beswarm 0.3.1__py3-none-any.whl → 0.3.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- beswarm/agents/planact.py +1 -2
- beswarm/aient/aient/architext/architext/core.py +44 -2
- beswarm/aient/aient/architext/test/test.py +144 -0
- beswarm/aient/aient/core/request.py +4 -2
- beswarm/aient/aient/core/response.py +3 -2
- beswarm/aient/aient/core/utils.py +44 -1
- beswarm/aient/aient/models/audio.py +2 -2
- beswarm/aient/aient/models/base.py +2 -2
- beswarm/aient/aient/models/chatgpt.py +41 -26
- beswarm/aient/aient/plugins/image.py +2 -2
- beswarm/aient/aient/utils/prompt.py +0 -4
- beswarm/aient/aient/utils/scripts.py +0 -8
- beswarm/aient/test/test_whisper.py +1 -1
- {beswarm-0.3.1.dist-info → beswarm-0.3.2.dist-info}/METADATA +1 -1
- {beswarm-0.3.1.dist-info → beswarm-0.3.2.dist-info}/RECORD +18 -20
- beswarm/aient/test/test_search.py +0 -18
- beswarm/aient/test/test_yjh.py +0 -21
- {beswarm-0.3.1.dist-info → beswarm-0.3.2.dist-info}/WHEEL +0 -0
- {beswarm-0.3.1.dist-info → beswarm-0.3.2.dist-info}/entry_points.txt +0 -0
- {beswarm-0.3.1.dist-info → beswarm-0.3.2.dist-info}/top_level.txt +0 -0
beswarm/agents/planact.py
CHANGED
@@ -204,8 +204,7 @@ class WorkerAgent(BaseAgent):
|
|
204
204
|
self.broker.publish(message, self.error_topic)
|
205
205
|
else:
|
206
206
|
self.broker.publish({"status": "new_message", "result": "\n✅ 工作智能体:\n" + response}, self.status_topic)
|
207
|
-
|
208
|
-
self.agent.conversation["default"].pop(-1)
|
207
|
+
self.agent.conversation["default"][-1].rstrip(Texts)
|
209
208
|
self.broker.publish({
|
210
209
|
"conversation": self.agent.conversation["default"]
|
211
210
|
}, self.publish_topic)
|
@@ -104,9 +104,10 @@ class ContextProvider(ABC):
|
|
104
104
|
return NotImplemented
|
105
105
|
|
106
106
|
class Texts(ContextProvider):
|
107
|
-
def __init__(self, text: Optional[Union[str, Callable[[], str]]] = None, name: Optional[str] = None, visible: bool = True):
|
107
|
+
def __init__(self, text: Optional[Union[str, Callable[[], str]]] = None, name: Optional[str] = None, visible: bool = True, newline: bool = False):
|
108
108
|
if text is None and name is None:
|
109
109
|
raise ValueError("Either 'text' or 'name' must be provided.")
|
110
|
+
self.newline = newline
|
110
111
|
|
111
112
|
# Ensure that non-callable inputs are treated as strings
|
112
113
|
if not callable(text):
|
@@ -315,6 +316,8 @@ class Message(ABC):
|
|
315
316
|
self.role = role
|
316
317
|
processed_items = []
|
317
318
|
for item in initial_items:
|
319
|
+
if item is None:
|
320
|
+
continue
|
318
321
|
if isinstance(item, str):
|
319
322
|
# Check if the string contains placeholders from f-string rendering
|
320
323
|
import re
|
@@ -371,8 +374,11 @@ class Message(ABC):
|
|
371
374
|
for item in self._items:
|
372
375
|
block = item.get_content_block()
|
373
376
|
if block and block.content is not None:
|
377
|
+
# Check if it's a Texts provider with newline=True
|
378
|
+
# and it's not the very first item with content.
|
379
|
+
if isinstance(item, Texts) and hasattr(item, 'newline') and item.newline and final_parts:
|
380
|
+
final_parts.append("\n\n")
|
374
381
|
final_parts.append(block.content)
|
375
|
-
|
376
382
|
return "".join(final_parts)
|
377
383
|
|
378
384
|
def pop(self, name: str) -> Optional[ContextProvider]:
|
@@ -466,11 +472,47 @@ class Message(ABC):
|
|
466
472
|
# and our custom __eq__ on ContextProvider handles the comparison logic.
|
467
473
|
return item in self._items
|
468
474
|
|
475
|
+
def has(self, provider_type: type) -> bool:
|
476
|
+
"""Checks if the message contains a provider of a specific type."""
|
477
|
+
if not isinstance(provider_type, type) or not issubclass(provider_type, ContextProvider):
|
478
|
+
raise TypeError("provider_type must be a subclass of ContextProvider")
|
479
|
+
return any(isinstance(p, provider_type) for p in self._items)
|
480
|
+
|
481
|
+
def lstrip(self, provider_type: type):
|
482
|
+
"""
|
483
|
+
从消息的左侧(开头)移除所有指定类型的 provider。
|
484
|
+
移除操作会一直持续,直到遇到一个不同类型的 provider 为止。
|
485
|
+
"""
|
486
|
+
while self._items and type(self._items[0]) is provider_type:
|
487
|
+
self.pop(self._items[0].name)
|
488
|
+
|
489
|
+
def rstrip(self, provider_type: type):
|
490
|
+
"""
|
491
|
+
从消息的右侧(末尾)移除所有指定类型的 provider。
|
492
|
+
移除操作会一直持续,直到遇到一个不同类型的 provider 为止。
|
493
|
+
"""
|
494
|
+
while self._items and type(self._items[-1]) is provider_type:
|
495
|
+
self.pop(self._items[-1].name)
|
496
|
+
|
497
|
+
def strip(self, provider_type: type):
|
498
|
+
"""
|
499
|
+
从消息的两侧移除所有指定类型的 provider。
|
500
|
+
"""
|
501
|
+
self.lstrip(provider_type)
|
502
|
+
self.rstrip(provider_type)
|
503
|
+
|
469
504
|
def __bool__(self) -> bool:
|
470
505
|
return bool(self._items)
|
471
506
|
def get(self, key: str, default: Any = None) -> Any:
|
472
507
|
"""提供类似字典的 .get() 方法来访问属性。"""
|
473
508
|
return getattr(self, key, default)
|
509
|
+
|
510
|
+
async def render_latest(self) -> Optional[Dict[str, Any]]:
|
511
|
+
"""Refreshes all providers in the message and returns the rendered dictionary."""
|
512
|
+
tasks = [provider.refresh() for provider in self._items]
|
513
|
+
await asyncio.gather(*tasks)
|
514
|
+
return self.to_dict()
|
515
|
+
|
474
516
|
def to_dict(self) -> Optional[Dict[str, Any]]:
|
475
517
|
is_multimodal = any(isinstance(p, Images) for p in self._items)
|
476
518
|
|
@@ -1434,6 +1434,150 @@ Files: {Files(visible=True, name="files")}
|
|
1434
1434
|
self.assertTrue(message in messages_collection)
|
1435
1435
|
self.assertFalse(UserMessage("not in collection") in messages_collection)
|
1436
1436
|
|
1437
|
+
async def test_zz_none_input_ignored(self):
|
1438
|
+
"""测试在Message初始化时,None值是否被自动忽略"""
|
1439
|
+
# 1. 在初始化列表中包含 None
|
1440
|
+
message = UserMessage("Hello", None, "World")
|
1441
|
+
self.assertEqual(len(message.provider()), 2)
|
1442
|
+
self.assertIsInstance(message.provider()[0], Texts)
|
1443
|
+
self.assertIsInstance(message.provider()[1], Texts)
|
1444
|
+
rendered = await message.render_latest()
|
1445
|
+
self.assertEqual(rendered['content'], "HelloWorld")
|
1446
|
+
|
1447
|
+
# 2. 测试只有 None
|
1448
|
+
message_none = SystemMessage(None)
|
1449
|
+
self.assertEqual(len(message_none.provider()), 0)
|
1450
|
+
self.assertFalse(message_none)
|
1451
|
+
|
1452
|
+
# 3. 测试混合 provider 和 None
|
1453
|
+
message_mixed = SystemMessage(Texts("hi"), None)
|
1454
|
+
self.assertEqual(len(message_mixed.provider()), 1)
|
1455
|
+
self.assertIsInstance(message_mixed.provider()[0], Texts)
|
1456
|
+
|
1457
|
+
async def test_zaa_has_method_for_provider_type_check(self):
|
1458
|
+
"""测试 Message.has(type) 方法是否能正确检查 provider 类型"""
|
1459
|
+
# 1. 创建一个混合类型的消息
|
1460
|
+
message_with_text = UserMessage(Texts("hi"), Images("url"))
|
1461
|
+
|
1462
|
+
# 2. 测试存在的情况
|
1463
|
+
# This line is expected to fail with an AttributeError before implementation
|
1464
|
+
self.assertTrue(message_with_text.has(Texts))
|
1465
|
+
self.assertTrue(message_with_text.has(Images))
|
1466
|
+
|
1467
|
+
# 3. 测试不存在的情况
|
1468
|
+
self.assertFalse(message_with_text.has(Tools))
|
1469
|
+
|
1470
|
+
# 4. 测试空消息
|
1471
|
+
empty_message = UserMessage()
|
1472
|
+
self.assertFalse(empty_message.has(Texts))
|
1473
|
+
|
1474
|
+
# 5. 测试传入无效类型
|
1475
|
+
with self.assertRaises(TypeError):
|
1476
|
+
message_with_text.has(str)
|
1477
|
+
|
1478
|
+
with self.assertRaises(TypeError):
|
1479
|
+
# Also test with a class that is not a subclass of ContextProvider
|
1480
|
+
class NotAProvider: pass
|
1481
|
+
message_with_text.has(NotAProvider)
|
1482
|
+
|
1483
|
+
async def test_zab_lstrip_and_rstrip(self):
|
1484
|
+
"""测试 lstrip, rstrip, 和 strip 方法是否能正确移除两侧的特定类型的 provider"""
|
1485
|
+
# 1. 定义一个用于测试的子类
|
1486
|
+
class SpecialTexts(Texts):
|
1487
|
+
pass
|
1488
|
+
url = "_IMG"
|
1489
|
+
|
1490
|
+
# 2. 创建一个复杂的测试消息
|
1491
|
+
message = UserMessage(
|
1492
|
+
Texts("leading1"),
|
1493
|
+
Texts("leading2"),
|
1494
|
+
Images(url, name="image1"),
|
1495
|
+
Texts("middle"),
|
1496
|
+
SpecialTexts("special_middle"),
|
1497
|
+
Images(url, name="image2"),
|
1498
|
+
Texts("trailing1"),
|
1499
|
+
SpecialTexts("special_trailing"), # rstrip(Texts) should stop here
|
1500
|
+
Texts("trailing2")
|
1501
|
+
)
|
1502
|
+
|
1503
|
+
# 3. 测试 rstrip(Texts)
|
1504
|
+
r_stripped_message = UserMessage(*message.provider()) # 创建副本
|
1505
|
+
r_stripped_message.rstrip(Texts)
|
1506
|
+
# 应移除 "trailing2",但在 "special_trailing" 处停止
|
1507
|
+
self.assertEqual(len(r_stripped_message), 8)
|
1508
|
+
self.assertIs(type(r_stripped_message[-1]), SpecialTexts)
|
1509
|
+
|
1510
|
+
# 4. 测试 lstrip(Texts)
|
1511
|
+
l_stripped_message = UserMessage(*message.provider()) # 创建副本
|
1512
|
+
l_stripped_message.lstrip(Texts)
|
1513
|
+
# 应移除 "leading1" 和 "leading2",但在 "image1" 处停止
|
1514
|
+
self.assertEqual(len(l_stripped_message), 7)
|
1515
|
+
self.assertIs(type(l_stripped_message[0]), Images)
|
1516
|
+
|
1517
|
+
# 5. 测试 strip(Texts)
|
1518
|
+
stripped_message = UserMessage(*message.provider()) # 创建副本
|
1519
|
+
stripped_message.strip(Texts)
|
1520
|
+
# 应同时移除 "leading1", "leading2", 和 "trailing2"
|
1521
|
+
self.assertEqual(len(stripped_message), 6)
|
1522
|
+
self.assertIs(type(stripped_message[0]), Images)
|
1523
|
+
self.assertIs(type(stripped_message[-1]), SpecialTexts)
|
1524
|
+
|
1525
|
+
# 6. 测试在一个只包含一种类型的消息上进行剥离
|
1526
|
+
only_texts = UserMessage(Texts("a"), Texts("b"))
|
1527
|
+
only_texts.strip(Texts)
|
1528
|
+
self.assertEqual(len(only_texts), 0)
|
1529
|
+
|
1530
|
+
# 7. 测试剥离一个不包含目标类型的消息
|
1531
|
+
only_images = UserMessage(Images("url1"), Images("url2"))
|
1532
|
+
only_images.strip(Texts)
|
1533
|
+
self.assertEqual(len(only_images), 2) # 不应改变
|
1534
|
+
|
1535
|
+
# 8. 测试在一个空消息上进行剥离
|
1536
|
+
empty_message = UserMessage()
|
1537
|
+
empty_message.strip(Texts)
|
1538
|
+
self.assertEqual(len(empty_message), 0)
|
1539
|
+
|
1540
|
+
# 9. 测试剥离子类
|
1541
|
+
message_ending_with_special = UserMessage(Texts("a"), SpecialTexts("b"))
|
1542
|
+
message_ending_with_special.rstrip(SpecialTexts)
|
1543
|
+
self.assertEqual(len(message_ending_with_special), 1)
|
1544
|
+
self.assertIsInstance(message_ending_with_special[0], Texts)
|
1545
|
+
|
1546
|
+
async def test_zac_texts_join_parameter(self):
|
1547
|
+
"""测试 Texts provider 是否支持通过参数控制拼接方式"""
|
1548
|
+
# 1. 测试默认行为:直接拼接
|
1549
|
+
message_default = UserMessage(
|
1550
|
+
Texts("First line."),
|
1551
|
+
Texts("Second line.")
|
1552
|
+
)
|
1553
|
+
rendered_default = await message_default.render_latest()
|
1554
|
+
self.assertEqual(rendered_default['content'], "First line.Second line.")
|
1555
|
+
|
1556
|
+
# 2. 测试新功能:使用 \n\n 拼接
|
1557
|
+
# 假设新参数为 `newline=True`
|
1558
|
+
message_newline = UserMessage(
|
1559
|
+
Texts("First paragraph."),
|
1560
|
+
Texts("Second paragraph.", newline=True)
|
1561
|
+
)
|
1562
|
+
rendered_newline = await message_newline.render_latest()
|
1563
|
+
self.assertEqual(rendered_newline['content'], "First paragraph.\n\nSecond paragraph.")
|
1564
|
+
|
1565
|
+
# 3. 测试多个 provider 的情况
|
1566
|
+
message_multiple = UserMessage(
|
1567
|
+
Texts("First."),
|
1568
|
+
Texts("Second.", newline=True),
|
1569
|
+
Texts("Third.", newline=True)
|
1570
|
+
)
|
1571
|
+
rendered_multiple = await message_multiple.render_latest()
|
1572
|
+
self.assertEqual(rendered_multiple['content'], "First.\n\nSecond.\n\nThird.")
|
1573
|
+
|
1574
|
+
# 4. 测试只有一个 provider 的情况
|
1575
|
+
message_single = UserMessage(
|
1576
|
+
Texts("Only one.", newline=True)
|
1577
|
+
)
|
1578
|
+
rendered_single = await message_single.render_latest()
|
1579
|
+
self.assertEqual(rendered_single['content'], "Only one.")
|
1580
|
+
|
1437
1581
|
|
1438
1582
|
# ==============================================================================
|
1439
1583
|
# 6. 演示
|
@@ -1,5 +1,6 @@
|
|
1
1
|
import re
|
2
2
|
import json
|
3
|
+
import copy
|
3
4
|
import httpx
|
4
5
|
import base64
|
5
6
|
import asyncio
|
@@ -57,7 +58,7 @@ async def get_gemini_payload(request, engine, provider, api_key=None):
|
|
57
58
|
try:
|
58
59
|
request_messages = [Message(role="user", content=request.prompt)]
|
59
60
|
except:
|
60
|
-
request_messages = request.messages
|
61
|
+
request_messages = copy.deepcopy(request.messages)
|
61
62
|
for msg in request_messages:
|
62
63
|
if msg.role == "assistant":
|
63
64
|
msg.role = "model"
|
@@ -399,7 +400,8 @@ async def get_vertex_gemini_payload(request, engine, provider, api_key=None):
|
|
399
400
|
systemInstruction = None
|
400
401
|
system_prompt = ""
|
401
402
|
function_arguments = None
|
402
|
-
|
403
|
+
request_messages = copy.deepcopy(request.messages)
|
404
|
+
for msg in request_messages:
|
403
405
|
if msg.role == "assistant":
|
404
406
|
msg.role = "model"
|
405
407
|
tool_calls = None
|
@@ -8,7 +8,7 @@ from datetime import datetime
|
|
8
8
|
|
9
9
|
from .log_config import logger
|
10
10
|
|
11
|
-
from .utils import safe_get, generate_sse_response, generate_no_stream_response, end_of_line, parse_json_safely
|
11
|
+
from .utils import safe_get, generate_sse_response, generate_no_stream_response, end_of_line, parse_json_safely, upload_image_to_0x0st
|
12
12
|
|
13
13
|
async def check_response(response, error_log):
|
14
14
|
if response and not (200 <= response.status_code < 300):
|
@@ -277,7 +277,8 @@ async def fetch_gpt_response_stream(client, url, headers, payload, timeout):
|
|
277
277
|
openrouter_reasoning = safe_get(line, "choices", 0, "delta", "reasoning", default="")
|
278
278
|
openrouter_base64_image = safe_get(line, "choices", 0, "delta", "images", 0, "image_url", "url", default="")
|
279
279
|
if openrouter_base64_image:
|
280
|
-
|
280
|
+
image_url = await upload_image_to_0x0st(openrouter_base64_image)
|
281
|
+
sse_string = await generate_sse_response(timestamp, payload["model"], content=f"\n\n")
|
281
282
|
yield sse_string
|
282
283
|
continue
|
283
284
|
azure_databricks_claude_summary_content = safe_get(line, "choices", 0, "delta", "content", 0, "summary", 0, "text", default="")
|
@@ -228,7 +228,12 @@ async def update_initial_model(provider):
|
|
228
228
|
def safe_get(data, *keys, default=None):
|
229
229
|
for key in keys:
|
230
230
|
try:
|
231
|
-
|
231
|
+
if isinstance(data, (dict, list)):
|
232
|
+
data = data[key]
|
233
|
+
elif isinstance(key, str) and hasattr(data, key):
|
234
|
+
data = getattr(data, key)
|
235
|
+
else:
|
236
|
+
data = data.get(key)
|
232
237
|
except (KeyError, IndexError, AttributeError, TypeError):
|
233
238
|
return default
|
234
239
|
if not data:
|
@@ -797,6 +802,44 @@ def parse_json_safely(json_str):
|
|
797
802
|
# 两种方法都失败,抛出异常
|
798
803
|
raise Exception(f"无法解析JSON字符串: {e}, {json_str}")
|
799
804
|
|
805
|
+
async def upload_image_to_0x0st(base64_image: str):
|
806
|
+
"""
|
807
|
+
Uploads a base64 encoded image to 0x0.st.
|
808
|
+
|
809
|
+
Args:
|
810
|
+
base64_image: The base64 encoded image string.
|
811
|
+
|
812
|
+
Returns:
|
813
|
+
The URL of the uploaded image.
|
814
|
+
"""
|
815
|
+
if "," in base64_image:
|
816
|
+
base64_image_split = base64_image.split(",")[1]
|
817
|
+
|
818
|
+
image_data = base64.b64decode(base64_image_split)
|
819
|
+
|
820
|
+
img_format = get_image_format(image_data)
|
821
|
+
if not img_format:
|
822
|
+
img_format = 'png' # 如果无法检测到格式,则默认为 png
|
823
|
+
|
824
|
+
content_type = f'image/{img_format}'
|
825
|
+
file_name = f'image.{img_format}'
|
826
|
+
|
827
|
+
files = {'file': (file_name, image_data, content_type)}
|
828
|
+
data = {'expires': '24', 'secret': '123456'}
|
829
|
+
|
830
|
+
async with httpx.AsyncClient() as client:
|
831
|
+
try:
|
832
|
+
response = await client.post("https://0x0.st", files=files, data=data)
|
833
|
+
response.raise_for_status()
|
834
|
+
return response.text.strip()
|
835
|
+
except httpx.RequestError as e:
|
836
|
+
logger.error(f"请求 0x0.st 时出错: {e}")
|
837
|
+
# raise HTTPException(status_code=500, detail="上传图片到 0x0.st 失败")
|
838
|
+
except httpx.HTTPStatusError as e:
|
839
|
+
logger.error(f"上传图片到 0x0.st 时发生 HTTP 错误: {e.response.status_code}")
|
840
|
+
# raise HTTPException(status_code=e.response.status_code, detail=f"上传图片到 0x0.st 失败: {e.response.text}")
|
841
|
+
return base64_image
|
842
|
+
|
800
843
|
if __name__ == "__main__":
|
801
844
|
provider = {
|
802
845
|
"base_url": "https://gateway.ai.cloudflare.com/v1/%7Baccount_id%7D/%7Bgateway_id%7D/google-vertex-ai",
|
@@ -4,13 +4,13 @@ import json
|
|
4
4
|
from .base import BaseLLM
|
5
5
|
|
6
6
|
API = os.environ.get('API', None)
|
7
|
-
|
7
|
+
BASE_URL = os.environ.get('BASE_URL', None)
|
8
8
|
|
9
9
|
class whisper(BaseLLM):
|
10
10
|
def __init__(
|
11
11
|
self,
|
12
12
|
api_key: str,
|
13
|
-
api_url: str = (os.environ.get("
|
13
|
+
api_url: str = (os.environ.get("BASE_URL") or "https://api.openai.com/v1/audio/transcriptions"),
|
14
14
|
timeout: float = 20,
|
15
15
|
):
|
16
16
|
super().__init__(api_key, api_url=api_url, timeout=timeout)
|
@@ -11,8 +11,8 @@ class BaseLLM:
|
|
11
11
|
def __init__(
|
12
12
|
self,
|
13
13
|
api_key: str = None,
|
14
|
-
engine: str = os.environ.get("
|
15
|
-
api_url: str = (os.environ.get("
|
14
|
+
engine: str = os.environ.get("MODEL") or "gpt-3.5-turbo",
|
15
|
+
api_url: str = (os.environ.get("BASE_URL", None) or "https://api.openai.com/v1/chat/completions"),
|
16
16
|
system_prompt: str = prompt.chatgpt_system_prompt,
|
17
17
|
proxy: str = None,
|
18
18
|
timeout: float = 600,
|
@@ -6,6 +6,7 @@ import httpx
|
|
6
6
|
import asyncio
|
7
7
|
import logging
|
8
8
|
import inspect
|
9
|
+
from collections import defaultdict
|
9
10
|
from typing import Union, Optional, Callable
|
10
11
|
|
11
12
|
from .base import BaseLLM
|
@@ -16,6 +17,21 @@ from ..core.request import prepare_request_payload
|
|
16
17
|
from ..core.response import fetch_response_stream, fetch_response
|
17
18
|
from ..architext.architext import Messages, SystemMessage, UserMessage, AssistantMessage, ToolCalls, ToolResults, Texts, RoleMessage, Images, Files
|
18
19
|
|
20
|
+
class ToolResult(Texts):
|
21
|
+
def __init__(self, tool_name: str, tool_args: str, tool_response: str, name: Optional[str] = None, visible: bool = True, newline: bool = True):
|
22
|
+
super().__init__(text=tool_response, name=name or f"tool_result_{tool_name}", visible=visible, newline=newline)
|
23
|
+
self.tool_name = tool_name
|
24
|
+
self.tool_args = tool_args
|
25
|
+
|
26
|
+
async def render(self) -> Optional[str]:
|
27
|
+
tool_response = await super().render()
|
28
|
+
if tool_response is None:
|
29
|
+
tool_response = ""
|
30
|
+
if self.tool_args:
|
31
|
+
return f"[{self.tool_name}({self.tool_args}) Result]:\n\n{tool_response}"
|
32
|
+
else:
|
33
|
+
return f"[{self.tool_name} Result]:\n\n{tool_response}"
|
34
|
+
|
19
35
|
class APITimeoutError(Exception):
|
20
36
|
"""Custom exception for API timeout errors."""
|
21
37
|
pass
|
@@ -73,8 +89,8 @@ class chatgpt(BaseLLM):
|
|
73
89
|
def __init__(
|
74
90
|
self,
|
75
91
|
api_key: str = None,
|
76
|
-
engine: str = os.environ.get("
|
77
|
-
api_url: str = (os.environ.get("
|
92
|
+
engine: str = os.environ.get("MODEL") or "gpt-4o",
|
93
|
+
api_url: str = (os.environ.get("BASE_URL") or "https://api.openai.com/v1/chat/completions"),
|
78
94
|
system_prompt: str = "You are ChatGPT, a large language model trained by OpenAI. Respond conversationally",
|
79
95
|
proxy: str = None,
|
80
96
|
timeout: float = 600,
|
@@ -97,9 +113,7 @@ class chatgpt(BaseLLM):
|
|
97
113
|
Initialize Chatbot with API key (from https://platform.openai.com/account/api-keys)
|
98
114
|
"""
|
99
115
|
super().__init__(api_key, engine, api_url, system_prompt, proxy, timeout, max_tokens, temperature, top_p, presence_penalty, frequency_penalty, reply_count, truncate_limit, use_plugins=use_plugins, print_log=print_log)
|
100
|
-
self.conversation: dict[str, Messages] =
|
101
|
-
"default": Messages(SystemMessage(self.system_prompt)),
|
102
|
-
}
|
116
|
+
self.conversation: dict[str, Messages] = defaultdict(lambda: Messages(SystemMessage(self.system_prompt)))
|
103
117
|
if cache_messages:
|
104
118
|
self.conversation["default"] = cache_messages
|
105
119
|
self.function_calls_counter = {}
|
@@ -173,8 +187,8 @@ class chatgpt(BaseLLM):
|
|
173
187
|
self.conversation[convo_id].append(ToolCalls(tool_calls))
|
174
188
|
self.conversation[convo_id].append(ToolResults(tool_call_id=function_call_id, content=message))
|
175
189
|
else:
|
176
|
-
last_user_message = self.conversation[convo_id][-1]
|
177
|
-
if last_user_message != message:
|
190
|
+
last_user_message = self.conversation[convo_id][-1]
|
191
|
+
if last_user_message != UserMessage(message):
|
178
192
|
image_message_list = UserMessage()
|
179
193
|
if isinstance(function_arguments, str):
|
180
194
|
functions_list = json.loads(function_arguments)
|
@@ -565,7 +579,7 @@ class chatgpt(BaseLLM):
|
|
565
579
|
tool_calls = function_parameter
|
566
580
|
|
567
581
|
# 处理所有工具调用
|
568
|
-
all_responses =
|
582
|
+
all_responses = UserMessage()
|
569
583
|
|
570
584
|
for tool_info in tool_calls:
|
571
585
|
tool_name = tool_info['function_name']
|
@@ -585,27 +599,28 @@ class chatgpt(BaseLLM):
|
|
585
599
|
tool_response = chunk.replace("function_response:", "")
|
586
600
|
else:
|
587
601
|
yield chunk
|
588
|
-
|
589
|
-
|
590
|
-
|
591
|
-
|
592
|
-
|
593
|
-
|
594
|
-
|
595
|
-
|
596
|
-
|
597
|
-
|
598
|
-
|
599
|
-
|
600
|
-
|
601
|
-
|
602
|
-
|
603
|
-
|
602
|
+
final_tool_response = tool_response
|
603
|
+
if "<tool_error>" not in tool_response:
|
604
|
+
if tool_name == "read_file":
|
605
|
+
self.conversation[convo_id].provider("files").update(tool_info['parameter']["file_path"], tool_response)
|
606
|
+
final_tool_response = "Read file successfully! The file content has been updated in the tag <latest_file_content>."
|
607
|
+
elif tool_name == "get_knowledge_graph_tree":
|
608
|
+
self.conversation[convo_id].provider("knowledge_graph").visible = True
|
609
|
+
final_tool_response = "Get knowledge graph tree successfully! The knowledge graph tree has been updated in the tag <knowledge_graph_tree>."
|
610
|
+
elif tool_name == "write_to_file":
|
611
|
+
tool_args = None
|
612
|
+
elif tool_name == "read_image":
|
613
|
+
tool_info["base64_image"] = tool_response
|
614
|
+
final_tool_response = "Read image successfully!"
|
615
|
+
elif tool_response.startswith("data:image/") and ";base64," in tool_response:
|
616
|
+
tool_info["base64_image"] = tool_response
|
617
|
+
final_tool_response = "Read image successfully!"
|
618
|
+
all_responses.append(ToolResult(tool_name, tool_args, final_tool_response))
|
604
619
|
|
605
620
|
# 合并所有工具响应
|
606
|
-
function_response =
|
621
|
+
function_response = all_responses
|
607
622
|
if missing_required_params:
|
608
|
-
function_response
|
623
|
+
function_response.append(Texts("\n\n".join(missing_required_params)))
|
609
624
|
|
610
625
|
# 使用第一个工具的名称和参数作为历史记录
|
611
626
|
function_call_name = tool_calls[0]['function_name']
|
@@ -5,13 +5,13 @@ from ..models.base import BaseLLM
|
|
5
5
|
from .registry import register_tool
|
6
6
|
|
7
7
|
API = os.environ.get('API', None)
|
8
|
-
|
8
|
+
BASE_URL = os.environ.get('BASE_URL', None)
|
9
9
|
|
10
10
|
class dalle3(BaseLLM):
|
11
11
|
def __init__(
|
12
12
|
self,
|
13
13
|
api_key: str,
|
14
|
-
api_url: str = (os.environ.get("
|
14
|
+
api_url: str = (os.environ.get("BASE_URL") or "https://api.openai.com/v1/images/generations"),
|
15
15
|
timeout: float = 20,
|
16
16
|
):
|
17
17
|
super().__init__(api_key, api_url=api_url, timeout=timeout)
|
@@ -90,10 +90,6 @@ chatgpt_system_prompt = (
|
|
90
90
|
"You are ChatGPT, a large language model trained by OpenAI. Use simple characters to represent mathematical symbols. Do not use LaTeX commands. Respond conversationally"
|
91
91
|
)
|
92
92
|
|
93
|
-
claude_system_prompt = (
|
94
|
-
"You are Claude, a large language model trained by Anthropic. Use simple characters to represent mathematical symbols. Do not use LaTeX commands. Respond conversationally in {}."
|
95
|
-
)
|
96
|
-
|
97
93
|
search_system_prompt = (
|
98
94
|
"You are ChatGPT, a large language model trained by OpenAI. Respond conversationally in {}."
|
99
95
|
"You can break down the task into multiple steps and search the web to answer my questions one by one."
|
@@ -134,14 +134,6 @@ def is_surrounded_by_chinese(text, index):
|
|
134
134
|
def replace_char(string, index, new_char):
|
135
135
|
return string[:index] + new_char + string[index+1:]
|
136
136
|
|
137
|
-
def claude_replace(text):
|
138
|
-
Punctuation_mapping = {",": ",", ":": ":", "!": "!", "?": "?", ";": ";"}
|
139
|
-
key_list = list(Punctuation_mapping.keys())
|
140
|
-
for i in range(len(text)):
|
141
|
-
if is_surrounded_by_chinese(text, i) and (text[i] in key_list):
|
142
|
-
text = replace_char(text, i, Punctuation_mapping[text[i]])
|
143
|
-
return text
|
144
|
-
|
145
137
|
def safe_get(data, *keys, default=None):
|
146
138
|
for key in keys:
|
147
139
|
try:
|
@@ -7,33 +7,33 @@ beswarm/prompt.py,sha256=45onnyoY9plKM86KQefbPw5z9QJMn-mVnjlFQZcrjz0,34373
|
|
7
7
|
beswarm/taskmanager.py,sha256=2Uz_cthW9rWkQMJdzgsXAMlfN8Ni2Qj_DOq_L-p6XZc,12662
|
8
8
|
beswarm/utils.py,sha256=0J-b38P5QGT-A_38co7FjzaUNJykaskI7mbbcQ4w_68,8215
|
9
9
|
beswarm/agents/chatgroup.py,sha256=PzrmRcDKAbB7cxL16nMod_CzPosDV6bfTmXxQVuv-AQ,12012
|
10
|
-
beswarm/agents/planact.py,sha256=
|
10
|
+
beswarm/agents/planact.py,sha256=wYIyrAsBY6Z_Hc8rx76vbfUTsagqYFIBOfPi43ze708,18361
|
11
11
|
beswarm/aient/aient/__init__.py,sha256=SRfF7oDVlOOAi6nGKiJIUK6B_arqYLO9iSMp-2IZZps,21
|
12
12
|
beswarm/aient/aient/architext/architext/__init__.py,sha256=79Ih1151rfcqZdr7F8HSZSTs_iT2SKd1xCkehMsXeXs,19
|
13
|
-
beswarm/aient/aient/architext/architext/core.py,sha256=
|
13
|
+
beswarm/aient/aient/architext/architext/core.py,sha256=KHzc6ly4vNYie2kRfPokDGhfTz3CvntuiSd-XyE3cAM,32502
|
14
14
|
beswarm/aient/aient/architext/test/openai_client.py,sha256=Dqtbmubv6vwF8uBqcayG0kbsiO65of7sgU2-DRBi-UM,4590
|
15
|
-
beswarm/aient/aient/architext/test/test.py,sha256=
|
15
|
+
beswarm/aient/aient/architext/test/test.py,sha256=9OQ12qAs81Ce6KCKXQx4Re0P9VjNuTF4rZRcTRstJVw,72868
|
16
16
|
beswarm/aient/aient/architext/test/test_save_load.py,sha256=o8DqH6gDYZkFkQy-a7blqLtJTRj5e4a-Lil48pJ0V3g,3260
|
17
17
|
beswarm/aient/aient/core/__init__.py,sha256=NxjebTlku35S4Dzr16rdSqSTWUvvwEeACe8KvHJnjPg,34
|
18
18
|
beswarm/aient/aient/core/log_config.py,sha256=kz2_yJv1p-o3lUQOwA3qh-LSc3wMHv13iCQclw44W9c,274
|
19
19
|
beswarm/aient/aient/core/models.py,sha256=KMlCRLjtq1wQHZTJGqnbWhPS2cHq6eLdnk7peKDrzR8,7490
|
20
|
-
beswarm/aient/aient/core/request.py,sha256
|
21
|
-
beswarm/aient/aient/core/response.py,sha256=
|
22
|
-
beswarm/aient/aient/core/utils.py,sha256=
|
20
|
+
beswarm/aient/aient/core/request.py,sha256=-KEBd4jWLVC9QYUhb1ZfgkLf4nKE7HKL0A58iULkY7o,76757
|
21
|
+
beswarm/aient/aient/core/response.py,sha256=Z9geTfh2LkGHKAqjelgeleQtfOAYIyM82t9AVB4xsgE,36407
|
22
|
+
beswarm/aient/aient/core/utils.py,sha256=Z8vTH9w3uS8uubBa65c_aJ11A3OKGYEzm4q0brNZDSk,31594
|
23
23
|
beswarm/aient/aient/core/test/test_base_api.py,sha256=pWnycRJbuPSXKKU9AQjWrMAX1wiLC_014Qc9hh5C2Pw,524
|
24
24
|
beswarm/aient/aient/core/test/test_geminimask.py,sha256=HFX8jDbNg_FjjgPNxfYaR-0-roUrOO-ND-FVsuxSoiw,13254
|
25
25
|
beswarm/aient/aient/core/test/test_image.py,sha256=_T4peNGdXKBHHxyQNx12u-NTyFE8TlYI6NvvagsG2LE,319
|
26
26
|
beswarm/aient/aient/core/test/test_payload.py,sha256=8jBiJY1uidm1jzL-EiK0s6UGmW9XkdsuuKFGrwFhFkw,2755
|
27
27
|
beswarm/aient/aient/models/__init__.py,sha256=ZTiZgbfBPTjIPSKURE7t6hlFBVLRS9lluGbmqc1WjxQ,43
|
28
|
-
beswarm/aient/aient/models/audio.py,sha256=
|
29
|
-
beswarm/aient/aient/models/base.py,sha256
|
30
|
-
beswarm/aient/aient/models/chatgpt.py,sha256=
|
28
|
+
beswarm/aient/aient/models/audio.py,sha256=FNW4lxG1IhxOU7L8mvcbaeC1nXk_lpUZQlg9ijQ0h_Q,1937
|
29
|
+
beswarm/aient/aient/models/base.py,sha256=HWIGfa2A7OTccvHK0wG1-UlHB-yaWRC7hbi4oR1Mu1Y,7228
|
30
|
+
beswarm/aient/aient/models/chatgpt.py,sha256=n99RspEqdMrd8u3LLGWYgAdhDEZyibiaRASqrRVeIZw,43358
|
31
31
|
beswarm/aient/aient/plugins/__init__.py,sha256=p3KO6Aa3Lupos4i2SjzLQw1hzQTigOAfEHngsldrsyk,986
|
32
32
|
beswarm/aient/aient/plugins/arXiv.py,sha256=yHjb6PS3GUWazpOYRMKMzghKJlxnZ5TX8z9F6UtUVow,1461
|
33
33
|
beswarm/aient/aient/plugins/config.py,sha256=TGgZ5SnNKZ8MmdznrZ-TEq7s2ulhAAwTSKH89bci3dA,7079
|
34
34
|
beswarm/aient/aient/plugins/excute_command.py,sha256=b-rxsyFN6_HnZJAhUi9Qsp8iJ6XTf-zU-CIUIxeQO98,10869
|
35
35
|
beswarm/aient/aient/plugins/get_time.py,sha256=Ih5XIW5SDAIhrZ9W4Qe5Hs1k4ieKPUc_LAd6ySNyqZk,654
|
36
|
-
beswarm/aient/aient/plugins/image.py,sha256=
|
36
|
+
beswarm/aient/aient/plugins/image.py,sha256=JR4iJ--uUk1abICwQjd9tVIk0-Vs8qMxn6z2lJwuQ4U,2075
|
37
37
|
beswarm/aient/aient/plugins/list_directory.py,sha256=V_uKkLx_fQDL5z__bSDC-PqAP-o32KmQW6Pdhx0Fx0s,1433
|
38
38
|
beswarm/aient/aient/plugins/read_file.py,sha256=qHAhdesOr1VMOCDkeHNvI8UV2ZI98HmJl6GhN4Aq9dU,9183
|
39
39
|
beswarm/aient/aient/plugins/read_image.py,sha256=4FbIiMNVFUQpNyiH5ApGSRvOD9ujcXGyuqlGTJMd7ac,4017
|
@@ -43,17 +43,15 @@ beswarm/aient/aient/plugins/run_python.py,sha256=MohvdtZUTDLrHBDtJ9L2_Qu1pWAGrkb
|
|
43
43
|
beswarm/aient/aient/plugins/websearch.py,sha256=aPsBjUQ3zQ4gzNrbVq7BMh28ENj9h_fSAeJFF2h9TNk,15334
|
44
44
|
beswarm/aient/aient/plugins/write_file.py,sha256=Jt8fOEwqhYiSWpCbwfAr1xoi_BmFnx3076GMhuL06uI,3949
|
45
45
|
beswarm/aient/aient/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
46
|
-
beswarm/aient/aient/utils/prompt.py,sha256=
|
47
|
-
beswarm/aient/aient/utils/scripts.py,sha256=
|
46
|
+
beswarm/aient/aient/utils/prompt.py,sha256=ZvGAt_ImJ_CGbDnWgpsWskfSV5fCkpFKRpNQjYL7M7s,11100
|
47
|
+
beswarm/aient/aient/utils/scripts.py,sha256=Q0tS7E9AmdikO7GeDBd_3Ii5opXHCvKjDGqHsXen6_A,40622
|
48
48
|
beswarm/aient/test/test_Web_crawler.py,sha256=l-DY0xwVPBfeEitUASkcIf19b4XwGrN-Ql_p7Dsbg_A,11410
|
49
49
|
beswarm/aient/test/test_ddg_search.py,sha256=HnM72mwi4Yp87BymMmQ0eRd0-OJtyWEIUvJvN9QBhdg,1498
|
50
50
|
beswarm/aient/test/test_google_search.py,sha256=rPaKqD_N3ogHYE5DrMfRmKumcVAHKC7LcYw5euR_zGM,1035
|
51
51
|
beswarm/aient/test/test_ollama.py,sha256=ywy9l06S1g1AnWQvlBbhpac7i-hBB9bpwi-pk0Afivc,1325
|
52
52
|
beswarm/aient/test/test_plugin.py,sha256=0sBwpf1YdKba-IVPZwBMKbLR7buHfudLS9NOETm7BTc,779
|
53
|
-
beswarm/aient/test/test_search.py,sha256=-SRNOo2PvAAVmqIASFVq8WYmXqjLRonmHVEcBZkJAek,1171
|
54
53
|
beswarm/aient/test/test_url.py,sha256=ASE3kT2-ooaX6Flw4botjXnuqaBgutqRWPx3fow5nLg,1894
|
55
|
-
beswarm/aient/test/test_whisper.py,sha256=
|
56
|
-
beswarm/aient/test/test_yjh.py,sha256=MsHuBLNOqi3fyX-uboBKmTevkZW_KVv12p-pkF5ir3Y,787
|
54
|
+
beswarm/aient/test/test_whisper.py,sha256=f1Crge_EfKW3OpaCqfHApYGUtPFlFkxQTzqtJuM6MVo,379
|
57
55
|
beswarm/bemcp/bemcp/__init__.py,sha256=Ss6bDXiZJgVIZS6KWytcGwXmIFu7SsagIXa5NpeWJ7c,140
|
58
56
|
beswarm/bemcp/bemcp/decorator.py,sha256=23bNgwLjuUkpod5VcRv-UqlJTf91_wfztf8ls7-Gg08,3218
|
59
57
|
beswarm/bemcp/bemcp/main.py,sha256=gtl3oyjAM_rwFw3kR-m-cUpS0FFTASnUOB8-fMrVT7g,8608
|
@@ -123,8 +121,8 @@ beswarm/tools/search_web.py,sha256=0fTeczXiOX_LJQGaLEGbuJtIPzofeuquGWEt3yDMtVw,1
|
|
123
121
|
beswarm/tools/subtasks.py,sha256=NHDnmUhUPgDQKBACnpgErpFJRcsH0w_Q9VsyQjNvNHA,12658
|
124
122
|
beswarm/tools/worker.py,sha256=mQ1qdrQ8MgL99byAbTvxfEByFFGN9mty3UHqHjARMQ8,2331
|
125
123
|
beswarm/tools/write_csv.py,sha256=u0Hq18Ksfheb52MVtyLNCnSDHibITpsYBPs2ub7USYA,1466
|
126
|
-
beswarm-0.3.
|
127
|
-
beswarm-0.3.
|
128
|
-
beswarm-0.3.
|
129
|
-
beswarm-0.3.
|
130
|
-
beswarm-0.3.
|
124
|
+
beswarm-0.3.2.dist-info/METADATA,sha256=cZs62VmbA4HP3fml4T7u-R6jg3QKndIxvuICMZ_mlC8,3877
|
125
|
+
beswarm-0.3.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
126
|
+
beswarm-0.3.2.dist-info/entry_points.txt,sha256=URK7Y4PDzBgxIecQnxsWTu4O-eaFa1CoAcNTWh5R7LM,45
|
127
|
+
beswarm-0.3.2.dist-info/top_level.txt,sha256=pJw4O87wvt5882smuSO6DfByJz7FJ8SxxT8h9fHCmpo,8
|
128
|
+
beswarm-0.3.2.dist-info/RECORD,,
|
@@ -1,18 +0,0 @@
|
|
1
|
-
import os
|
2
|
-
from aient.models import chatgpt
|
3
|
-
|
4
|
-
API = os.environ.get('API', None)
|
5
|
-
API_URL = os.environ.get('API_URL', None)
|
6
|
-
GPT_ENGINE = os.environ.get('GPT_ENGINE', 'gpt-4o')
|
7
|
-
|
8
|
-
systemprompt = (
|
9
|
-
"You are ChatGPT, a large language model trained by OpenAI. Respond conversationally"
|
10
|
-
)
|
11
|
-
bot = chatgpt(api_key=API, api_url=API_URL, engine=GPT_ENGINE, system_prompt=systemprompt, print_log=True)
|
12
|
-
for text in bot.ask_stream("搜索上海的天气"):
|
13
|
-
# for text in bot.ask_stream("我在广州市,想周一去香港,周四早上回来,是去游玩,请你帮我规划整个行程。包括细节,如交通,住宿,餐饮,价格,等等,最好细节到每天各个部分的时间,花费,等等,尽量具体,用户一看就能直接执行的那种"):
|
14
|
-
# for text in bot.ask_stream("上海有哪些好玩的地方?"):
|
15
|
-
# for text in bot.ask_stream("just say test"):
|
16
|
-
# for text in bot.ask_stream("我在上海想去重庆旅游,我只有2000元预算,我想在重庆玩一周,你能帮我规划一下吗?"):
|
17
|
-
# for text in bot.ask_stream("我在上海想去重庆旅游,我有一天的时间。你能帮我规划一下吗?"):
|
18
|
-
print(text, end="")
|
beswarm/aient/test/test_yjh.py
DELETED
@@ -1,21 +0,0 @@
|
|
1
|
-
import os
|
2
|
-
from datetime import datetime
|
3
|
-
|
4
|
-
from aient.models import chatgpt
|
5
|
-
from aient.utils import prompt
|
6
|
-
|
7
|
-
API = os.environ.get('API', None)
|
8
|
-
API_URL = os.environ.get('API_URL', None)
|
9
|
-
GPT_ENGINE = os.environ.get('GPT_ENGINE', 'gpt-4o')
|
10
|
-
LANGUAGE = os.environ.get('LANGUAGE', 'Simplified Chinese')
|
11
|
-
|
12
|
-
current_date = datetime.now()
|
13
|
-
Current_Date = current_date.strftime("%Y-%m-%d")
|
14
|
-
|
15
|
-
systemprompt = os.environ.get('SYSTEMPROMPT', prompt.system_prompt.format(LANGUAGE, Current_Date))
|
16
|
-
|
17
|
-
bot = chatgpt(api_key=API, api_url=API_URL, engine=GPT_ENGINE, system_prompt=systemprompt)
|
18
|
-
for text in bot.ask_stream("arXiv:2210.10716 这篇文章讲了啥"):
|
19
|
-
# for text in bot.ask_stream("今天的微博热搜有哪些?"):
|
20
|
-
# for text in bot.ask_stream("你现在是什么版本?"):
|
21
|
-
print(text, end="")
|
File without changes
|
File without changes
|
File without changes
|