bidviz 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,60 @@
1
+ """KPI Cards transformer."""
2
+
3
+ from typing import Any, Dict
4
+
5
+ import pandas as pd
6
+
7
+ from bidviz.core.base import BaseChartTransformer
8
+ from bidviz.exceptions import TransformationError
9
+ from bidviz.utils import format_label, safe_get_value
10
+
11
+
12
+ class KPICardsTransformer(BaseChartTransformer):
13
+ """Transform single-row DataFrame into KPI cards."""
14
+
15
+ def transform(self, df: pd.DataFrame) -> Dict[str, Any]:
16
+ """
17
+ Transform a single-row DataFrame into KPI cards for dashboard metrics.
18
+
19
+ Args:
20
+ df: Single-row DataFrame containing metrics
21
+
22
+ Returns:
23
+ Dict with chart_type='kpi_cards' and list of card data
24
+
25
+ Raises:
26
+ TransformationError: If DataFrame has more than one row
27
+ """
28
+ try:
29
+ if len(df) == 0:
30
+ return {"chart_type": "kpi_cards", "data": []}
31
+
32
+ if len(df) > 1:
33
+ raise TransformationError(
34
+ "KPI cards expect a single-row DataFrame",
35
+ chart_type="kpi_cards",
36
+ df_shape=df.shape,
37
+ )
38
+
39
+ row = df.iloc[0]
40
+ cards = []
41
+
42
+ for column in df.columns:
43
+ cards.append(
44
+ {
45
+ "key": column,
46
+ "label": format_label(column),
47
+ "value": safe_get_value(row[column]),
48
+ }
49
+ )
50
+
51
+ return {"chart_type": "kpi_cards", "data": cards}
52
+
53
+ except Exception as e:
54
+ if isinstance(e, TransformationError):
55
+ raise
56
+ raise TransformationError(
57
+ f"Failed to transform KPI cards: {str(e)}",
58
+ chart_type="kpi_cards",
59
+ df_shape=df.shape,
60
+ )
@@ -0,0 +1,126 @@
1
+ """Line chart transformers."""
2
+
3
+ from typing import Any, Dict, List, Optional
4
+
5
+ import pandas as pd
6
+
7
+ from bidviz.core.base import BaseChartTransformer
8
+ from bidviz.exceptions import TransformationError
9
+ from bidviz.utils import format_label, safe_get_value, validate_columns
10
+
11
+
12
+ class LineChartTransformer(BaseChartTransformer):
13
+ """Transform DataFrame into line chart data."""
14
+
15
+ def transform(
16
+ self,
17
+ df: pd.DataFrame,
18
+ x_column: str,
19
+ y_column: str,
20
+ series_name: Optional[str] = None,
21
+ ) -> Dict[str, Any]:
22
+ """
23
+ Transform DataFrame into line chart data for time series or trends.
24
+
25
+ Args:
26
+ df: DataFrame containing the data
27
+ x_column: Column name for x-axis
28
+ y_column: Column name for y-axis
29
+ series_name: Optional custom name for the data series
30
+
31
+ Returns:
32
+ Dict with chart_type='line_chart', data points, and labels
33
+ """
34
+ try:
35
+ validate_columns(df, [x_column, y_column])
36
+
37
+ data = []
38
+ for _, row in df.iterrows():
39
+ data.append(
40
+ {
41
+ "x": str(safe_get_value(row[x_column])),
42
+ "y": safe_get_value(row[y_column]),
43
+ }
44
+ )
45
+
46
+ return {
47
+ "chart_type": "line_chart",
48
+ "data": data,
49
+ "series_name": series_name or format_label(y_column),
50
+ "x_label": format_label(x_column),
51
+ "y_label": format_label(y_column),
52
+ }
53
+
54
+ except ValueError as e:
55
+ raise TransformationError(str(e), chart_type="line_chart", df_shape=df.shape)
56
+ except Exception as e:
57
+ raise TransformationError(
58
+ f"Failed to transform line chart: {str(e)}",
59
+ chart_type="line_chart",
60
+ df_shape=df.shape,
61
+ )
62
+
63
+
64
+ class MultiLineChartTransformer(BaseChartTransformer):
65
+ """Transform DataFrame into multi-line chart data."""
66
+
67
+ def transform(
68
+ self,
69
+ df: pd.DataFrame,
70
+ x_column: str,
71
+ y_columns: List[str],
72
+ series_names: Optional[List[str]] = None,
73
+ ) -> Dict[str, Any]:
74
+ """
75
+ Transform DataFrame into multi-line chart for comparing multiple series.
76
+
77
+ Args:
78
+ df: DataFrame containing the data
79
+ x_column: Column name for x-axis
80
+ y_columns: List of column names for y-axis
81
+ series_names: Optional custom names for each series
82
+
83
+ Returns:
84
+ Dict with chart_type='multi_line_chart' and series data
85
+ """
86
+ try:
87
+ validate_columns(df, [x_column] + y_columns)
88
+
89
+ if series_names and len(series_names) != len(y_columns):
90
+ raise TransformationError(
91
+ "Number of series_names must match number of y_columns",
92
+ chart_type="multi_line_chart",
93
+ )
94
+
95
+ series = []
96
+ for idx, y_col in enumerate(y_columns):
97
+ data = []
98
+ for _, row in df.iterrows():
99
+ data.append(
100
+ {
101
+ "x": str(safe_get_value(row[x_column])),
102
+ "y": safe_get_value(row[y_col]),
103
+ }
104
+ )
105
+
106
+ series.append(
107
+ {
108
+ "name": series_names[idx] if series_names else format_label(y_col),
109
+ "data": data,
110
+ }
111
+ )
112
+
113
+ return {
114
+ "chart_type": "multi_line_chart",
115
+ "series": series,
116
+ "x_label": format_label(x_column),
117
+ }
118
+
119
+ except ValueError as e:
120
+ raise TransformationError(str(e), chart_type="multi_line_chart", df_shape=df.shape)
121
+ except Exception as e:
122
+ raise TransformationError(
123
+ f"Failed to transform multi-line chart: {str(e)}",
124
+ chart_type="multi_line_chart",
125
+ df_shape=df.shape,
126
+ )
@@ -0,0 +1,108 @@
1
+ """Funnel and stacked bar chart transformers."""
2
+
3
+ from typing import Any, Dict, List, Optional
4
+
5
+ import pandas as pd
6
+
7
+ from bidviz.core.base import BaseChartTransformer
8
+ from bidviz.exceptions import TransformationError
9
+ from bidviz.utils import format_label, safe_get_value, validate_columns
10
+
11
+
12
+ class FunnelChartTransformer(BaseChartTransformer):
13
+ """Transform DataFrame into funnel chart data."""
14
+
15
+ def transform(self, df: pd.DataFrame, stage_column: str, value_column: str) -> Dict[str, Any]:
16
+ """
17
+ Transform DataFrame into funnel chart data for conversion pipelines.
18
+
19
+ Args:
20
+ df: DataFrame containing the data
21
+ stage_column: Column name for funnel stages
22
+ value_column: Column name for stage values
23
+
24
+ Returns:
25
+ Dict with chart_type='funnel_chart' and data points
26
+ """
27
+ try:
28
+ validate_columns(df, [stage_column, value_column])
29
+
30
+ data = []
31
+ for _, row in df.iterrows():
32
+ data.append(
33
+ {
34
+ "stage": str(safe_get_value(row[stage_column])),
35
+ "value": safe_get_value(row[value_column]),
36
+ }
37
+ )
38
+
39
+ return {"chart_type": "funnel_chart", "data": data}
40
+
41
+ except ValueError as e:
42
+ raise TransformationError(str(e), chart_type="funnel_chart", df_shape=df.shape)
43
+ except Exception as e:
44
+ raise TransformationError(
45
+ f"Failed to transform funnel chart: {str(e)}",
46
+ chart_type="funnel_chart",
47
+ df_shape=df.shape,
48
+ )
49
+
50
+
51
+ class StackedBarChartTransformer(BaseChartTransformer):
52
+ """Transform DataFrame into stacked bar chart data."""
53
+
54
+ def transform(
55
+ self,
56
+ df: pd.DataFrame,
57
+ x_column: str,
58
+ y_columns: List[str],
59
+ category_names: Optional[List[str]] = None,
60
+ ) -> Dict[str, Any]:
61
+ """
62
+ Transform DataFrame into stacked bar chart for composed comparisons.
63
+
64
+ Args:
65
+ df: DataFrame containing the data
66
+ x_column: Column name for x-axis
67
+ y_columns: List of column names for stacked values
68
+ category_names: Optional custom names for each stack
69
+
70
+ Returns:
71
+ Dict with chart_type='stacked_bar_chart' and data
72
+ """
73
+ try:
74
+ validate_columns(df, [x_column] + y_columns)
75
+
76
+ if category_names and len(category_names) != len(y_columns):
77
+ raise TransformationError(
78
+ "Number of category_names must match number of y_columns",
79
+ chart_type="stacked_bar_chart",
80
+ )
81
+
82
+ data = []
83
+ for _, row in df.iterrows():
84
+ point = {"x": str(safe_get_value(row[x_column]))}
85
+ for y_col in y_columns:
86
+ point[y_col] = safe_get_value(row[y_col])
87
+ data.append(point)
88
+
89
+ categories = [
90
+ category_names[i] if category_names else format_label(y_col)
91
+ for i, y_col in enumerate(y_columns)
92
+ ]
93
+
94
+ return {
95
+ "chart_type": "stacked_bar_chart",
96
+ "data": data,
97
+ "categories": categories,
98
+ "x_label": format_label(x_column),
99
+ }
100
+
101
+ except ValueError as e:
102
+ raise TransformationError(str(e), chart_type="stacked_bar_chart", df_shape=df.shape)
103
+ except Exception as e:
104
+ raise TransformationError(
105
+ f"Failed to transform stacked bar chart: {str(e)}",
106
+ chart_type="stacked_bar_chart",
107
+ df_shape=df.shape,
108
+ )
@@ -0,0 +1,48 @@
1
+ """Pie and donut chart transformers."""
2
+
3
+ from typing import Any, Dict
4
+
5
+ import pandas as pd
6
+
7
+ from bidviz.core.base import BaseChartTransformer
8
+ from bidviz.exceptions import TransformationError
9
+ from bidviz.utils import safe_get_value, validate_columns
10
+
11
+
12
+ class PieChartTransformer(BaseChartTransformer):
13
+ """Transform DataFrame into pie chart data."""
14
+
15
+ def transform(self, df: pd.DataFrame, label_column: str, value_column: str) -> Dict[str, Any]:
16
+ """
17
+ Transform DataFrame into pie chart data for part-to-whole relationships.
18
+
19
+ Args:
20
+ df: DataFrame containing the data
21
+ label_column: Column name for slice labels
22
+ value_column: Column name for slice values
23
+
24
+ Returns:
25
+ Dict with chart_type='pie_chart' and data points
26
+ """
27
+ try:
28
+ validate_columns(df, [label_column, value_column])
29
+
30
+ data = []
31
+ for _, row in df.iterrows():
32
+ data.append(
33
+ {
34
+ "label": str(safe_get_value(row[label_column])),
35
+ "value": safe_get_value(row[value_column]),
36
+ }
37
+ )
38
+
39
+ return {"chart_type": "pie_chart", "data": data}
40
+
41
+ except ValueError as e:
42
+ raise TransformationError(str(e), chart_type="pie_chart", df_shape=df.shape)
43
+ except Exception as e:
44
+ raise TransformationError(
45
+ f"Failed to transform pie chart: {str(e)}",
46
+ chart_type="pie_chart",
47
+ df_shape=df.shape,
48
+ )
@@ -0,0 +1,48 @@
1
+ """Data table transformer."""
2
+
3
+ from typing import Any, Dict
4
+
5
+ import pandas as pd
6
+
7
+ from bidviz.core.base import BaseChartTransformer
8
+ from bidviz.exceptions import TransformationError
9
+ from bidviz.utils import format_label, paginate_dataframe, safe_get_value
10
+
11
+
12
+ class DataTableTransformer(BaseChartTransformer):
13
+ """Transform DataFrame into paginated data table."""
14
+
15
+ def transform(self, df: pd.DataFrame, page: int = 1, page_size: int = 50) -> Dict[str, Any]:
16
+ """
17
+ Transform DataFrame into paginated data table structure.
18
+
19
+ Args:
20
+ df: DataFrame containing the data
21
+ page: Page number (1-indexed)
22
+ page_size: Number of rows per page
23
+
24
+ Returns:
25
+ Dict with chart_type='data_table', columns, rows, and pagination
26
+ """
27
+ try:
28
+ paginated_df, metadata = paginate_dataframe(df, page, page_size)
29
+
30
+ columns = []
31
+ for col in df.columns:
32
+ columns.append({"key": col, "label": format_label(col)})
33
+
34
+ rows = []
35
+ for _, row in paginated_df.iterrows():
36
+ row_data = {}
37
+ for col in df.columns:
38
+ row_data[col] = safe_get_value(row[col])
39
+ rows.append(row_data)
40
+
41
+ return {"chart_type": "data_table", "columns": columns, "rows": rows, **metadata}
42
+
43
+ except Exception as e:
44
+ raise TransformationError(
45
+ f"Failed to transform data table: {str(e)}",
46
+ chart_type="data_table",
47
+ df_shape=df.shape,
48
+ )
bidviz/utils.py ADDED
@@ -0,0 +1,187 @@
1
+ """
2
+ Utility functions for data transformation and formatting.
3
+ """
4
+
5
+ from typing import Any, List, Optional
6
+
7
+ import numpy as np
8
+ import pandas as pd
9
+
10
+
11
+ def safe_get_value(value: Any) -> Any:
12
+ """
13
+ Safely extract a value from pandas objects, converting NaN to None.
14
+
15
+ Args:
16
+ value: Value to extract (can be pandas scalar, numpy type, or Python type)
17
+
18
+ Returns:
19
+ Python-native value with NaN converted to None
20
+
21
+ Examples:
22
+ >>> safe_get_value(pd.NA)
23
+ None
24
+ >>> safe_get_value(np.nan)
25
+ None
26
+ >>> safe_get_value(42)
27
+ 42
28
+ """
29
+ if pd.isna(value):
30
+ return None
31
+ if isinstance(value, (np.integer, np.floating)):
32
+ return float(value) if isinstance(value, np.floating) else int(value)
33
+ if isinstance(value, np.bool_):
34
+ return bool(value)
35
+ if isinstance(value, (pd.Timestamp, np.datetime64)):
36
+ return str(value)
37
+ return value
38
+
39
+
40
+ def format_label(column_name: str) -> str:
41
+ """
42
+ Convert snake_case column name to Title Case label.
43
+
44
+ Args:
45
+ column_name: Column name in snake_case format
46
+
47
+ Returns:
48
+ Formatted label in Title Case
49
+
50
+ Examples:
51
+ >>> format_label('total_gmv')
52
+ 'Total Gmv'
53
+ >>> format_label('customer_id')
54
+ 'Customer Id'
55
+ >>> format_label('avg_days_to_ship')
56
+ 'Avg Days To Ship'
57
+ """
58
+ return column_name.replace("_", " ").title()
59
+
60
+
61
+ def validate_columns(df: pd.DataFrame, required_columns: List[str]) -> None:
62
+ """
63
+ Validate that required columns exist in the DataFrame.
64
+
65
+ Args:
66
+ df: DataFrame to validate
67
+ required_columns: List of required column names
68
+
69
+ Raises:
70
+ ValueError: If any required columns are missing
71
+
72
+ Examples:
73
+ >>> df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
74
+ >>> validate_columns(df, ['a', 'b']) # No error
75
+ >>> validate_columns(df, ['a', 'c']) # Raises ValueError
76
+ Traceback (most recent call last):
77
+ ...
78
+ ValueError: Missing required columns: c
79
+ """
80
+ missing = [col for col in required_columns if col not in df.columns]
81
+ if missing:
82
+ raise ValueError(f"Missing required columns: {', '.join(missing)}")
83
+
84
+
85
+ def safe_convert_to_numeric(series: pd.Series) -> pd.Series:
86
+ """
87
+ Safely convert a pandas Series to numeric type.
88
+
89
+ Args:
90
+ series: Series to convert
91
+
92
+ Returns:
93
+ Numeric series with errors coerced to NaN
94
+
95
+ Examples:
96
+ >>> s = pd.Series(['1', '2', 'abc'])
97
+ >>> safe_convert_to_numeric(s)
98
+ 0 1.0
99
+ 1 2.0
100
+ 2 NaN
101
+ dtype: float64
102
+ """
103
+ return pd.to_numeric(series, errors="coerce")
104
+
105
+
106
+ def clean_dataframe(df: pd.DataFrame) -> pd.DataFrame:
107
+ """
108
+ Clean DataFrame column names by converting to lowercase and replacing spaces.
109
+
110
+ Args:
111
+ df: DataFrame to clean
112
+
113
+ Returns:
114
+ DataFrame with cleaned column names
115
+
116
+ Examples:
117
+ >>> df = pd.DataFrame({'Total GMV': [100], 'Customer Name': ['John']})
118
+ >>> clean_df = clean_dataframe(df)
119
+ >>> list(clean_df.columns)
120
+ ['total_gmv', 'customer_name']
121
+ """
122
+ df = df.copy()
123
+ df.columns = df.columns.str.lower().str.replace(" ", "_")
124
+ return df
125
+
126
+
127
+ def get_numeric_columns(df: pd.DataFrame) -> List[str]:
128
+ """
129
+ Get list of numeric column names from DataFrame.
130
+
131
+ Args:
132
+ df: DataFrame to analyze
133
+
134
+ Returns:
135
+ List of numeric column names
136
+
137
+ Examples:
138
+ >>> df = pd.DataFrame({'a': [1, 2], 'b': ['x', 'y'], 'c': [1.5, 2.5]})
139
+ >>> get_numeric_columns(df)
140
+ ['a', 'c']
141
+ """
142
+ return df.select_dtypes(include=[np.number]).columns.tolist()
143
+
144
+
145
+ def paginate_dataframe(
146
+ df: pd.DataFrame, page: int = 1, page_size: int = 50
147
+ ) -> tuple[pd.DataFrame, dict]:
148
+ """
149
+ Paginate a DataFrame and return pagination metadata.
150
+
151
+ Args:
152
+ df: DataFrame to paginate
153
+ page: Page number (1-indexed)
154
+ page_size: Number of rows per page
155
+
156
+ Returns:
157
+ Tuple of (paginated DataFrame, pagination metadata dict)
158
+
159
+ Examples:
160
+ >>> df = pd.DataFrame({'a': range(100)})
161
+ >>> page_df, meta = paginate_dataframe(df, page=2, page_size=25)
162
+ >>> len(page_df)
163
+ 25
164
+ >>> meta['total']
165
+ 100
166
+ >>> meta['page']
167
+ 2
168
+ """
169
+ total = len(df)
170
+ total_pages = (total + page_size - 1) // page_size # Ceiling division
171
+
172
+ # Ensure page is within valid range
173
+ page = max(1, min(page, total_pages if total_pages > 0 else 1))
174
+
175
+ start_idx = (page - 1) * page_size
176
+ end_idx = start_idx + page_size
177
+
178
+ paginated_df = df.iloc[start_idx:end_idx]
179
+
180
+ metadata = {
181
+ "total": total,
182
+ "page": page,
183
+ "page_size": page_size,
184
+ "total_pages": total_pages,
185
+ }
186
+
187
+ return paginated_df, metadata