472
+ model_arch = gguf.MODEL_ARCH.COMMAND_R
2473
+
2474
+ def __init__(self, *args, **kwargs):
2475
+ super().__init__(*args, **kwargs)
2476
+
2477
+ # max_position_embeddings = 8192 in config.json but model was actually
2478
+ # trained on 128k context length
2479
+ # aya-23 models don't have model_max_length specified
2480
+ self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
2481
+
2482
+ def set_gguf_parameters(self):
2483
+ super().set_gguf_parameters()
2484
+ self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
2485
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
2486
+
2487
+
2488
+ @Model.register("OlmoForCausalLM")
2489
+ @Model.register("OLMoForCausalLM")
2490
+ class OlmoModel(Model):
2491
+ model_arch = gguf.MODEL_ARCH.OLMO
2492
+
2493
+ def set_gguf_parameters(self):
2494
+ super().set_gguf_parameters()
2495
+ self.gguf_writer.add_layer_norm_eps(1e-5)
2496
+ clip_qkv = self.hparams.get("clip_qkv")
2497
+ if clip_qkv is not None:
2498
+ self.gguf_writer.add_clamp_kqv(clip_qkv)
2499
+
2500
+ # Same as super class, but permuting q_proj, k_proj
2501
+ # Copied from: LlamaModel
2502
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
2503
+ del bid # unused
2504
+
2505
+ n_head = self.hparams["num_attention_heads"]
2506
+ n_kv_head = self.hparams.get("num_key_value_heads")
2507
+
2508
+ if name.endswith("q_proj.weight"):
2509
+ data_torch = LlamaModel.permute(data_torch, n_head, n_head)
2510
+ if name.endswith("k_proj.weight"):
2511
+ data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
2512
+
2513
+ return [(self.map_tensor_name(name), data_torch)]
2514
+
2515
+
2516
+ @Model.register("JinaBertModel", "JinaBertForMaskedLM")
2517
+ class JinaBertV2Model(BertModel):
2518
+ model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
2519
+
2520
+ def __init__(self, *args, **kwargs):
2521
+ super().__init__(*args, **kwargs)
2522
+ self.intermediate_size = self.hparams["intermediate_size"]
2523
+
2524
+ def get_tensors(self):
2525
+ for name, data in super().get_tensors():
2526
+ if 'gated_layers' in name:
2527
+ d1 = data[:self.intermediate_size, :]
2528
+ name1 = name.replace('gated_layers', 'gated_layers_w')
2529
+ d2 = data[self.intermediate_size:, :]
2530
+ name2 = name.replace('gated_layers', 'gated_layers_v')
2531
+ yield name1, d1
2532
+ yield name2, d2
2533
+ continue
2534
+
2535
+ yield name, data
2536
+
2537
+ def set_vocab(self, *args, **kwargs):
2538
+ tokenizer_class = 'BertTokenizer'
2539
+ with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
2540
+ tokenizer_class = json.load(f)['tokenizer_class']
2541
+
2542
+ if tokenizer_class == 'BertTokenizer':
2543
+ super().set_vocab()
2544
+ elif tokenizer_class == 'RobertaTokenizer':
2545
+ self._set_vocab_gpt2()
2546
+ self.gguf_writer.add_token_type_count(2)
2547
+ else:
2548
+ raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
2549
+ self.gguf_writer.add_add_bos_token(True)
2550
+ self.gguf_writer.add_add_eos_token(True)
2551
+
2552
+
2553
+ @Model.register("ArcticForCausalLM")
2554
+ class ArcticModel(Model):
2555
+ model_arch = gguf.MODEL_ARCH.ARCTIC
2556
+
2557
+ def set_vocab(self):
2558
+ # The reason for using a custom implementation here is that the
2559
+ # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
2560
+ # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
2561
+ from sentencepiece import SentencePieceProcessor
2562
+
2563
+ tokenizer_path = self.dir_model / 'tokenizer.model'
2564
+
2565
+ if not tokenizer_path.is_file():
2566
+ logger.error(f'Error: Missing {tokenizer_path}')
2567
+ sys.exit(1)
2568
+
2569
+ # Read the whole vocabulary from the tokenizer.model file
2570
+ tokenizer = SentencePieceProcessor()
2571
+ tokenizer.LoadFromFile(str(tokenizer_path))
2572
+
2573
+ vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
2574
+
2575
+ tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
2576
+ scores: list[float] = [-10000.0] * vocab_size
2577
+ toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
2578
+
2579
+ for token_id in range(tokenizer.vocab_size()):
2580
+
2581
+ piece = tokenizer.IdToPiece(token_id)
2582
+ text = piece.encode("utf-8")
2583
+ score = tokenizer.GetScore(token_id)
2584
+
2585
+ toktype = SentencePieceTokenTypes.NORMAL
2586
+ if tokenizer.IsUnknown(token_id):
2587
+ toktype = SentencePieceTokenTypes.UNKNOWN
2588
+ elif tokenizer.IsControl(token_id):
2589
+ toktype = SentencePieceTokenTypes.CONTROL
2590
+ elif tokenizer.IsUnused(token_id):
2591
+ toktype = SentencePieceTokenTypes.UNUSED
2592
+ elif tokenizer.IsByte(token_id):
2593
+ toktype = SentencePieceTokenTypes.BYTE
2594
+
2595
+ tokens[token_id] = text
2596
+ scores[token_id] = score
2597
+ toktypes[token_id] = toktype
2598
+
2599
+ # Use the added_tokens_decoder field from tokeniser_config.json as the source
2600
+ # of information about added/redefined tokens and modify them accordingly.
2601
+ tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
2602
+ if tokenizer_config_file.is_file():
2603
+ with open(tokenizer_config_file, "r", encoding="utf-8") as f:
2604
+ tokenizer_config_json = json.load(f)
2605
+
2606
+ if "added_tokens_decoder" in tokenizer_config_json:
2607
+ added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
2608
+ for token_id, token_json in added_tokens_decoder.items():
2609
+ token_id = int(token_id)
2610
+ if (token_id >= vocab_size):
2611
+ logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
2612
+ continue
2613
+
2614
+ token_content = token_json["content"]
2615
+ token_type = SentencePieceTokenTypes.USER_DEFINED
2616
+ token_score = -10000.0
2617
+
2618
+ # Map unk_token to UNKNOWN, other special tokens to CONTROL
2619
+ # Set the score to 0.0 as in the original tokenizer.model
2620
+ if ("special" in token_json) and token_json["special"]:
2621
+ if token_content == tokenizer_config_json["unk_token"]:
2622
+ token_type = SentencePieceTokenTypes.UNKNOWN
2623
+ else:
2624
+ token_type = SentencePieceTokenTypes.CONTROL
2625
+ token_score = 0.0
2626
+
2627
+ logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
2628
+ tokens[token_id] = token_content.encode("utf-8")
2629
+ toktypes[token_id] = token_type
2630
+ scores[token_id] = token_score
2631
+
2632
+ self.gguf_writer.add_tokenizer_model("llama")
2633
+ self.gguf_writer.add_tokenizer_pre("default")
2634
+ self.gguf_writer.add_token_list(tokens)
2635
+ self.gguf_writer.add_token_scores(scores)
2636
+ self.gguf_writer.add_token_types(toktypes)
2637
+
2638
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
2639
+ special_vocab.add_to_gguf(self.gguf_writer)
2640
+
2641
+ def set_gguf_parameters(self):
2642
+ super().set_gguf_parameters()
2643
+ hparams = self.hparams
2644
+ self.gguf_writer.add_vocab_size(hparams["vocab_size"])
2645
+ self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
2646
+
2647
+ _experts: list[dict[str, Tensor]] | None = None
2648
+
2649
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
2650
+ n_head = self.hparams["num_attention_heads"]
2651
+ n_kv_head = self.hparams.get("num_key_value_heads")
2652
+
2653
+ if name.endswith("q_proj.weight"):
2654
+ data_torch = LlamaModel.permute(data_torch, n_head, n_head)
2655
+ if name.endswith("k_proj.weight"):
2656
+ data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
2657
+
2658
+ # process the experts separately
2659
+ if name.find("block_sparse_moe.experts") != -1:
2660
+ n_experts = self.hparams["num_local_experts"]
2661
+
2662
+ assert bid is not None
2663
+
2664
+ if self._experts is None:
2665
+ self._experts = [{} for _ in range(self.block_count)]
2666
+
2667
+ self._experts[bid][name] = data_torch
2668
+
2669
+ if len(self._experts[bid]) >= n_experts * 3:
2670
+ tensors: list[tuple[str, Tensor]] = []
2671
+
2672
+ # merge the experts into a single 3d tensor
2673
+ for wid in ["w1", "w2", "w3"]:
2674
+ datas: list[Tensor] = []
2675
+
2676
+ for xid in range(n_experts):
2677
+ ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
2678
+ datas.append(self._experts[bid][ename])
2679
+ del self._experts[bid][ename]
2680
+
2681
+ data_torch = torch.stack(datas, dim=0)
2682
+
2683
+ merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
2684
+
2685
+ new_name = self.map_tensor_name(merged_name)
2686
+
2687
+ tensors.append((new_name, data_torch))
2688
+ return tensors
2689
+ else:
2690
+ return []
2691
+
2692
+ return [(self.map_tensor_name(name), data_torch)]
2693
+
2694
+ def write_tensors(self):
2695
+ super().write_tensors()
2696
+
2697
+ if self._experts is not None:
2698
+ # flatten `list[dict[str, Tensor]]` into `list[str]`
2699
+ experts = [k for d in self._experts for k in d.keys()]
2700
+ if len(experts) > 0:
2701
+ raise ValueError(f"Unprocessed experts: {experts}")
2702
+
2703
+
2704
+ ###### CONVERSION LOGIC ######
2705
+
2706
+
2707
+ # tree of lazy tensors
2708
+ class LazyTorchTensor(gguf.LazyBase):
2709
+ _tensor_type = torch.Tensor
2710
+ # to keep the type-checker happy
2711
+ dtype: torch.dtype
2712
+ shape: torch.Size
2713
+
2714
+ # only used when converting a torch.Tensor to a np.ndarray
2715
+ _dtype_map: dict[torch.dtype, type] = {
2716
+ torch.float16: np.float16,
2717
+ torch.float32: np.float32,
2718
+ }
2719
+
2720
+ def numpy(self) -> gguf.LazyNumpyTensor:
2721
+ dtype = self._dtype_map[self.dtype]
2722
+ return gguf.LazyNumpyTensor(
2723
+ meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
2724
+ lazy=self._lazy,
2725
+ args=(self,),
2726
+ func=(lambda s: s[0].numpy())
2727
+ )
2728
+
2729
+ @classmethod
2730
+ def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
2731
+ return torch.empty(size=shape, dtype=dtype, device="meta")
2732
+
2733
+ @classmethod
2734
+ def __torch_function__(cls, func, types, args=(), kwargs=None):
2735
+ del types # unused
2736
+
2737
+ if kwargs is None:
2738
+ kwargs = {}
2739
+
2740
+ if func is torch.Tensor.numpy:
2741
+ return args[0].numpy()
2742
+
2743
+ return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
2744
+
2745
+
2746
+ def parse_args() -> argparse.Namespace:
2747
+ parser = argparse.ArgumentParser(
2748
+ description="Convert a huggingface model to a GGML compatible file")
2749
+ parser.add_argument(
2750
+ "--vocab-only", action="store_true",
2751
+ help="extract only the vocab",
2752
+ )
2753
+ parser.add_argument(
2754
+ "--awq-path", type=Path, default=None,
2755
+ help="Path to scale awq cache file",
2756
+ )
2757
+ parser.add_argument(
2758
+ "--outfile", type=Path,
2759
+ help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
2760
+ )
2761
+ parser.add_argument(
2762
+ "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
2763
+ help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
2764
+ )
2765
+ parser.add_argument(
2766
+ "--bigendian", action="store_true",
2767
+ help="model is executed on big endian machine",
2768
+ )
2769
+ parser.add_argument(
2770
+ "model", type=Path,
2771
+ help="directory containing model file",
2772
+ )
2773
+ parser.add_argument(
2774
+ "--use-temp-file", action="store_true",
2775
+ help="use the tempfile library while processing (helpful when running out of memory, process killed)",
2776
+ )
2777
+ parser.add_argument(
2778
+ "--no-lazy", action="store_true",
2779
+ help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
2780
+ )
2781
+ parser.add_argument(
2782
+ "--model-name", type=str, default=None,
2783
+ help="name of the model",
2784
+ )
2785
+ parser.add_argument(
2786
+ "--verbose", action="store_true",
2787
+ help="increase output verbosity",
2788
+ )
2789
+
2790
+ return parser.parse_args()
2791
+
2792
+
2793
+ def main() -> None:
2794
+ args = parse_args()
2795
+
2796
+ logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
2797
+
2798
+ dir_model = args.model
2799
+
2800
+ if args.awq_path:
2801
+ sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
2802
+ from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
2803
+ tmp_model_path = args.model / "weighted_model"
2804
+ dir_model = tmp_model_path
2805
+ if tmp_model_path.is_dir():
2806
+ logger.info(f"{tmp_model_path} exists as a weighted model.")
2807
+ else:
2808
+ tmp_model_path.mkdir(parents=True, exist_ok=True)
2809
+ logger.info("Saving new weighted model ...")
2810
+ add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
2811
+ logger.info(f"Saved weighted model at {tmp_model_path}.")
2812
+
2813
+ if not dir_model.is_dir():
2814
+ logger.error(f'Error: {args.model} is not a directory')
2815
+ sys.exit(1)
2816
+
2817
+ ftype_map: dict[str, gguf.LlamaFileType] = {
2818
+ "f32": gguf.LlamaFileType.ALL_F32,
2819
+ "f16": gguf.LlamaFileType.MOSTLY_F16,
2820
+ "bf16": gguf.LlamaFileType.MOSTLY_BF16,
2821
+ "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
2822
+ "auto": gguf.LlamaFileType.GUESSED,
2823
+ }
2824
+
2825
+ if args.outfile is not None:
2826
+ fname_out = args.outfile
2827
+ else:
2828
+ # output in the same directory as the model by default
2829
+ fname_out = dir_model / 'ggml-model-{ftype}.gguf'
2830
+
2831
+ logger.info(f"Loading model: {dir_model.name}")
2832
+
2833
+ hparams = Model.load_hparams(dir_model)
2834
+
2835
+ with torch.inference_mode():
2836
+ model_class = Model.from_model_architecture(hparams["architectures"][0])
2837
+ model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy)
2838
+
2839
+ logger.info("Set model parameters")
2840
+ model_instance.set_gguf_parameters()
2841
+
2842
+ logger.info("Set model tokenizer")
2843
+ model_instance.set_vocab()
2844
+
2845
+ model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
2846
+
2847
+ if args.vocab_only:
2848
+ logger.info(f"Exporting model vocab to '{model_instance.fname_out}'")
2849
+ model_instance.write_vocab()
2850
+ else:
2851
+ logger.info(f"Exporting model to '{model_instance.fname_out}'")
2852
+ model_instance.write()
2853
+
2854
+ logger.info(f"Model successfully exported to '{model_instance.fname_out}'")
2855
+
2856
+
2857
+ if __name__ == '__main__':
2858
+ main()