beswarm 0.3.0__py3-none-any.whl → 0.3.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
beswarm/agents/planact.py CHANGED
@@ -164,9 +164,12 @@ class WorkerAgent(BaseAgent):
164
164
  def __init__(self, goal: str, tools_json: List, agent_config: Dict, work_dir: str, cache_messages: Union[bool, List[Dict]], broker: MessageBroker, listen_topic: str, publish_topic: str, status_topic: str):
165
165
  super().__init__(goal, tools_json, agent_config, work_dir, cache_messages, broker, listen_topic, publish_topic, status_topic)
166
166
 
167
- if self.cache_messages and isinstance(self.cache_messages, list) and len(self.cache_messages) > 1:
168
- first_user_message = replace_xml_content(self.cache_messages[1]["content"], "goal", goal)
169
- self.config["cache_messages"] = self.cache_messages[0:1] + [{"role": "user", "content": first_user_message}] + self.cache_messages[2:]
167
+ if self.cache_messages and isinstance(self.cache_messages, Messages) and len(self.cache_messages) > 1:
168
+ if self.cache_messages.provider("goal"):
169
+ self.cache_messages.provider("goal").update(goal)
170
+ else:
171
+ self.cache_messages[1].insert(0, Goal(goal))
172
+ self.config["cache_messages"] = self.cache_messages
170
173
 
171
174
  self.agent = chatgpt(**self.config)
172
175
 
@@ -201,8 +204,7 @@ class WorkerAgent(BaseAgent):
201
204
  self.broker.publish(message, self.error_topic)
202
205
  else:
203
206
  self.broker.publish({"status": "new_message", "result": "\n✅ 工作智能体:\n" + response}, self.status_topic)
204
- if len(self.agent.conversation["default"]) > 1 and self.agent.conversation["default"][-1].role == "user":
205
- self.agent.conversation["default"].pop(-1)
207
+ self.agent.conversation["default"][-1].rstrip(Texts)
206
208
  self.broker.publish({
207
209
  "conversation": self.agent.conversation["default"]
208
210
  }, self.publish_topic)
@@ -104,9 +104,10 @@ class ContextProvider(ABC):
104
104
  return NotImplemented
105
105
 
106
106
  class Texts(ContextProvider):
107
- def __init__(self, text: Optional[Union[str, Callable[[], str]]] = None, name: Optional[str] = None, visible: bool = True):
107
+ def __init__(self, text: Optional[Union[str, Callable[[], str]]] = None, name: Optional[str] = None, visible: bool = True, newline: bool = False):
108
108
  if text is None and name is None:
109
109
  raise ValueError("Either 'text' or 'name' must be provided.")
110
+ self.newline = newline
110
111
 
111
112
  # Ensure that non-callable inputs are treated as strings
112
113
  if not callable(text):
@@ -315,6 +316,8 @@ class Message(ABC):
315
316
  self.role = role
316
317
  processed_items = []
317
318
  for item in initial_items:
319
+ if item is None:
320
+ continue
318
321
  if isinstance(item, str):
319
322
  # Check if the string contains placeholders from f-string rendering
320
323
  import re
@@ -371,8 +374,11 @@ class Message(ABC):
371
374
  for item in self._items:
372
375
  block = item.get_content_block()
373
376
  if block and block.content is not None:
377
+ # Check if it's a Texts provider with newline=True
378
+ # and it's not the very first item with content.
379
+ if isinstance(item, Texts) and hasattr(item, 'newline') and item.newline and final_parts:
380
+ final_parts.append("\n\n")
374
381
  final_parts.append(block.content)
375
-
376
382
  return "".join(final_parts)
377
383
 
378
384
  def pop(self, name: str) -> Optional[ContextProvider]:
@@ -466,11 +472,47 @@ class Message(ABC):
466
472
  # and our custom __eq__ on ContextProvider handles the comparison logic.
467
473
  return item in self._items
468
474
 
475
+ def has(self, provider_type: type) -> bool:
476
+ """Checks if the message contains a provider of a specific type."""
477
+ if not isinstance(provider_type, type) or not issubclass(provider_type, ContextProvider):
478
+ raise TypeError("provider_type must be a subclass of ContextProvider")
479
+ return any(isinstance(p, provider_type) for p in self._items)
480
+
481
+ def lstrip(self, provider_type: type):
482
+ """
483
+ 从消息的左侧(开头)移除所有指定类型的 provider。
484
+ 移除操作会一直持续,直到遇到一个不同类型的 provider 为止。
485
+ """
486
+ while self._items and type(self._items[0]) is provider_type:
487
+ self.pop(self._items[0].name)
488
+
489
+ def rstrip(self, provider_type: type):
490
+ """
491
+ 从消息的右侧(末尾)移除所有指定类型的 provider。
492
+ 移除操作会一直持续,直到遇到一个不同类型的 provider 为止。
493
+ """
494
+ while self._items and type(self._items[-1]) is provider_type:
495
+ self.pop(self._items[-1].name)
496
+
497
+ def strip(self, provider_type: type):
498
+ """
499
+ 从消息的两侧移除所有指定类型的 provider。
500
+ """
501
+ self.lstrip(provider_type)
502
+ self.rstrip(provider_type)
503
+
469
504
  def __bool__(self) -> bool:
470
505
  return bool(self._items)
471
506
  def get(self, key: str, default: Any = None) -> Any:
472
507
  """提供类似字典的 .get() 方法来访问属性。"""
473
508
  return getattr(self, key, default)
509
+
510
+ async def render_latest(self) -> Optional[Dict[str, Any]]:
511
+ """Refreshes all providers in the message and returns the rendered dictionary."""
512
+ tasks = [provider.refresh() for provider in self._items]
513
+ await asyncio.gather(*tasks)
514
+ return self.to_dict()
515
+
474
516
  def to_dict(self) -> Optional[Dict[str, Any]]:
475
517
  is_multimodal = any(isinstance(p, Images) for p in self._items)
476
518
 
@@ -1434,6 +1434,150 @@ Files: {Files(visible=True, name="files")}
1434
1434
  self.assertTrue(message in messages_collection)
1435
1435
  self.assertFalse(UserMessage("not in collection") in messages_collection)
1436
1436
 
1437
+ async def test_zz_none_input_ignored(self):
1438
+ """测试在Message初始化时,None值是否被自动忽略"""
1439
+ # 1. 在初始化列表中包含 None
1440
+ message = UserMessage("Hello", None, "World")
1441
+ self.assertEqual(len(message.provider()), 2)
1442
+ self.assertIsInstance(message.provider()[0], Texts)
1443
+ self.assertIsInstance(message.provider()[1], Texts)
1444
+ rendered = await message.render_latest()
1445
+ self.assertEqual(rendered['content'], "HelloWorld")
1446
+
1447
+ # 2. 测试只有 None
1448
+ message_none = SystemMessage(None)
1449
+ self.assertEqual(len(message_none.provider()), 0)
1450
+ self.assertFalse(message_none)
1451
+
1452
+ # 3. 测试混合 provider 和 None
1453
+ message_mixed = SystemMessage(Texts("hi"), None)
1454
+ self.assertEqual(len(message_mixed.provider()), 1)
1455
+ self.assertIsInstance(message_mixed.provider()[0], Texts)
1456
+
1457
+ async def test_zaa_has_method_for_provider_type_check(self):
1458
+ """测试 Message.has(type) 方法是否能正确检查 provider 类型"""
1459
+ # 1. 创建一个混合类型的消息
1460
+ message_with_text = UserMessage(Texts("hi"), Images("url"))
1461
+
1462
+ # 2. 测试存在的情况
1463
+ # This line is expected to fail with an AttributeError before implementation
1464
+ self.assertTrue(message_with_text.has(Texts))
1465
+ self.assertTrue(message_with_text.has(Images))
1466
+
1467
+ # 3. 测试不存在的情况
1468
+ self.assertFalse(message_with_text.has(Tools))
1469
+
1470
+ # 4. 测试空消息
1471
+ empty_message = UserMessage()
1472
+ self.assertFalse(empty_message.has(Texts))
1473
+
1474
+ # 5. 测试传入无效类型
1475
+ with self.assertRaises(TypeError):
1476
+ message_with_text.has(str)
1477
+
1478
+ with self.assertRaises(TypeError):
1479
+ # Also test with a class that is not a subclass of ContextProvider
1480
+ class NotAProvider: pass
1481
+ message_with_text.has(NotAProvider)
1482
+
1483
+ async def test_zab_lstrip_and_rstrip(self):
1484
+ """测试 lstrip, rstrip, 和 strip 方法是否能正确移除两侧的特定类型的 provider"""
1485
+ # 1. 定义一个用于测试的子类
1486
+ class SpecialTexts(Texts):
1487
+ pass
1488
+ url = "_IMG"
1489
+
1490
+ # 2. 创建一个复杂的测试消息
1491
+ message = UserMessage(
1492
+ Texts("leading1"),
1493
+ Texts("leading2"),
1494
+ Images(url, name="image1"),
1495
+ Texts("middle"),
1496
+ SpecialTexts("special_middle"),
1497
+ Images(url, name="image2"),
1498
+ Texts("trailing1"),
1499
+ SpecialTexts("special_trailing"), # rstrip(Texts) should stop here
1500
+ Texts("trailing2")
1501
+ )
1502
+
1503
+ # 3. 测试 rstrip(Texts)
1504
+ r_stripped_message = UserMessage(*message.provider()) # 创建副本
1505
+ r_stripped_message.rstrip(Texts)
1506
+ # 应移除 "trailing2",但在 "special_trailing" 处停止
1507
+ self.assertEqual(len(r_stripped_message), 8)
1508
+ self.assertIs(type(r_stripped_message[-1]), SpecialTexts)
1509
+
1510
+ # 4. 测试 lstrip(Texts)
1511
+ l_stripped_message = UserMessage(*message.provider()) # 创建副本
1512
+ l_stripped_message.lstrip(Texts)
1513
+ # 应移除 "leading1" 和 "leading2",但在 "image1" 处停止
1514
+ self.assertEqual(len(l_stripped_message), 7)
1515
+ self.assertIs(type(l_stripped_message[0]), Images)
1516
+
1517
+ # 5. 测试 strip(Texts)
1518
+ stripped_message = UserMessage(*message.provider()) # 创建副本
1519
+ stripped_message.strip(Texts)
1520
+ # 应同时移除 "leading1", "leading2", 和 "trailing2"
1521
+ self.assertEqual(len(stripped_message), 6)
1522
+ self.assertIs(type(stripped_message[0]), Images)
1523
+ self.assertIs(type(stripped_message[-1]), SpecialTexts)
1524
+
1525
+ # 6. 测试在一个只包含一种类型的消息上进行剥离
1526
+ only_texts = UserMessage(Texts("a"), Texts("b"))
1527
+ only_texts.strip(Texts)
1528
+ self.assertEqual(len(only_texts), 0)
1529
+
1530
+ # 7. 测试剥离一个不包含目标类型的消息
1531
+ only_images = UserMessage(Images("url1"), Images("url2"))
1532
+ only_images.strip(Texts)
1533
+ self.assertEqual(len(only_images), 2) # 不应改变
1534
+
1535
+ # 8. 测试在一个空消息上进行剥离
1536
+ empty_message = UserMessage()
1537
+ empty_message.strip(Texts)
1538
+ self.assertEqual(len(empty_message), 0)
1539
+
1540
+ # 9. 测试剥离子类
1541
+ message_ending_with_special = UserMessage(Texts("a"), SpecialTexts("b"))
1542
+ message_ending_with_special.rstrip(SpecialTexts)
1543
+ self.assertEqual(len(message_ending_with_special), 1)
1544
+ self.assertIsInstance(message_ending_with_special[0], Texts)
1545
+
1546
+ async def test_zac_texts_join_parameter(self):
1547
+ """测试 Texts provider 是否支持通过参数控制拼接方式"""
1548
+ # 1. 测试默认行为:直接拼接
1549
+ message_default = UserMessage(
1550
+ Texts("First line."),
1551
+ Texts("Second line.")
1552
+ )
1553
+ rendered_default = await message_default.render_latest()
1554
+ self.assertEqual(rendered_default['content'], "First line.Second line.")
1555
+
1556
+ # 2. 测试新功能:使用 \n\n 拼接
1557
+ # 假设新参数为 `newline=True`
1558
+ message_newline = UserMessage(
1559
+ Texts("First paragraph."),
1560
+ Texts("Second paragraph.", newline=True)
1561
+ )
1562
+ rendered_newline = await message_newline.render_latest()
1563
+ self.assertEqual(rendered_newline['content'], "First paragraph.\n\nSecond paragraph.")
1564
+
1565
+ # 3. 测试多个 provider 的情况
1566
+ message_multiple = UserMessage(
1567
+ Texts("First."),
1568
+ Texts("Second.", newline=True),
1569
+ Texts("Third.", newline=True)
1570
+ )
1571
+ rendered_multiple = await message_multiple.render_latest()
1572
+ self.assertEqual(rendered_multiple['content'], "First.\n\nSecond.\n\nThird.")
1573
+
1574
+ # 4. 测试只有一个 provider 的情况
1575
+ message_single = UserMessage(
1576
+ Texts("Only one.", newline=True)
1577
+ )
1578
+ rendered_single = await message_single.render_latest()
1579
+ self.assertEqual(rendered_single['content'], "Only one.")
1580
+
1437
1581
 
1438
1582
  # ==============================================================================
1439
1583
  # 6. 演示
@@ -1,5 +1,6 @@
1
1
  import re
2
2
  import json
3
+ import copy
3
4
  import httpx
4
5
  import base64
5
6
  import asyncio
@@ -57,7 +58,7 @@ async def get_gemini_payload(request, engine, provider, api_key=None):
57
58
  try:
58
59
  request_messages = [Message(role="user", content=request.prompt)]
59
60
  except:
60
- request_messages = request.messages
61
+ request_messages = copy.deepcopy(request.messages)
61
62
  for msg in request_messages:
62
63
  if msg.role == "assistant":
63
64
  msg.role = "model"
@@ -399,7 +400,8 @@ async def get_vertex_gemini_payload(request, engine, provider, api_key=None):
399
400
  systemInstruction = None
400
401
  system_prompt = ""
401
402
  function_arguments = None
402
- for msg in request.messages:
403
+ request_messages = copy.deepcopy(request.messages)
404
+ for msg in request_messages:
403
405
  if msg.role == "assistant":
404
406
  msg.role = "model"
405
407
  tool_calls = None
@@ -8,7 +8,7 @@ from datetime import datetime
8
8
 
9
9
  from .log_config import logger
10
10
 
11
- from .utils import safe_get, generate_sse_response, generate_no_stream_response, end_of_line, parse_json_safely
11
+ from .utils import safe_get, generate_sse_response, generate_no_stream_response, end_of_line, parse_json_safely, upload_image_to_0x0st
12
12
 
13
13
  async def check_response(response, error_log):
14
14
  if response and not (200 <= response.status_code < 300):
@@ -277,7 +277,8 @@ async def fetch_gpt_response_stream(client, url, headers, payload, timeout):
277
277
  openrouter_reasoning = safe_get(line, "choices", 0, "delta", "reasoning", default="")
278
278
  openrouter_base64_image = safe_get(line, "choices", 0, "delta", "images", 0, "image_url", "url", default="")
279
279
  if openrouter_base64_image:
280
- sse_string = await generate_sse_response(timestamp, payload["model"], content=f"\n\n![image]({openrouter_base64_image})")
280
+ image_url = await upload_image_to_0x0st(openrouter_base64_image)
281
+ sse_string = await generate_sse_response(timestamp, payload["model"], content=f"\n\n![image]({image_url})")
281
282
  yield sse_string
282
283
  continue
283
284
  azure_databricks_claude_summary_content = safe_get(line, "choices", 0, "delta", "content", 0, "summary", 0, "text", default="")
@@ -228,7 +228,12 @@ async def update_initial_model(provider):
228
228
  def safe_get(data, *keys, default=None):
229
229
  for key in keys:
230
230
  try:
231
- data = data[key] if isinstance(data, (dict, list)) else data.get(key)
231
+ if isinstance(data, (dict, list)):
232
+ data = data[key]
233
+ elif isinstance(key, str) and hasattr(data, key):
234
+ data = getattr(data, key)
235
+ else:
236
+ data = data.get(key)
232
237
  except (KeyError, IndexError, AttributeError, TypeError):
233
238
  return default
234
239
  if not data:
@@ -797,6 +802,44 @@ def parse_json_safely(json_str):
797
802
  # 两种方法都失败,抛出异常
798
803
  raise Exception(f"无法解析JSON字符串: {e}, {json_str}")
799
804
 
805
+ async def upload_image_to_0x0st(base64_image: str):
806
+ """
807
+ Uploads a base64 encoded image to 0x0.st.
808
+
809
+ Args:
810
+ base64_image: The base64 encoded image string.
811
+
812
+ Returns:
813
+ The URL of the uploaded image.
814
+ """
815
+ if "," in base64_image:
816
+ base64_image_split = base64_image.split(",")[1]
817
+
818
+ image_data = base64.b64decode(base64_image_split)
819
+
820
+ img_format = get_image_format(image_data)
821
+ if not img_format:
822
+ img_format = 'png' # 如果无法检测到格式,则默认为 png
823
+
824
+ content_type = f'image/{img_format}'
825
+ file_name = f'image.{img_format}'
826
+
827
+ files = {'file': (file_name, image_data, content_type)}
828
+ data = {'expires': '24', 'secret': '123456'}
829
+
830
+ async with httpx.AsyncClient() as client:
831
+ try:
832
+ response = await client.post("https://0x0.st", files=files, data=data)
833
+ response.raise_for_status()
834
+ return response.text.strip()
835
+ except httpx.RequestError as e:
836
+ logger.error(f"请求 0x0.st 时出错: {e}")
837
+ # raise HTTPException(status_code=500, detail="上传图片到 0x0.st 失败")
838
+ except httpx.HTTPStatusError as e:
839
+ logger.error(f"上传图片到 0x0.st 时发生 HTTP 错误: {e.response.status_code}")
840
+ # raise HTTPException(status_code=e.response.status_code, detail=f"上传图片到 0x0.st 失败: {e.response.text}")
841
+ return base64_image
842
+
800
843
  if __name__ == "__main__":
801
844
  provider = {
802
845
  "base_url": "https://gateway.ai.cloudflare.com/v1/%7Baccount_id%7D/%7Bgateway_id%7D/google-vertex-ai",
@@ -4,13 +4,13 @@ import json
4
4
  from .base import BaseLLM
5
5
 
6
6
  API = os.environ.get('API', None)
7
- API_URL = os.environ.get('API_URL', None)
7
+ BASE_URL = os.environ.get('BASE_URL', None)
8
8
 
9
9
  class whisper(BaseLLM):
10
10
  def __init__(
11
11
  self,
12
12
  api_key: str,
13
- api_url: str = (os.environ.get("API_URL") or "https://api.openai.com/v1/audio/transcriptions"),
13
+ api_url: str = (os.environ.get("BASE_URL") or "https://api.openai.com/v1/audio/transcriptions"),
14
14
  timeout: float = 20,
15
15
  ):
16
16
  super().__init__(api_key, api_url=api_url, timeout=timeout)
@@ -11,8 +11,8 @@ class BaseLLM:
11
11
  def __init__(
12
12
  self,
13
13
  api_key: str = None,
14
- engine: str = os.environ.get("GPT_ENGINE") or "gpt-3.5-turbo",
15
- api_url: str = (os.environ.get("API_URL", None) or "https://api.openai.com/v1/chat/completions"),
14
+ engine: str = os.environ.get("MODEL") or "gpt-3.5-turbo",
15
+ api_url: str = (os.environ.get("BASE_URL", None) or "https://api.openai.com/v1/chat/completions"),
16
16
  system_prompt: str = prompt.chatgpt_system_prompt,
17
17
  proxy: str = None,
18
18
  timeout: float = 600,
@@ -6,6 +6,7 @@ import httpx
6
6
  import asyncio
7
7
  import logging
8
8
  import inspect
9
+ from collections import defaultdict
9
10
  from typing import Union, Optional, Callable
10
11
 
11
12
  from .base import BaseLLM
@@ -16,6 +17,21 @@ from ..core.request import prepare_request_payload
16
17
  from ..core.response import fetch_response_stream, fetch_response
17
18
  from ..architext.architext import Messages, SystemMessage, UserMessage, AssistantMessage, ToolCalls, ToolResults, Texts, RoleMessage, Images, Files
18
19
 
20
+ class ToolResult(Texts):
21
+ def __init__(self, tool_name: str, tool_args: str, tool_response: str, name: Optional[str] = None, visible: bool = True, newline: bool = True):
22
+ super().__init__(text=tool_response, name=name or f"tool_result_{tool_name}", visible=visible, newline=newline)
23
+ self.tool_name = tool_name
24
+ self.tool_args = tool_args
25
+
26
+ async def render(self) -> Optional[str]:
27
+ tool_response = await super().render()
28
+ if tool_response is None:
29
+ tool_response = ""
30
+ if self.tool_args:
31
+ return f"[{self.tool_name}({self.tool_args}) Result]:\n\n{tool_response}"
32
+ else:
33
+ return f"[{self.tool_name} Result]:\n\n{tool_response}"
34
+
19
35
  class APITimeoutError(Exception):
20
36
  """Custom exception for API timeout errors."""
21
37
  pass
@@ -73,8 +89,8 @@ class chatgpt(BaseLLM):
73
89
  def __init__(
74
90
  self,
75
91
  api_key: str = None,
76
- engine: str = os.environ.get("GPT_ENGINE") or "gpt-4o",
77
- api_url: str = (os.environ.get("API_URL") or "https://api.openai.com/v1/chat/completions"),
92
+ engine: str = os.environ.get("MODEL") or "gpt-4o",
93
+ api_url: str = (os.environ.get("BASE_URL") or "https://api.openai.com/v1/chat/completions"),
78
94
  system_prompt: str = "You are ChatGPT, a large language model trained by OpenAI. Respond conversationally",
79
95
  proxy: str = None,
80
96
  timeout: float = 600,
@@ -97,9 +113,7 @@ class chatgpt(BaseLLM):
97
113
  Initialize Chatbot with API key (from https://platform.openai.com/account/api-keys)
98
114
  """
99
115
  super().__init__(api_key, engine, api_url, system_prompt, proxy, timeout, max_tokens, temperature, top_p, presence_penalty, frequency_penalty, reply_count, truncate_limit, use_plugins=use_plugins, print_log=print_log)
100
- self.conversation: dict[str, Messages] = {
101
- "default": Messages(SystemMessage(self.system_prompt)),
102
- }
116
+ self.conversation: dict[str, Messages] = defaultdict(lambda: Messages(SystemMessage(self.system_prompt)))
103
117
  if cache_messages:
104
118
  self.conversation["default"] = cache_messages
105
119
  self.function_calls_counter = {}
@@ -173,8 +187,8 @@ class chatgpt(BaseLLM):
173
187
  self.conversation[convo_id].append(ToolCalls(tool_calls))
174
188
  self.conversation[convo_id].append(ToolResults(tool_call_id=function_call_id, content=message))
175
189
  else:
176
- last_user_message = self.conversation[convo_id][-1]["content"]
177
- if last_user_message != message:
190
+ last_user_message = self.conversation[convo_id][-1]
191
+ if last_user_message != UserMessage(message):
178
192
  image_message_list = UserMessage()
179
193
  if isinstance(function_arguments, str):
180
194
  functions_list = json.loads(function_arguments)
@@ -565,7 +579,7 @@ class chatgpt(BaseLLM):
565
579
  tool_calls = function_parameter
566
580
 
567
581
  # 处理所有工具调用
568
- all_responses = []
582
+ all_responses = UserMessage()
569
583
 
570
584
  for tool_info in tool_calls:
571
585
  tool_name = tool_info['function_name']
@@ -585,27 +599,28 @@ class chatgpt(BaseLLM):
585
599
  tool_response = chunk.replace("function_response:", "")
586
600
  else:
587
601
  yield chunk
588
- if tool_name == "read_file" and "<tool_error>" not in tool_response:
589
- self.conversation[convo_id].provider("files").update(tool_info['parameter']["file_path"], tool_response)
590
- all_responses.append(f"[{tool_name}({tool_args}) Result]:\n\nRead file successfully! The file content has been updated in the tag <latest_file_content>.")
591
- elif tool_name == "get_knowledge_graph_tree" and "<tool_error>" not in tool_response:
592
- self.conversation[convo_id].provider("knowledge_graph").visible = True
593
- all_responses.append(f"[{tool_name}({tool_args}) Result]:\n\nGet knowledge graph tree successfully! The knowledge graph tree has been updated in the tag <knowledge_graph_tree>.")
594
- elif tool_name == "write_to_file" and "<tool_error>" not in tool_response:
595
- all_responses.append(f"[{tool_name} Result]:\n\n{tool_response}")
596
- elif tool_name == "read_image" and "<tool_error>" not in tool_response:
597
- tool_info["base64_image"] = tool_response
598
- all_responses.append(f"[{tool_name}({tool_args}) Result]:\n\nRead image successfully!")
599
- elif tool_response.startswith("data:image/") and ";base64," in tool_response and "<tool_error>" not in tool_response:
600
- tool_info["base64_image"] = tool_response
601
- all_responses.append(f"[{tool_name}({tool_args}) Result]:\n\nRead image successfully!")
602
- else:
603
- all_responses.append(f"[{tool_name}({tool_args}) Result]:\n\n{tool_response}")
602
+ final_tool_response = tool_response
603
+ if "<tool_error>" not in tool_response:
604
+ if tool_name == "read_file":
605
+ self.conversation[convo_id].provider("files").update(tool_info['parameter']["file_path"], tool_response)
606
+ final_tool_response = "Read file successfully! The file content has been updated in the tag <latest_file_content>."
607
+ elif tool_name == "get_knowledge_graph_tree":
608
+ self.conversation[convo_id].provider("knowledge_graph").visible = True
609
+ final_tool_response = "Get knowledge graph tree successfully! The knowledge graph tree has been updated in the tag <knowledge_graph_tree>."
610
+ elif tool_name == "write_to_file":
611
+ tool_args = None
612
+ elif tool_name == "read_image":
613
+ tool_info["base64_image"] = tool_response
614
+ final_tool_response = "Read image successfully!"
615
+ elif tool_response.startswith("data:image/") and ";base64," in tool_response:
616
+ tool_info["base64_image"] = tool_response
617
+ final_tool_response = "Read image successfully!"
618
+ all_responses.append(ToolResult(tool_name, tool_args, final_tool_response))
604
619
 
605
620
  # 合并所有工具响应
606
- function_response = "\n\n".join(all_responses).strip()
621
+ function_response = all_responses
607
622
  if missing_required_params:
608
- function_response += "\n\n" + "\n\n".join(missing_required_params)
623
+ function_response.append(Texts("\n\n".join(missing_required_params)))
609
624
 
610
625
  # 使用第一个工具的名称和参数作为历史记录
611
626
  function_call_name = tool_calls[0]['function_name']
@@ -5,13 +5,13 @@ from ..models.base import BaseLLM
5
5
  from .registry import register_tool
6
6
 
7
7
  API = os.environ.get('API', None)
8
- API_URL = os.environ.get('API_URL', None)
8
+ BASE_URL = os.environ.get('BASE_URL', None)
9
9
 
10
10
  class dalle3(BaseLLM):
11
11
  def __init__(
12
12
  self,
13
13
  api_key: str,
14
- api_url: str = (os.environ.get("API_URL") or "https://api.openai.com/v1/images/generations"),
14
+ api_url: str = (os.environ.get("BASE_URL") or "https://api.openai.com/v1/images/generations"),
15
15
  timeout: float = 20,
16
16
  ):
17
17
  super().__init__(api_key, api_url=api_url, timeout=timeout)
@@ -90,10 +90,6 @@ chatgpt_system_prompt = (
90
90
  "You are ChatGPT, a large language model trained by OpenAI. Use simple characters to represent mathematical symbols. Do not use LaTeX commands. Respond conversationally"
91
91
  )
92
92
 
93
- claude_system_prompt = (
94
- "You are Claude, a large language model trained by Anthropic. Use simple characters to represent mathematical symbols. Do not use LaTeX commands. Respond conversationally in {}."
95
- )
96
-
97
93
  search_system_prompt = (
98
94
  "You are ChatGPT, a large language model trained by OpenAI. Respond conversationally in {}."
99
95
  "You can break down the task into multiple steps and search the web to answer my questions one by one."
@@ -134,14 +134,6 @@ def is_surrounded_by_chinese(text, index):
134
134
  def replace_char(string, index, new_char):
135
135
  return string[:index] + new_char + string[index+1:]
136
136
 
137
- def claude_replace(text):
138
- Punctuation_mapping = {",": ",", ":": ":", "!": "!", "?": "?", ";": ";"}
139
- key_list = list(Punctuation_mapping.keys())
140
- for i in range(len(text)):
141
- if is_surrounded_by_chinese(text, i) and (text[i] in key_list):
142
- text = replace_char(text, i, Punctuation_mapping[text[i]])
143
- return text
144
-
145
137
  def safe_get(data, *keys, default=None):
146
138
  for key in keys:
147
139
  try:
@@ -10,5 +10,5 @@ files = {
10
10
  'model': (None, 'whisper-1')
11
11
  }
12
12
 
13
- response = requests.post(os.environ.get('API_URL', None), headers=headers, files=files)
13
+ response = requests.post(os.environ.get('BASE_URL', None), headers=headers, files=files)
14
14
  print(response.text)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: beswarm
3
- Version: 0.3.0
3
+ Version: 0.3.2
4
4
  Summary: MAS
5
5
  Requires-Python: >=3.11
6
6
  Description-Content-Type: text/markdown
@@ -7,33 +7,33 @@ beswarm/prompt.py,sha256=45onnyoY9plKM86KQefbPw5z9QJMn-mVnjlFQZcrjz0,34373
7
7
  beswarm/taskmanager.py,sha256=2Uz_cthW9rWkQMJdzgsXAMlfN8Ni2Qj_DOq_L-p6XZc,12662
8
8
  beswarm/utils.py,sha256=0J-b38P5QGT-A_38co7FjzaUNJykaskI7mbbcQ4w_68,8215
9
9
  beswarm/agents/chatgroup.py,sha256=PzrmRcDKAbB7cxL16nMod_CzPosDV6bfTmXxQVuv-AQ,12012
10
- beswarm/agents/planact.py,sha256=OjxnYNu-LkxF2zIf7o75QB25d-yVtD4-FgDllTV_nZM,18456
10
+ beswarm/agents/planact.py,sha256=wYIyrAsBY6Z_Hc8rx76vbfUTsagqYFIBOfPi43ze708,18361
11
11
  beswarm/aient/aient/__init__.py,sha256=SRfF7oDVlOOAi6nGKiJIUK6B_arqYLO9iSMp-2IZZps,21
12
12
  beswarm/aient/aient/architext/architext/__init__.py,sha256=79Ih1151rfcqZdr7F8HSZSTs_iT2SKd1xCkehMsXeXs,19
13
- beswarm/aient/aient/architext/architext/core.py,sha256=_o5gI5XF6e4kQo4L4x8Q1Tb7C1U0GANm24gJmvAgoXE,30546
13
+ beswarm/aient/aient/architext/architext/core.py,sha256=KHzc6ly4vNYie2kRfPokDGhfTz3CvntuiSd-XyE3cAM,32502
14
14
  beswarm/aient/aient/architext/test/openai_client.py,sha256=Dqtbmubv6vwF8uBqcayG0kbsiO65of7sgU2-DRBi-UM,4590
15
- beswarm/aient/aient/architext/test/test.py,sha256=G64knZR1rSo0hr8lZPaWWJizEq1A8RGCzcN0e9uhZEM,66729
15
+ beswarm/aient/aient/architext/test/test.py,sha256=9OQ12qAs81Ce6KCKXQx4Re0P9VjNuTF4rZRcTRstJVw,72868
16
16
  beswarm/aient/aient/architext/test/test_save_load.py,sha256=o8DqH6gDYZkFkQy-a7blqLtJTRj5e4a-Lil48pJ0V3g,3260
17
17
  beswarm/aient/aient/core/__init__.py,sha256=NxjebTlku35S4Dzr16rdSqSTWUvvwEeACe8KvHJnjPg,34
18
18
  beswarm/aient/aient/core/log_config.py,sha256=kz2_yJv1p-o3lUQOwA3qh-LSc3wMHv13iCQclw44W9c,274
19
19
  beswarm/aient/aient/core/models.py,sha256=KMlCRLjtq1wQHZTJGqnbWhPS2cHq6eLdnk7peKDrzR8,7490
20
- beswarm/aient/aient/core/request.py,sha256=QnDhyrjzcJOEQU2oauMQi_HHMRR5NxdkrX7nn5JMwTc,76675
21
- beswarm/aient/aient/core/response.py,sha256=HcyOEfZXZEXeJaUBMCYE4LiLyB79XuUR5o0Gtwdyi-E,36309
22
- beswarm/aient/aient/core/utils.py,sha256=sLmPHONYhIPq1zUYcbKOtIOpAVsLFk_5lNwH5-G2c4E,30013
20
+ beswarm/aient/aient/core/request.py,sha256=-KEBd4jWLVC9QYUhb1ZfgkLf4nKE7HKL0A58iULkY7o,76757
21
+ beswarm/aient/aient/core/response.py,sha256=Z9geTfh2LkGHKAqjelgeleQtfOAYIyM82t9AVB4xsgE,36407
22
+ beswarm/aient/aient/core/utils.py,sha256=Z8vTH9w3uS8uubBa65c_aJ11A3OKGYEzm4q0brNZDSk,31594
23
23
  beswarm/aient/aient/core/test/test_base_api.py,sha256=pWnycRJbuPSXKKU9AQjWrMAX1wiLC_014Qc9hh5C2Pw,524
24
24
  beswarm/aient/aient/core/test/test_geminimask.py,sha256=HFX8jDbNg_FjjgPNxfYaR-0-roUrOO-ND-FVsuxSoiw,13254
25
25
  beswarm/aient/aient/core/test/test_image.py,sha256=_T4peNGdXKBHHxyQNx12u-NTyFE8TlYI6NvvagsG2LE,319
26
26
  beswarm/aient/aient/core/test/test_payload.py,sha256=8jBiJY1uidm1jzL-EiK0s6UGmW9XkdsuuKFGrwFhFkw,2755
27
27
  beswarm/aient/aient/models/__init__.py,sha256=ZTiZgbfBPTjIPSKURE7t6hlFBVLRS9lluGbmqc1WjxQ,43
28
- beswarm/aient/aient/models/audio.py,sha256=kRd-8-WXzv4vwvsTGwnstK-WR8--vr9CdfCZzu8y9LA,1934
29
- beswarm/aient/aient/models/base.py,sha256=-nnihYnx-vHZMqeVO9ljjt3k4FcD3n-iMk4tT-10nRQ,7232
30
- beswarm/aient/aient/models/chatgpt.py,sha256=TWU-uPGL2WfGP7CdT2IkfNh3JYYJhV00fhr2mplISp4,42899
28
+ beswarm/aient/aient/models/audio.py,sha256=FNW4lxG1IhxOU7L8mvcbaeC1nXk_lpUZQlg9ijQ0h_Q,1937
29
+ beswarm/aient/aient/models/base.py,sha256=HWIGfa2A7OTccvHK0wG1-UlHB-yaWRC7hbi4oR1Mu1Y,7228
30
+ beswarm/aient/aient/models/chatgpt.py,sha256=n99RspEqdMrd8u3LLGWYgAdhDEZyibiaRASqrRVeIZw,43358
31
31
  beswarm/aient/aient/plugins/__init__.py,sha256=p3KO6Aa3Lupos4i2SjzLQw1hzQTigOAfEHngsldrsyk,986
32
32
  beswarm/aient/aient/plugins/arXiv.py,sha256=yHjb6PS3GUWazpOYRMKMzghKJlxnZ5TX8z9F6UtUVow,1461
33
33
  beswarm/aient/aient/plugins/config.py,sha256=TGgZ5SnNKZ8MmdznrZ-TEq7s2ulhAAwTSKH89bci3dA,7079
34
34
  beswarm/aient/aient/plugins/excute_command.py,sha256=b-rxsyFN6_HnZJAhUi9Qsp8iJ6XTf-zU-CIUIxeQO98,10869
35
35
  beswarm/aient/aient/plugins/get_time.py,sha256=Ih5XIW5SDAIhrZ9W4Qe5Hs1k4ieKPUc_LAd6ySNyqZk,654
36
- beswarm/aient/aient/plugins/image.py,sha256=ZElCIaZznE06TN9xW3DrSukS7U3A5_cjk1Jge4NzPxw,2072
36
+ beswarm/aient/aient/plugins/image.py,sha256=JR4iJ--uUk1abICwQjd9tVIk0-Vs8qMxn6z2lJwuQ4U,2075
37
37
  beswarm/aient/aient/plugins/list_directory.py,sha256=V_uKkLx_fQDL5z__bSDC-PqAP-o32KmQW6Pdhx0Fx0s,1433
38
38
  beswarm/aient/aient/plugins/read_file.py,sha256=qHAhdesOr1VMOCDkeHNvI8UV2ZI98HmJl6GhN4Aq9dU,9183
39
39
  beswarm/aient/aient/plugins/read_image.py,sha256=4FbIiMNVFUQpNyiH5ApGSRvOD9ujcXGyuqlGTJMd7ac,4017
@@ -43,17 +43,15 @@ beswarm/aient/aient/plugins/run_python.py,sha256=MohvdtZUTDLrHBDtJ9L2_Qu1pWAGrkb
43
43
  beswarm/aient/aient/plugins/websearch.py,sha256=aPsBjUQ3zQ4gzNrbVq7BMh28ENj9h_fSAeJFF2h9TNk,15334
44
44
  beswarm/aient/aient/plugins/write_file.py,sha256=Jt8fOEwqhYiSWpCbwfAr1xoi_BmFnx3076GMhuL06uI,3949
45
45
  beswarm/aient/aient/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
46
- beswarm/aient/aient/utils/prompt.py,sha256=UcSzKkFE4-h_1b6NofI6xgk3GoleqALRKY8VBaXLjmI,11311
47
- beswarm/aient/aient/utils/scripts.py,sha256=VqtK4RFEx7KxkmcqG3lFDS1DxoNlFFGErEjopVcc8IE,40974
46
+ beswarm/aient/aient/utils/prompt.py,sha256=ZvGAt_ImJ_CGbDnWgpsWskfSV5fCkpFKRpNQjYL7M7s,11100
47
+ beswarm/aient/aient/utils/scripts.py,sha256=Q0tS7E9AmdikO7GeDBd_3Ii5opXHCvKjDGqHsXen6_A,40622
48
48
  beswarm/aient/test/test_Web_crawler.py,sha256=l-DY0xwVPBfeEitUASkcIf19b4XwGrN-Ql_p7Dsbg_A,11410
49
49
  beswarm/aient/test/test_ddg_search.py,sha256=HnM72mwi4Yp87BymMmQ0eRd0-OJtyWEIUvJvN9QBhdg,1498
50
50
  beswarm/aient/test/test_google_search.py,sha256=rPaKqD_N3ogHYE5DrMfRmKumcVAHKC7LcYw5euR_zGM,1035
51
51
  beswarm/aient/test/test_ollama.py,sha256=ywy9l06S1g1AnWQvlBbhpac7i-hBB9bpwi-pk0Afivc,1325
52
52
  beswarm/aient/test/test_plugin.py,sha256=0sBwpf1YdKba-IVPZwBMKbLR7buHfudLS9NOETm7BTc,779
53
- beswarm/aient/test/test_search.py,sha256=-SRNOo2PvAAVmqIASFVq8WYmXqjLRonmHVEcBZkJAek,1171
54
53
  beswarm/aient/test/test_url.py,sha256=ASE3kT2-ooaX6Flw4botjXnuqaBgutqRWPx3fow5nLg,1894
55
- beswarm/aient/test/test_whisper.py,sha256=GxKYzhh3lA8t62V_DDj42VQTXkdjocSFcl5u96WF580,378
56
- beswarm/aient/test/test_yjh.py,sha256=MsHuBLNOqi3fyX-uboBKmTevkZW_KVv12p-pkF5ir3Y,787
54
+ beswarm/aient/test/test_whisper.py,sha256=f1Crge_EfKW3OpaCqfHApYGUtPFlFkxQTzqtJuM6MVo,379
57
55
  beswarm/bemcp/bemcp/__init__.py,sha256=Ss6bDXiZJgVIZS6KWytcGwXmIFu7SsagIXa5NpeWJ7c,140
58
56
  beswarm/bemcp/bemcp/decorator.py,sha256=23bNgwLjuUkpod5VcRv-UqlJTf91_wfztf8ls7-Gg08,3218
59
57
  beswarm/bemcp/bemcp/main.py,sha256=gtl3oyjAM_rwFw3kR-m-cUpS0FFTASnUOB8-fMrVT7g,8608
@@ -123,8 +121,8 @@ beswarm/tools/search_web.py,sha256=0fTeczXiOX_LJQGaLEGbuJtIPzofeuquGWEt3yDMtVw,1
123
121
  beswarm/tools/subtasks.py,sha256=NHDnmUhUPgDQKBACnpgErpFJRcsH0w_Q9VsyQjNvNHA,12658
124
122
  beswarm/tools/worker.py,sha256=mQ1qdrQ8MgL99byAbTvxfEByFFGN9mty3UHqHjARMQ8,2331
125
123
  beswarm/tools/write_csv.py,sha256=u0Hq18Ksfheb52MVtyLNCnSDHibITpsYBPs2ub7USYA,1466
126
- beswarm-0.3.0.dist-info/METADATA,sha256=-qDG_Ienu_busk_vfxWkoOSQLjvgPXQGB8g0wYQlkao,3877
127
- beswarm-0.3.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
128
- beswarm-0.3.0.dist-info/entry_points.txt,sha256=URK7Y4PDzBgxIecQnxsWTu4O-eaFa1CoAcNTWh5R7LM,45
129
- beswarm-0.3.0.dist-info/top_level.txt,sha256=pJw4O87wvt5882smuSO6DfByJz7FJ8SxxT8h9fHCmpo,8
130
- beswarm-0.3.0.dist-info/RECORD,,
124
+ beswarm-0.3.2.dist-info/METADATA,sha256=cZs62VmbA4HP3fml4T7u-R6jg3QKndIxvuICMZ_mlC8,3877
125
+ beswarm-0.3.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
126
+ beswarm-0.3.2.dist-info/entry_points.txt,sha256=URK7Y4PDzBgxIecQnxsWTu4O-eaFa1CoAcNTWh5R7LM,45
127
+ beswarm-0.3.2.dist-info/top_level.txt,sha256=pJw4O87wvt5882smuSO6DfByJz7FJ8SxxT8h9fHCmpo,8
128
+ beswarm-0.3.2.dist-info/RECORD,,
@@ -1,18 +0,0 @@
1
- import os
2
- from aient.models import chatgpt
3
-
4
- API = os.environ.get('API', None)
5
- API_URL = os.environ.get('API_URL', None)
6
- GPT_ENGINE = os.environ.get('GPT_ENGINE', 'gpt-4o')
7
-
8
- systemprompt = (
9
- "You are ChatGPT, a large language model trained by OpenAI. Respond conversationally"
10
- )
11
- bot = chatgpt(api_key=API, api_url=API_URL, engine=GPT_ENGINE, system_prompt=systemprompt, print_log=True)
12
- for text in bot.ask_stream("搜索上海的天气"):
13
- # for text in bot.ask_stream("我在广州市,想周一去香港,周四早上回来,是去游玩,请你帮我规划整个行程。包括细节,如交通,住宿,餐饮,价格,等等,最好细节到每天各个部分的时间,花费,等等,尽量具体,用户一看就能直接执行的那种"):
14
- # for text in bot.ask_stream("上海有哪些好玩的地方?"):
15
- # for text in bot.ask_stream("just say test"):
16
- # for text in bot.ask_stream("我在上海想去重庆旅游,我只有2000元预算,我想在重庆玩一周,你能帮我规划一下吗?"):
17
- # for text in bot.ask_stream("我在上海想去重庆旅游,我有一天的时间。你能帮我规划一下吗?"):
18
- print(text, end="")
@@ -1,21 +0,0 @@
1
- import os
2
- from datetime import datetime
3
-
4
- from aient.models import chatgpt
5
- from aient.utils import prompt
6
-
7
- API = os.environ.get('API', None)
8
- API_URL = os.environ.get('API_URL', None)
9
- GPT_ENGINE = os.environ.get('GPT_ENGINE', 'gpt-4o')
10
- LANGUAGE = os.environ.get('LANGUAGE', 'Simplified Chinese')
11
-
12
- current_date = datetime.now()
13
- Current_Date = current_date.strftime("%Y-%m-%d")
14
-
15
- systemprompt = os.environ.get('SYSTEMPROMPT', prompt.system_prompt.format(LANGUAGE, Current_Date))
16
-
17
- bot = chatgpt(api_key=API, api_url=API_URL, engine=GPT_ENGINE, system_prompt=systemprompt)
18
- for text in bot.ask_stream("arXiv:2210.10716 这篇文章讲了啥"):
19
- # for text in bot.ask_stream("今天的微博热搜有哪些?"):
20
- # for text in bot.ask_stream("你现在是什么版本?"):
21
- print(text, end="")