bella-companion 0.0.6__py3-none-any.whl → 0.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of bella-companion might be problematic. Click here for more details.

Files changed (27) hide show
  1. bella_companion/cli.py +21 -9
  2. bella_companion/fbd_empirical/__init__.py +4 -0
  3. bella_companion/fbd_empirical/notbooks.ipynb +85 -274
  4. bella_companion/fbd_empirical/run_beast.py +46 -32
  5. bella_companion/fbd_empirical/summarize_logs.py +15 -32
  6. bella_companion/simulations/__init__.py +8 -1
  7. bella_companion/simulations/figures/epi_skyline_results.py +2 -2
  8. bella_companion/simulations/figures/explain/pdp.py +21 -27
  9. bella_companion/simulations/figures/explain/shap.py +1 -1
  10. bella_companion/simulations/figures/fbd_2traits_results.py +1 -1
  11. bella_companion/simulations/figures/fbd_no_traits_results.py +2 -2
  12. bella_companion/simulations/figures/scenarios.py +2 -2
  13. bella_companion/simulations/generate_data.py +4 -2
  14. bella_companion/simulations/metrics.py +62 -0
  15. bella_companion/simulations/scenarios/epi_multitype.py +1 -1
  16. bella_companion/simulations/scenarios/fbd_2traits.py +1 -4
  17. bella_companion/simulations/summarize_logs.py +3 -4
  18. bella_companion/utils/__init__.py +7 -11
  19. bella_companion/utils/beast.py +2 -2
  20. {bella_companion-0.0.6.dist-info → bella_companion-0.0.8.dist-info}/METADATA +2 -2
  21. bella_companion-0.0.8.dist-info/RECORD +42 -0
  22. bella_companion/fbd_empirical/figure.py +0 -37
  23. bella_companion/fbd_empirical/params.json +0 -11
  24. bella_companion-0.0.6.dist-info/RECORD +0 -42
  25. /bella_companion/{utils/plots.py → simulations/figures/utils.py} +0 -0
  26. {bella_companion-0.0.6.dist-info → bella_companion-0.0.8.dist-info}/WHEEL +0 -0
  27. {bella_companion-0.0.6.dist-info → bella_companion-0.0.8.dist-info}/entry_points.txt +0 -0
@@ -7,313 +7,71 @@
7
7
  "metadata": {},
8
8
  "outputs": [],
9
9
  "source": [
10
- "import json\n",
11
10
  "import os\n",
12
11
  "\n",
12
+ "import numpy as np\n",
13
13
  "import polars as pl\n",
14
+ "from phylogenie import load_newick, get_node_depths\n",
14
15
  "\n",
15
16
  "log_summary = pl.read_csv(\n",
16
- " os.path.join(\"../../logs_summaries\", \"fbd-empirical\", \"MLP.csv\")\n",
17
+ " \"/Users/gmarino/BELLA-companion/log_summaries/fbd-empirical/MLP.csv\"\n",
17
18
  ")\n",
18
19
  "\n",
19
- "with open(os.path.join(\"params\", \"MLP.json\"), \"r\") as f:\n",
20
- " params = json.load(f)\n",
21
- "states = params[\"types\"].split(\",\")\n",
22
20
  "change_times = (\n",
23
21
  " pl.read_csv(os.path.join(\"data\", \"change_times.csv\"), has_header=False)\n",
24
22
  " .to_series()\n",
25
23
  " .to_list()\n",
26
- ")"
27
- ]
28
- },
29
- {
30
- "cell_type": "code",
31
- "execution_count": 34,
32
- "id": "c3827211",
33
- "metadata": {},
34
- "outputs": [],
35
- "source": [
36
- "from phylogenie import load_newick\n",
37
- "\n",
38
- "trees = load_newick(\"data/trees.nwk\")"
39
- ]
40
- },
41
- {
42
- "cell_type": "code",
43
- "execution_count": 36,
44
- "id": "982d2c52",
45
- "metadata": {},
46
- "outputs": [
47
- {
48
- "data": {
49
- "text/plain": [
50
- "[0.0117,\n",
51
- " 0.126,\n",
52
- " 0.781,\n",
53
- " 1.8,\n",
54
- " 2.58,\n",
55
- " 3.6,\n",
56
- " 5.333,\n",
57
- " 7.246,\n",
58
- " 11.63,\n",
59
- " 13.82,\n",
60
- " 15.97,\n",
61
- " 20.44,\n",
62
- " 23.03,\n",
63
- " 28.1,\n",
64
- " 33.9,\n",
65
- " 37.8,\n",
66
- " 41.2,\n",
67
- " 47.8,\n",
68
- " 56.0,\n",
69
- " 59.2,\n",
70
- " 61.6,\n",
71
- " 66.0,\n",
72
- " 72.1,\n",
73
- " 83.6,\n",
74
- " 86.3,\n",
75
- " 89.8,\n",
76
- " 93.9,\n",
77
- " 100.5,\n",
78
- " 113.0,\n",
79
- " 125.0,\n",
80
- " 129.4,\n",
81
- " 132.9,\n",
82
- " 139.8,\n",
83
- " 145.0]"
84
- ]
85
- },
86
- "execution_count": 36,
87
- "metadata": {},
88
- "output_type": "execute_result"
89
- }
90
- ],
91
- "source": [
92
- "change_times"
93
- ]
94
- },
95
- {
96
- "cell_type": "code",
97
- "execution_count": 41,
98
- "id": "17b57fd9",
99
- "metadata": {},
100
- "outputs": [
101
- {
102
- "data": {
103
- "text/plain": [
104
- "67.52300000000002"
105
- ]
106
- },
107
- "execution_count": 41,
108
- "metadata": {},
109
- "output_type": "execute_result"
110
- }
111
- ],
112
- "source": [
113
- "min([max(tip.get_time() for tip in tree.get_leaves()) for tree in trees])"
114
- ]
115
- },
116
- {
117
- "cell_type": "code",
118
- "execution_count": 32,
119
- "id": "2b51dd84",
120
- "metadata": {},
121
- "outputs": [
122
- {
123
- "data": {
124
- "text/html": [
125
- "<div><style>\n",
126
- ".dataframe > thead > tr,\n",
127
- ".dataframe > tbody > tr {\n",
128
- " text-align: right;\n",
129
- " white-space: pre-wrap;\n",
130
- "}\n",
131
- "</style>\n",
132
- "<small>shape: (100, 1_122)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>id</th><th>n_samples</th><th>birthRatei0_0_median</th><th>birthRatei0_0_ess</th><th>birthRatei0_0_lower</th><th>birthRatei0_0_upper</th><th>birthRatei0_1_median</th><th>birthRatei0_1_ess</th><th>birthRatei0_1_lower</th><th>birthRatei0_1_upper</th><th>birthRatei0_2_median</th><th>birthRatei0_2_ess</th><th>birthRatei0_2_lower</th><th>birthRatei0_2_upper</th><th>birthRatei0_3_median</th><th>birthRatei0_3_ess</th><th>birthRatei0_3_lower</th><th>birthRatei0_3_upper</th><th>birthRatei1_0_median</th><th>birthRatei1_0_ess</th><th>birthRatei1_0_lower</th><th>birthRatei1_0_upper</th><th>birthRatei1_1_median</th><th>birthRatei1_1_ess</th><th>birthRatei1_1_lower</th><th>birthRatei1_1_upper</th><th>birthRatei1_2_median</th><th>birthRatei1_2_ess</th><th>birthRatei1_2_lower</th><th>birthRatei1_2_upper</th><th>birthRatei1_3_median</th><th>birthRatei1_3_ess</th><th>birthRatei1_3_lower</th><th>birthRatei1_3_upper</th><th>birthRatei2_0_median</th><th>birthRatei2_0_ess</th><th>birthRatei2_0_lower</th><th>&hellip;</th><th>deathRatei32_2_upper</th><th>deathRatei32_3_median</th><th>deathRatei32_3_ess</th><th>deathRatei32_3_lower</th><th>deathRatei32_3_upper</th><th>deathRatei33_0_median</th><th>deathRatei33_0_ess</th><th>deathRatei33_0_lower</th><th>deathRatei33_0_upper</th><th>deathRatei33_1_median</th><th>deathRatei33_1_ess</th><th>deathRatei33_1_lower</th><th>deathRatei33_1_upper</th><th>deathRatei33_2_median</th><th>deathRatei33_2_ess</th><th>deathRatei33_2_lower</th><th>deathRatei33_2_upper</th><th>deathRatei33_3_median</th><th>deathRatei33_3_ess</th><th>deathRatei33_3_lower</th><th>deathRatei33_3_upper</th><th>deathRatei34_0_median</th><th>deathRatei34_0_ess</th><th>deathRatei34_0_lower</th><th>deathRatei34_0_upper</th><th>deathRatei34_1_median</th><th>deathRatei34_1_ess</th><th>deathRatei34_1_lower</th><th>deathRatei34_1_upper</th><th>deathRatei34_2_median</th><th>deathRatei34_2_ess</th><th>deathRatei34_2_lower</th><th>deathRatei34_2_upper</th><th>deathRatei34_3_median</th><th>deathRatei34_3_ess</th><th>deathRatei34_3_lower</th><th>deathRatei34_3_upper</th></tr><tr><td>i64</td><td>i64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>&hellip;</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td></tr></thead><tbody><tr><td>62</td><td>2876</td><td>0.693985</td><td>19.826997</td><td>0.421693</td><td>1.015667</td><td>0.853004</td><td>16.684122</td><td>0.533527</td><td>1.156743</td><td>0.9444</td><td>28.777145</td><td>0.656214</td><td>1.217372</td><td>1.001155</td><td>33.922025</td><td>0.723881</td><td>1.270293</td><td>0.688578</td><td>19.781814</td><td>0.425238</td><td>1.006446</td><td>0.851725</td><td>16.544671</td><td>0.542898</td><td>1.152573</td><td>0.944202</td><td>28.619794</td><td>0.660257</td><td>1.208472</td><td>1.001432</td><td>32.893602</td><td>0.756131</td><td>1.294114</td><td>0.680438</td><td>19.765233</td><td>0.428773</td><td>&hellip;</td><td>1.259936</td><td>1.148662</td><td>8.568807</td><td>0.949298</td><td>1.345605</td><td>0.478394</td><td>32.374448</td><td>0.367512</td><td>0.604625</td><td>0.942854</td><td>3.237146</td><td>0.805392</td><td>1.068139</td><td>1.119762</td><td>11.436921</td><td>0.963062</td><td>1.262639</td><td>1.151141</td><td>8.235175</td><td>0.950386</td><td>1.347846</td><td>0.478573</td><td>32.303999</td><td>0.367646</td><td>0.604854</td><td>0.943123</td><td>3.233036</td><td>0.805528</td><td>1.068406</td><td>1.120033</td><td>11.367764</td><td>0.963163</td><td>1.262921</td><td>1.151385</td><td>8.20127</td><td>0.950624</td><td>1.348079</td></tr><tr><td>85</td><td>2668</td><td>0.490425</td><td>130.489644</td><td>0.31023</td><td>0.749664</td><td>0.595885</td><td>89.252381</td><td>0.358524</td><td>0.872832</td><td>0.745538</td><td>149.040222</td><td>0.46275</td><td>1.011871</td><td>0.875619</td><td>235.05898</td><td>0.601443</td><td>1.142838</td><td>0.489382</td><td>130.650625</td><td>0.310153</td><td>0.737776</td><td>0.596843</td><td>88.359182</td><td>0.35512</td><td>0.855681</td><td>0.750362</td><td>152.261796</td><td>0.469996</td><td>1.007025</td><td>0.879743</td><td>234.431705</td><td>0.613787</td><td>1.141387</td><td>0.48787</td><td>131.068826</td><td>0.320551</td><td>&hellip;</td><td>1.262938</td><td>1.186046</td><td>87.92688</td><td>1.004321</td><td>1.335282</td><td>0.516892</td><td>132.30799</td><td>0.4173</td><td>0.61924</td><td>0.929992</td><td>15.11291</td><td>0.818195</td><td>1.048126</td><td>1.13912</td><td>42.950472</td><td>1.006059</td><td>1.266975</td><td>1.18934</td><td>88.331253</td><td>1.006122</td><td>1.336662</td><td>0.517174</td><td>131.796658</td><td>0.418967</td><td>0.621008</td><td>0.930367</td><td>15.00642</td><td>0.818435</td><td>1.048648</td><td>1.139445</td><td>42.709596</td><td>1.007028</td><td>1.267958</td><td>1.189636</td><td>88.36797</td><td>1.006502</td><td>1.336853</td></tr><tr><td>87</td><td>2674</td><td>0.564769</td><td>135.210069</td><td>0.34646</td><td>0.852436</td><td>0.688836</td><td>48.781184</td><td>0.438499</td><td>0.950486</td><td>0.776685</td><td>17.16335</td><td>0.532577</td><td>1.032804</td><td>0.833511</td><td>21.885751</td><td>0.602177</td><td>1.097495</td><td>0.561176</td><td>135.840153</td><td>0.349551</td><td>0.840921</td><td>0.687809</td><td>46.673257</td><td>0.44248</td><td>0.942664</td><td>0.777776</td><td>16.925151</td><td>0.537058</td><td>1.025449</td><td>0.83363</td><td>22.414582</td><td>0.602246</td><td>1.087687</td><td>0.556036</td><td>137.078111</td><td>0.361445</td><td>&hellip;</td><td>1.192288</td><td>1.069168</td><td>7.1455</td><td>0.874858</td><td>1.262046</td><td>0.479415</td><td>14.862635</td><td>0.359431</td><td>0.598006</td><td>0.887083</td><td>8.330413</td><td>0.724854</td><td>1.003692</td><td>1.053696</td><td>5.812196</td><td>0.882208</td><td>1.195994</td><td>1.072841</td><td>6.943537</td><td>0.878173</td><td>1.268179</td><td>0.479612</td><td>14.77382</td><td>0.359578</td><td>0.598234</td><td>0.887461</td><td>8.306868</td><td>0.72504</td><td>1.0041</td><td>1.054034</td><td>5.799542</td><td>0.882393</td><td>1.196487</td><td>1.07319</td><td>6.92437</td><td>0.881097</td><td>1.271151</td></tr><tr><td>33</td><td>2751</td><td>0.534697</td><td>102.937531</td><td>0.356077</td><td>0.809452</td><td>0.618932</td><td>127.761794</td><td>0.40958</td><td>0.865534</td><td>0.736746</td><td>70.601018</td><td>0.467096</td><td>0.993424</td><td>0.852961</td><td>95.758783</td><td>0.573644</td><td>1.112825</td><td>0.533273</td><td>105.374688</td><td>0.349778</td><td>0.790423</td><td>0.620133</td><td>127.94122</td><td>0.410832</td><td>0.853519</td><td>0.740206</td><td>69.817061</td><td>0.480405</td><td>0.993788</td><td>0.85682</td><td>96.750855</td><td>0.59056</td><td>1.114747</td><td>0.532421</td><td>109.460875</td><td>0.359312</td><td>&hellip;</td><td>1.303744</td><td>1.256283</td><td>18.042069</td><td>1.013824</td><td>1.446505</td><td>0.585534</td><td>48.658862</td><td>0.458126</td><td>0.700928</td><td>0.941809</td><td>96.564143</td><td>0.825276</td><td>1.058757</td><td>1.159708</td><td>27.723495</td><td>1.000806</td><td>1.304243</td><td>1.260711</td><td>17.843174</td><td>1.024461</td><td>1.458629</td><td>0.58595</td><td>48.447042</td><td>0.458274</td><td>0.701241</td><td>0.942247</td><td>96.36097</td><td>0.825662</td><td>1.059235</td><td>1.160111</td><td>27.671828</td><td>1.001188</td><td>1.304674</td><td>1.261206</td><td>17.823456</td><td>1.024634</td><td>1.459071</td></tr><tr><td>48</td><td>2815</td><td>0.436121</td><td>92.940512</td><td>0.260961</td><td>0.620777</td><td>0.500988</td><td>72.642316</td><td>0.289215</td><td>0.735402</td><td>0.601485</td><td>81.25929</td><td>0.326528</td><td>0.842131</td><td>0.707924</td><td>121.794697</td><td>0.412851</td><td>0.953777</td><td>0.438183</td><td>93.008648</td><td>0.269966</td><td>0.620567</td><td>0.504182</td><td>72.184421</td><td>0.293175</td><td>0.732408</td><td>0.606975</td><td>82.213414</td><td>0.334544</td><td>0.840791</td><td>0.71341</td><td>124.754178</td><td>0.450663</td><td>0.978285</td><td>0.43931</td><td>93.30228</td><td>0.271298</td><td>&hellip;</td><td>1.148198</td><td>1.088797</td><td>58.848135</td><td>0.901738</td><td>1.250732</td><td>0.550377</td><td>119.069258</td><td>0.446257</td><td>0.659052</td><td>0.840426</td><td>12.044359</td><td>0.73925</td><td>0.941142</td><td>1.007859</td><td>11.81039</td><td>0.878273</td><td>1.152024</td><td>1.091153</td><td>58.75621</td><td>0.906041</td><td>1.25563</td><td>0.550538</td><td>118.757945</td><td>0.444753</td><td>0.657713</td><td>0.840692</td><td>11.972781</td><td>0.739512</td><td>0.941462</td><td>1.008202</td><td>11.769669</td><td>0.87845</td><td>1.152315</td><td>1.091431</td><td>58.757302</td><td>0.906301</td><td>1.255821</td></tr><tr><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td><td>&hellip;</td></tr><tr><td>56</td><td>2740</td><td>0.595993</td><td>12.202018</td><td>0.37213</td><td>0.882339</td><td>0.752628</td><td>30.576532</td><td>0.46217</td><td>1.035905</td><td>0.899757</td><td>142.214998</td><td>0.601703</td><td>1.206184</td><td>1.001618</td><td>81.901812</td><td>0.718908</td><td>1.326703</td><td>0.593968</td><td>12.42533</td><td>0.374921</td><td>0.871815</td><td>0.7533</td><td>31.688419</td><td>0.469965</td><td>1.032509</td><td>0.901941</td><td>142.516538</td><td>0.588648</td><td>1.180157</td><td>1.0036</td><td>78.441656</td><td>0.733732</td><td>1.32983</td><td>0.591007</td><td>12.687353</td><td>0.381081</td><td>&hellip;</td><td>1.324113</td><td>1.292516</td><td>46.22215</td><td>1.095933</td><td>1.475254</td><td>0.563305</td><td>34.267685</td><td>0.445142</td><td>0.679184</td><td>0.971328</td><td>8.18824</td><td>0.853968</td><td>1.084773</td><td>1.187075</td><td>80.426577</td><td>1.046923</td><td>1.32752</td><td>1.294849</td><td>45.600741</td><td>1.099307</td><td>1.478067</td><td>0.563451</td><td>34.139309</td><td>0.445162</td><td>0.679404</td><td>0.971583</td><td>8.154893</td><td>0.854081</td><td>1.084947</td><td>1.187373</td><td>80.118548</td><td>1.047138</td><td>1.327874</td><td>1.295098</td><td>45.542932</td><td>1.099635</td><td>1.478354</td></tr><tr><td>88</td><td>2641</td><td>0.470702</td><td>10.542007</td><td>0.277331</td><td>0.729796</td><td>0.630631</td><td>5.899181</td><td>0.329448</td><td>0.94537</td><td>0.831339</td><td>6.657945</td><td>0.448771</td><td>1.144482</td><td>0.993672</td><td>15.855671</td><td>0.633517</td><td>1.326254</td><td>0.470821</td><td>10.641254</td><td>0.258603</td><td>0.698697</td><td>0.632783</td><td>5.881861</td><td>0.323211</td><td>0.927088</td><td>0.837629</td><td>6.700819</td><td>0.464789</td><td>1.146632</td><td>0.999964</td><td>16.483229</td><td>0.657607</td><td>1.331421</td><td>0.470587</td><td>10.788543</td><td>0.263278</td><td>&hellip;</td><td>1.390742</td><td>1.352342</td><td>53.634694</td><td>1.172382</td><td>1.536423</td><td>0.534672</td><td>103.715659</td><td>0.430745</td><td>0.639321</td><td>0.981434</td><td>17.498531</td><td>0.869782</td><td>1.089161</td><td>1.245095</td><td>45.434702</td><td>1.098812</td><td>1.393209</td><td>1.354951</td><td>53.516234</td><td>1.175528</td><td>1.539724</td><td>0.534915</td><td>103.209122</td><td>0.430938</td><td>0.639589</td><td>0.981798</td><td>17.322943</td><td>0.87009</td><td>1.089489</td><td>1.245332</td><td>45.396994</td><td>1.099053</td><td>1.393598</td><td>1.355223</td><td>53.503717</td><td>1.17583</td><td>1.539876</td></tr><tr><td>12</td><td>3005</td><td>0.418971</td><td>4.946417</td><td>0.236039</td><td>0.724696</td><td>0.532466</td><td>6.299282</td><td>0.293499</td><td>0.829479</td><td>0.672498</td><td>20.089662</td><td>0.396499</td><td>0.931568</td><td>0.777163</td><td>75.368265</td><td>0.512923</td><td>1.036294</td><td>0.418217</td><td>4.925229</td><td>0.249858</td><td>0.725312</td><td>0.534497</td><td>6.264856</td><td>0.29926</td><td>0.824589</td><td>0.67508</td><td>20.658169</td><td>0.413097</td><td>0.934496</td><td>0.779493</td><td>78.503269</td><td>0.514725</td><td>1.026762</td><td>0.417758</td><td>4.906633</td><td>0.254933</td><td>&hellip;</td><td>1.101374</td><td>1.002687</td><td>34.880281</td><td>0.816247</td><td>1.191438</td><td>0.413562</td><td>103.974143</td><td>0.315816</td><td>0.511001</td><td>0.772218</td><td>2.268147</td><td>0.626116</td><td>0.889198</td><td>0.962785</td><td>3.522184</td><td>0.815193</td><td>1.107084</td><td>1.005614</td><td>33.996523</td><td>0.816794</td><td>1.192828</td><td>0.413713</td><td>104.256872</td><td>0.315906</td><td>0.511283</td><td>0.772515</td><td>2.266541</td><td>0.626221</td><td>0.889595</td><td>0.963081</td><td>3.514639</td><td>0.814705</td><td>1.106831</td><td>1.00596</td><td>33.904835</td><td>0.816837</td><td>1.193056</td></tr><tr><td>2</td><td>2764</td><td>0.415988</td><td>27.807942</td><td>0.235356</td><td>0.636994</td><td>0.455794</td><td>24.348993</td><td>0.215494</td><td>0.728394</td><td>0.515485</td><td>23.602885</td><td>0.245284</td><td>0.928573</td><td>0.60314</td><td>26.031743</td><td>0.272872</td><td>1.066282</td><td>0.417945</td><td>27.1361</td><td>0.237465</td><td>0.633476</td><td>0.459598</td><td>23.766705</td><td>0.219193</td><td>0.727203</td><td>0.523215</td><td>23.237175</td><td>0.253147</td><td>0.930025</td><td>0.616427</td><td>25.824943</td><td>0.285935</td><td>1.079787</td><td>0.420296</td><td>26.24093</td><td>0.237915</td><td>&hellip;</td><td>1.030563</td><td>0.927049</td><td>79.339674</td><td>0.776666</td><td>1.087707</td><td>0.397652</td><td>262.004477</td><td>0.310488</td><td>0.482611</td><td>0.773378</td><td>28.607023</td><td>0.649355</td><td>0.874705</td><td>0.913543</td><td>74.816953</td><td>0.77743</td><td>1.030551</td><td>0.927163</td><td>79.413028</td><td>0.776692</td><td>1.087745</td><td>0.397654</td><td>262.009776</td><td>0.310487</td><td>0.482618</td><td>0.773382</td><td>28.600279</td><td>0.649342</td><td>0.874704</td><td>0.913542</td><td>74.806779</td><td>0.777436</td><td>1.03055</td><td>0.927183</td><td>79.420179</td><td>0.776688</td><td>1.087758</td></tr><tr><td>36</td><td>2875</td><td>0.486941</td><td>9.449881</td><td>0.25109</td><td>0.715372</td><td>0.581879</td><td>3.528417</td><td>0.297731</td><td>0.865008</td><td>0.712698</td><td>3.527537</td><td>0.387696</td><td>1.009476</td><td>0.834264</td><td>4.921266</td><td>0.527455</td><td>1.141686</td><td>0.485197</td><td>9.644045</td><td>0.25462</td><td>0.705194</td><td>0.583601</td><td>3.522249</td><td>0.299615</td><td>0.856099</td><td>0.71645</td><td>3.550901</td><td>0.403005</td><td>1.011802</td><td>0.839317</td><td>5.039669</td><td>0.545721</td><td>1.144529</td><td>0.482739</td><td>9.954218</td><td>0.262472</td><td>&hellip;</td><td>1.243009</td><td>1.216931</td><td>26.895806</td><td>1.013291</td><td>1.40475</td><td>0.505712</td><td>74.173283</td><td>0.394102</td><td>0.629561</td><td>0.888143</td><td>5.903413</td><td>0.772737</td><td>1.006653</td><td>1.106381</td><td>19.195935</td><td>0.972943</td><td>1.24644</td><td>1.22093</td><td>26.834034</td><td>1.016913</td><td>1.408144</td><td>0.506001</td><td>74.242481</td><td>0.394348</td><td>0.629881</td><td>0.888558</td><td>5.894977</td><td>0.772974</td><td>1.007052</td><td>1.106786</td><td>19.119009</td><td>0.973149</td><td>1.246792</td><td>1.221205</td><td>26.821876</td><td>1.017002</td><td>1.408461</td></tr></tbody></table></div>"
133
- ],
134
- "text/plain": [
135
- "shape: (100, 1_122)\n",
136
- "┌─────┬───────────┬────────────┬────────────┬───┬────────────┬────────────┬────────────┬───────────┐\n",
137
- "│ id ┆ n_samples ┆ birthRatei ┆ birthRatei ┆ … ┆ deathRatei ┆ deathRatei ┆ deathRatei ┆ deathRate │\n",
138
- "│ --- ┆ --- ┆ 0_0_median ┆ 0_0_ess ┆ ┆ 34_3_media ┆ 34_3_ess ┆ 34_3_lower ┆ i34_3_upp │\n",
139
- "│ i64 ┆ i64 ┆ --- ┆ --- ┆ ┆ n ┆ --- ┆ --- ┆ er │\n",
140
- "│ ┆ ┆ f64 ┆ f64 ┆ ┆ --- ┆ f64 ┆ f64 ┆ --- │\n",
141
- "│ ┆ ┆ ┆ ┆ ┆ f64 ┆ ┆ ┆ f64 │\n",
142
- "╞═════╪═══════════╪════════════╪════════════╪═══╪════════════╪════════════╪════════════╪═══════════╡\n",
143
- "│ 62 ┆ 2876 ┆ 0.693985 ┆ 19.826997 ┆ … ┆ 1.151385 ┆ 8.20127 ┆ 0.950624 ┆ 1.348079 │\n",
144
- "│ 85 ┆ 2668 ┆ 0.490425 ┆ 130.489644 ┆ … ┆ 1.189636 ┆ 88.36797 ┆ 1.006502 ┆ 1.336853 │\n",
145
- "│ 87 ┆ 2674 ┆ 0.564769 ┆ 135.210069 ┆ … ┆ 1.07319 ┆ 6.92437 ┆ 0.881097 ┆ 1.271151 │\n",
146
- "│ 33 ┆ 2751 ┆ 0.534697 ┆ 102.937531 ┆ … ┆ 1.261206 ┆ 17.823456 ┆ 1.024634 ┆ 1.459071 │\n",
147
- "│ 48 ┆ 2815 ┆ 0.436121 ┆ 92.940512 ┆ … ┆ 1.091431 ┆ 58.757302 ┆ 0.906301 ┆ 1.255821 │\n",
148
- "│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │\n",
149
- "│ 56 ┆ 2740 ┆ 0.595993 ┆ 12.202018 ┆ … ┆ 1.295098 ┆ 45.542932 ┆ 1.099635 ┆ 1.478354 │\n",
150
- "│ 88 ┆ 2641 ┆ 0.470702 ┆ 10.542007 ┆ … ┆ 1.355223 ┆ 53.503717 ┆ 1.17583 ┆ 1.539876 │\n",
151
- "│ 12 ┆ 3005 ┆ 0.418971 ┆ 4.946417 ┆ … ┆ 1.00596 ┆ 33.904835 ┆ 0.816837 ┆ 1.193056 │\n",
152
- "│ 2 ┆ 2764 ┆ 0.415988 ┆ 27.807942 ┆ … ┆ 0.927183 ┆ 79.420179 ┆ 0.776688 ┆ 1.087758 │\n",
153
- "│ 36 ┆ 2875 ┆ 0.486941 ┆ 9.449881 ┆ … ┆ 1.221205 ┆ 26.821876 ┆ 1.017002 ┆ 1.408461 │\n",
154
- "└─────┴───────────┴────────────┴────────────┴───┴────────────┴────────────┴────────────┴───────────┘"
155
- ]
156
- },
157
- "execution_count": 32,
158
- "metadata": {},
159
- "output_type": "execute_result"
160
- }
161
- ],
162
- "source": [
163
- "log_summary"
24
+ ")\n",
25
+ "max_time = max(\n",
26
+ " max(get_node_depths(tree).values())\n",
27
+ " for tree in load_newick(os.path.join(\"data\", \"trees.nwk\"))\n",
28
+ ")\n",
29
+ "time_bins = list(reversed([0.0, *change_times, max_time]))"
164
30
  ]
165
31
  },
166
32
  {
167
33
  "cell_type": "code",
168
34
  "execution_count": 6,
169
- "id": "dc577d10",
170
- "metadata": {},
171
- "outputs": [],
172
- "source": [
173
- "import matplotlib.pyplot as plt"
174
- ]
175
- },
176
- {
177
- "cell_type": "code",
178
- "execution_count": 28,
179
- "id": "449dc222",
180
- "metadata": {},
181
- "outputs": [
182
- {
183
- "data": {
184
- "text/plain": [
185
- "[0.7826991010292472,\n",
186
- " 0.7879111447566347,\n",
187
- " 0.794489478861548,\n",
188
- " 0.7967554017240761,\n",
189
- " 0.8007872408824712,\n",
190
- " 0.8084909423295531,\n",
191
- " 0.8211630216254208,\n",
192
- " 0.8255987626717776,\n",
193
- " 0.8297580720254483,\n",
194
- " 0.8326075629383715,\n",
195
- " 0.8347247455590027,\n",
196
- " 0.8429055146685471,\n",
197
- " 0.8457501186136401,\n",
198
- " 0.8476184171603736,\n",
199
- " 0.8480032143571185,\n",
200
- " 0.8501932591754192,\n",
201
- " 0.8552802107849583,\n",
202
- " 0.8578485148484045,\n",
203
- " 0.8600435392096155,\n",
204
- " 0.8621790002757891,\n",
205
- " 0.8681628522023002,\n",
206
- " 0.8721299457372755,\n",
207
- " 0.8740792325524811,\n",
208
- " 0.8767065345154602,\n",
209
- " 0.8780390709794985,\n",
210
- " 0.878994583671072,\n",
211
- " 0.8690130540974841,\n",
212
- " 0.8704965694136284,\n",
213
- " 0.8717182405800625,\n",
214
- " 0.8715811034846244,\n",
215
- " 0.8723789234064153,\n",
216
- " 0.8711320310281596,\n",
217
- " 0.8714738870323686,\n",
218
- " 0.8715165362987789,\n",
219
- " 0.8715362407029129]"
220
- ]
221
- },
222
- "execution_count": 28,
223
- "metadata": {},
224
- "output_type": "execute_result"
225
- }
226
- ],
227
- "source": [
228
- "estimates"
229
- ]
230
- },
231
- {
232
- "cell_type": "code",
233
- "execution_count": 29,
234
- "id": "b27d7d8d",
235
- "metadata": {},
236
- "outputs": [
237
- {
238
- "data": {
239
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAALYxJREFUeJzt3Qt0VOW5//Fnck+QBBG5o9CWCmhUCoeI+l+HVk6RBVqwy6qIUEREjwiVnqOgXE61iq2Fg0XOwXaVVqsg0qNtxYoXkFYrQgUvIJfC0gIGuRVIJAnktv/reXViEibJXPPuy/ez1kBmMpPsd89kz2+e97JDjuM4AgAAYEmarV8MAACgCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArMoQD6itrZX9+/dL27ZtJRQK2d4cAAAQBV1X9bPPPpOuXbtKWlqat8OIBpEePXrY3gwAABCHffv2Sffu3b0dRrQiEm5Mfn6+7c0BAABRKC0tNcWE8Pu4p8NIuGtGgwhhBAAAb2lpiAUDWAEAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFjliXPTAPj8VNxORUXUuyKUm9vi+SAAwA0II4BHgsieMTdKxbvvRv2Y7L59pedTv9UzVEX8PmEFgFsQRgAP0IpILEFEndq+XXYOGBh3WGlthCMguAgjgMf0/uubkpab2/QdHEf+MfYmE0YSCSutLfcb35Bzn36KriUggAgjgMdoEEnLy2v2Pr2e+7+mx5dEGVZaW8XmzVJz9GjzQStKVFkAbyGMAD6kA1dDzQSWZsNKK6utqJBdl11uvg7/nyiqLIC3EEYCNsMC8fPTp+2Wwkpr71cND1oZsV1l8dNzDHhJYMOIL97EXVpu96tkD/jkje+L/RAKmbEiyfh7TLTKQkUFsCO4YaSiQnZ+Y4DtzYCHJHvAJ298ya/UJFpl0cfpscEtVSMgKAIbRvzEbVM0fSdFFahYuhL0Ez9SV2WpX1Fpal9TyQJSJ7BhRA8s523eJH7AQTL1kjngMxUDNpG8KktTzwmVLCB1ghtGXDSAD8F6vSTSlaCP08cjuaJ5TujCAVInsGEE8OKATapgrf+c1K9kAUgNwghgAZU59+E5AewhjABAlKIZSEz1CogdYQQAohRNdw0DXYHYEUYAIIkDjpN5jp2WtovVYuEXIUeXInW50tJSKSgokJKSEsnPz7e9OQACJpoVm1t7oCsVGHhBtO/fVEYAIAmDW1Nxjp3WrMBQaYFNVEYAwEPnvEpVBYZKC1KByggA+HB6cKoqMLFUWqiiINmojABAgCsw8VRaqKIgWlRGAMCnbJ+egKXxkWwMYAWAAIvl9AQsjY9UIYwAQMDFU2mJZjXaup/PmihoAWEEABCzWMaZMMYELSGMAABSOpOntValbQkVGvdiNg0AICUzedw2xiS7b1/p+dRvtV8q4vcJK8nHbBoAgNXxJa29Km1LTm3fLjsHDGzy+3Qn2UM3DQDA+kydlHIc+cfYm0wYaQ5Tlu0hjAAAPL0qbTR6Pfd/TYai+t1JscwSCqN7J3GEEQCA70UbiuIZ40L3TuLSkvAzAADwrPDYlniFu3cQPyojAIBAi3dsi9tmC3kZYQQAEHhuGdsSVHTTAAAAq6iMAACQoEizcJhlEz3CCAAACYo0doRZNtGjmwYAgBTMwgmfk6e2vPy0iy6rjy9xbhoAAJJ4rp5oZtkEpWpSWloqBQUFUlJSIvn5+U3ej24aAACSOAsnmnPyxHsm41Buri8DDJURAABa6ezGia5Nkuuxikq0lRHGjAAAkGQaFtLy8k67pLdvz2qvEdBNAwBAK2G118gIIwAAeGi111ofrmlCGAEAwEN2+XBNE8aMAADggzVNHA+fOZjKCAAAHh1rUltvdk7j7hsvdd0QRgAA8MFYk12Num+81HVDNw0AAD7svqnwUNcNlREAAHzUfVOb4MJqNhBGAAAI8FRhN6CbBgAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWMbUXAACfqv1i/RG3Lw1PGAEAwKd2fbH4mduXhqebBgAAny8RX+HypeGpjAAA4NMl4ms9sjR8XJWRxYsXS8+ePSUnJ0eKiopk48aNzd5/4cKFct5550lubq706NFD7rrrLjl58mS82wwAAFoIJGl5eZKWmyteEHMYWbFihUyfPl3mzp0rmzdvlosuukiGDRsmhw4dinj/ZcuWyYwZM8z9t2/fLr/61a/Mz7j33nuTsf0AAMDjYg4jCxYskEmTJsmECROkX79+smTJEsnLy5OlS5dGvP9bb70ll112mYwZM8ZUU7797W/LDTfc0GI1BQAAJI922dSWl4vjOOLpMSOVlZWyadMmmTlzZt1taWlpMnToUFm/fn3Ex1x66aXy1FNPmfAxaNAg+eijj+RPf/qT3HTTTYlvPcyLqqLavYOSYpWb4e7pZ7aft6DsHwDBmlkTUxg5cuSI1NTUSKdOnRrcrtd37NgR8TFaEdHHXX755eYAXF1dLbfddluz3TSnTp0yl7DS0tJYNjMwdH+Oe2mcvHf4PfGLPu37yBNXPiFulKwgkMjz1r9jf7N/3HQQAeD+mTUVmzefNrMmlJcngZlNs27dOnnooYfkf/7nf8xg1927d8u0adPkgQcekNmzZ0d8zLx58+RHP/pRqjfN8/STtZ+CiNpxdIcULSsSPwelRJ63dw+9ax6fl+megwgA782sqXXZYmgxhZEOHTpIenq6HDx4sMHter1z584RH6OBQ7tkbrnlFnO9sLBQysrK5NZbb5X77rvPdPM0pt1AOki2fmVEZ+Ekkx+6N+pv/7rvrTOf3L1s/OrxJowEKShF+7zpcz3k2SF1X0eDLh0ASsNG4yqI27psYgojWVlZMmDAAFmzZo2MGjXK3FZbW2uuT5kyJeJjysvLTwscGmhUU4NosrOzzSWV9IDu1k/g8dA3Hq9/Wn525LOuDYipCEra5dI+p33MB4FwKInm59OlA6ClLpuao0clvX3sxyKr3TRasRg/frwMHDjQDEjVNUS00qGza9S4ceOkW7dupqtFXXXVVWYGTv/+/eu6abRaoreHQwkSo286Xq+KKP1DcGugSkVQiqVyoffV51m7aaKl9z168miTrw0qJ0CwhJrostH/bVdIYg4j1113nRw+fFjmzJkjBw4ckIsvvlhWr15dN6h17969DSohs2bNMo3T/4uLi+Xss882QeTBBx8Um/RAvGHMBvED3lT8H5T092uVI5pAVL9Lp7kqitsGC/M6Blqvy6ZxlcT2oNaQ48YJx43omJGCggIpKSmR/Px825sDuJr+SWu3UixVFDegWwlo/WOFdtGEKyTnbd5kVm218f7NuWkAn4mmiuLGwcLMFAIsLBnvkuXiCSNAALuV3DRYuH63EoBgIowAAWR7DExTkhWQGH8CeAthBIBrJKtCwvgTwFsIIwCsimfacqLTmpvbFtuLPwFBRBgBYFUs05aTNa05nunOBBUgdQgjAHwzhiXRKktzS/7T9QOkDmEEgG8kUmVpabozU4+B1CGMAPCVeKssTU13jvUkhXTnALEjjABAlCEmmnEodOfAS0K5uWbl1fDXtjQ8nS4AIOI4lGiFu3MAz6zCmpdnLp46ay8ABEm041Bi7c5JFN1B8BPCCAAkeRxKayxvT3cQ/IQwAgAuXbwtFQu7NYVKC2wKOXoOYZeL9hTEAGCTHk5T3UWTqhMLUmmBzfdvKiMA4KETEKaqAsM6KrCJMAIAAV0+P5WVFiAWhBEA8JhUVWCiDTiML0GyEUYAAEa0FRLGlyDZWPQMAAIs1kXdFAu7IdmojABAgMUyBoXxJUgVwggABFxrzAICmkM3DQAAsIrKCAAgZrFMLWb2DVpCGAEAxCyWtUmYfYOWEEYAACld/TVZ59GhwuJfnJsGAJCS8+8ke/ZNn/Z9zMyfeBFmWh/npgEAWJ15k+zz6Ow4ukOKlhXF/Xi6i9yLbhoAgOvPozN+9XgTRhLRUncRlRN76KYBAPiqeyje7iIqJ8lHNw0AwDcSWZgt2u6ieAfaUlFJHJURAECgKyuJDrSlotI0KiMAAERRWUl0oG34xIEsqR8/BrACAAIt3oG2nDgweQgjAIDA42SBdnGiPAAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFbNpAABIUKRpwazMGj3CCAAACYq0gmuf9n3M+iWREFQaIowAABCHllZu1bMMFy0rivg9lpBviDACAECSV24dv3q8CSNNYQn5hggjAAAkeeXWZ0c+GzGksIR8ZIQRAACSjOXlY0MYAQDAglhPzOfnga+EEQAAXDIDpyVNzdDxekghjAAA4JIZOC1paoZOpJDipYASchzHEZcrLS2VgoICKSkpkfz8fNubAwBA3PRtN54umvEtzNBx4/ThaN+/qYwAAOCBwa3PNjFDp6mQ4qXpw4QRAAB8NI24oroirvEoNhFGAADwsFCclRY34ay9AADAKsIIAACwijACAACsIowAAACrCCMAAMAqZtMAAOBTFV9M+XX7aqyEEQAAfGrIF+uNuGE11ubQTQMAgA/PfxNpNVa3ojICAICPhEIhUwXR8OGV1VgJIwAA+EzIY6uy0k0DAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwHthZPHixdKzZ0/JycmRoqIi2bhxY5P3HTJkiJnv3PgyYsSIRLYbAAAENYysWLFCpk+fLnPnzpXNmzfLRRddJMOGDZNDhw5FvP9zzz0nn376ad1l69atkp6eLtdee20yth8AAAQtjCxYsEAmTZokEyZMkH79+smSJUskLy9Pli5dGvH+7du3l86dO9ddXn31VXN/wggAAIg5jFRWVsqmTZtk6NChX6aZtDRzff369VH9jF/96ldy/fXXS5s2bXgGAABAbOemOXLkiNTU1EinTp0a3K7Xd+zY0eLjdWyJdtNoIGnOqVOnzCWstLSUpwoAAJ9q1dk0GkIKCwtl0KBBzd5v3rx5UlBQUHfp0aNHq20jAABwcRjp0KGDGXx68ODBBrfrdR0P0pyysjJ55plnZOLEiS3+npkzZ0pJSUndZd++fbFsJgAA8GsYycrKkgEDBsiaNWvqbqutrTXXBw8e3OxjV65cabpexo4d2+Lvyc7Olvz8/AYXAAAQv4rqCimvKhfHccTTY0aUTusdP368DBw40HS3LFy40FQ9dHaNGjdunHTr1s10tTTuohk1apScddZZydt6AAAQlSHPDjH/9+/YX5648gmz5pdnw8h1110nhw8fljlz5siBAwfk4osvltWrV9cNat27d6+ZYVPfzp075c0335RXXnkleVsOAACalZuRa8LHu4ferbtNv9YqSV5mnrhFyHFjvaYRnU2jA1l1/AhdNgAARE/f5jV86CVcHdkwZkOrhJFo379jrowAAADvCIVCpwUPDSbhyokbumsIIwAABMwQl40f4ay9AAAEaPxIfTp+5OjJo9Zn2DBmBACAAI8fSWWFJNoxI1RGAAAI2PiR9jntG1RJwjNsbCGMAAAQwFDyxJVPyLrvrRM3IIwAABDQQJKbkStuQBgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWcmwYAgIDKzcg1Z/ANf20LYQQAgIAKRTijrw100wAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArMqw++uBgHIckapy21vhLpl5IqGQ7a0AYAFhBGjt8KA/69dXihzYwr6vr8clIjevJpAAAUQYAaIJD0uHiezbwL5KpX1vi5QdEcnKS/xnUWUBPIUwEkR0EcSmsjw1QaRzocgEKgFm//7sa5/vk/D/tvYtIQawIrhhJKhvyHQRJOY/difnk7vije/L/aBdNFoZSRbtApvXLfbH0VUEWBHcMKJB5KGutrcCXqJvVG06MKYh2bR6oWNFkvHhINGwrYFItyOrTeLbAiBqwQ0jQUcXQeyoZKQ2kCQrAEx+I/ZgU7+rCECrywj0G8u9+yWweGOFXyUabDSYRMLfDJAywQ0jyfwkBsA/mqqQMJ4ESBlWYAWA8CDaaMaTAEi64FZGACCaQbSMJwFSjjACANF23TY1nqQ+xpYAMSOMAEC0oplxw9gSIGaEEQBI5qJsyVzWvqXt4sSC8AnCCAAkY1G2VCxr3xwqMPARwggAJGM8SSqWtW8Oq8XCRwgjAOC2Ze2jrcBEM6A2WnT7wCLCCAB4dTHFZHYH0e0Di1j0DAD8tkBbPFjUDRZRGQGAIHcHsagbXIAwAgBek6ruoGjHoDC+BElGGAEAxDYGhfElSDLGjABAkMUzBoXxJUgyKiMAEGSxjEFhfAlShDACAEEXzxiUWNY4YYwJWkAYAQCkdo0TxpigBYQRAEB04l3yPlknD6TC4luEEQBAatY4SfbJA6mw+BZhBACQmvElyT55YKIVFiorrkUYAQC4e7XYZFVYqKy4FmEEAODu1WKTVWFpqbJC5cQawggAwN8VlmgrK1ROrCGMAAD8XWGJtrISXlk2Fef9QbMIIwCAYFdWWFnWOsIIAMD/UnWmYyQFJ8oDAABWURkBACCec+6EMQsnYYQRAADC4lnHhFk4CaObBgAQbOHZNvEKz8JB3KiMAACCLd51TJiFY7cysnjxYunZs6fk5ORIUVGRbNy4sdn7Hz9+XO644w7p0qWLZGdny9e//nX505/+FO82AwCQmtk2MV0SPAsx4q+MrFixQqZPny5LliwxQWThwoUybNgw2blzp3Ts2PG0+1dWVsq//du/me/97ne/k27dusmePXukXbt2sf5qAADgQzGHkQULFsikSZNkwoQJ5rqGkhdffFGWLl0qM2bMOO3+evvRo0flrbfekszMTHObVlUAAABi7qbRKsemTZtk6NChdbelpaWZ6+vXr4/4mD/+8Y8yePBg003TqVMnueCCC+Shhx6SmpqaJn/PqVOnpLS0tMEFAAD4U0xh5MiRIyZEaKioT68fOHAg4mM++ugj0z2jj9NxIrNnz5b58+fLj3/84yZ/z7x586SgoKDu0qNHj1g2EwCA1qWDWSvLGl4ch2fBLbNpamtrzXiRX/ziF5Keni4DBgyQ4uJieeSRR2Tu3LkRHzNz5kwzLiVMKyMEEgCAp9YnYf2R1ISRDh06mEBx8ODBBrfr9c6dO0d8jM6g0bEi+riwvn37mkqKdvtkZWWd9hidcaMXAABcq6WzAXMW4NSEEQ0OWtlYs2aNjBo1qq7yodenTJkS8TGXXXaZLFu2zNxPx5eov//97yakRAoiAAB4en2S+uuPNLW8PEvIJ9ZNo90n48ePl4EDB8qgQYPM1N6ysrK62TXjxo0z03d13Ie6/fbb5bHHHpNp06bJnXfeKbt27TIDWKdOnRrrrwYAwFtnA25qeXm6cBILI9ddd50cPnxY5syZY7paLr74Ylm9enXdoNa9e/fWVUCUjvV4+eWX5a677pILL7zQBBUNJvfcc0+svxoAAO933yi6cBoIOY77h/vqAFadVVNSUiL5+fm2NwcAgObpW2uk5eXrd+H8x+7YV3HNzPu8GuMR0b5/c24aAABau/tGcYbgOpy1FwCA1sIZgiOiMgIAgJfOEFxZ7vnum8YIIwAAuK0LJ2ALrNFNAwCA17t39r0de7XFRaiMAADghwXWPIwwAgBAELp3XIwwAgCAH1SWe3ZQK2EEAAA/+NnXPDuolQGsAAD4cWDrPu8MaqUyAsCcVbuysjKQeyIzM1PS09NtbwaQvIGtHhzUShgBAk5DyMcff2wCSVC1a9dOOnfuLCEPlLMBPw5sJYwAAabnyfz0009NZUDPsF3/jNtBaX95ebkcOnTIXO/SpYvtTQICiTACBFh1dbV5M+7atavk5cV49lCfyM3NNf9rIOnYsSNdNoAFwfoYBKCBmpoa839WVlag90w4iFVVVdneFCC5dPxIZZmWAcXNqIwACPxYCcaKwLd+9jVPTPOlMgIAgN+n++5z9zRfKiMAAPh1um+lN6b5UhkB4FkzZsyQ7OxsGTNmjO1NAdw53TfLGwPTCSMAPGvmzJkyf/58Wb58uezevdv25gCIE2EEgGcVFBTIxIkTzfooW7Zssb05AOJEGAHg+bVSdGru1q1bbW8K4G6V7p3mywBWAA1WJK2o+nztkdaWm5ke1xTbWbNmyYkTJwgjQEvCA1k7F4pM+GKar868ccF0X8IIgDoaRPrNednKHtl2/zDJy4rtkLRp0yZZsmSJjBgx4rQwsmrVKvnhD39ozrlzzz33yC233JLkLQY8NM1339tf3nZgi8i8bg2DiQ52tRhKCCMAPElDxuTJk2XKlClSVFQkY8eONSuo6ll4tetm+vTp8vrrr5txJQMGDJDRo0fLWWedZXuzAXvTfB1H5NdXfh5GGgcTy4uiEUYANOgq0QqFrd8di0WLFsmRI0fk/vvvl71795ogsmPHDiksLJSNGzfK+eefL926ff7pb/jw4fLKK6/IDTfckKKtBzxyVt/Jb0QOJuFF0Syd/ZcwAqCOjtmItavEhuLiYpk9e7aZ0tumTRvp3bu3WW9Eu2o0jOzfv78uiCj9Wh8DBF6oUTApO+KKRdGYTQPAc6ZOnWqqHTpWRGVkZEjfvn0ZxArEHEzcsSia+z8CAUCjgalr166V7du3N9gvWhEJD2Lt2rVrg0qIfj1o0CD2I+BShBEAnjJy5Eg5duzYabc/+eSTdV9r8NBgoiFEB7C+9NJLplsHgDsRRgD4jnbb6DLx3/zmN82sm7vvvpuZNEBTU3/v3f/l15YQRgD40tVXX20uAKIc0GoRA1gBAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEgGfNmDFDsrOzZcyYMbY3BUACCCMAPGvmzJnmhHjLly+X3bt3294cAHEijADwrIKCApk4caKkpaXJli1bbG8OgDgRRgB4WnV1teTl5cnWrVttbwqAOBFGAHjarFmz5MSJE4QRwMMybG8AABdxHJGqcju/OzNPJBSK6SGbNm2SJUuWyIgRI04LI6NHj5Z169bJFVdcIb/73e+SvLEAkokwAuBLGkQe6mpnj9y7XySrTdR3r62tlcmTJ8uUKVOkqKhIxo4dK1VVVZKZmWm+P23aNLn55pvliSeeSOFGA0gGumkAeNKiRYvkyJEjcv/990thYaEJIjt27Kj7/pAhQ6Rt27ZWtxFAdKiMAGjYVaIVClu/O0rFxcUye/ZsM6W3TZs20rt3b7PeiHbVaDAB4C2EEQBf0jEbMXSV2DJ16lQZPny4GSuiMjIypG/fvgxiBTyKMALAU1atWiVr166V7du3N7hdKyJM7wW8iTACwFNGjhwpx44dO+32J5980sr2AEgcYQSALw0dOlTef/99KSsrk+7du8vKlStl8ODBtjcLQASEEQC+9Nprr9neBABRYmovAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjADxrxowZkp2dLWPGjLG9KQASQBgB4FkzZ86U+fPny/Lly2X37t22NwdAnAgjADyroKBAJk6cKGlpabJlyxbbmwOgNcPI4sWLpWfPnpKTkyNFRUWycePGJu/7m9/8RkKhUIOLPg4AkqG6ulry8vJk69at7FDAozJifcCKFStk+vTpsmTJEhNEFi5cKMOGDZOdO3dKx44dIz4mPz/ffD9MAwkA93EcRyqqK6z87tyM3LiODbNmzZITJ04QRoAghZEFCxbIpEmTZMKECea6hpIXX3xRli5dagaTRaIHmM6dOye+tQBSSoNI0bIiK3t5w5gNkpeZF9NjNm3aZI5BI0aMaBBG9u3bJzfddJMcOnRIMjIyZPbs2XLttdemYKsBtHo3TWVlpfnjHzp06Jc/IC3NXF+/fn2Tj9NPLeeee6706NFDvvOd78iHH37Y7O85deqUlJaWNrgAQH21tbUyefJkmTJliowbN0527dolVVVV5nsaQLRqu23bNnnllVfkBz/4gZSVlbEDAT9URo4cOSI1NTXSqVOnBrfr9R07dkR8zHnnnWeqJhdeeKGUlJTIz372M7n00ktNIOnevXvEx8ybN09+9KMfxbJpAJLUVaIVClu/OxaLFi0yx6T7779f9u7da4KIHocKCwulS5cu5qK0KtuhQwc5evSotGnTJkVbD6BVu2liNXjwYHMJ0yDSt29fefzxx+WBBx5ocrqejksJ08qIVlUApJZ2qcbaVWJDcXGx6XrRKb0aMHr37m3WG9GuGg0j9Wk1Vz9EcQwBfBJG9NNFenq6HDx4sMHtej3aMSGZmZnSv3//ZtcE0IOKXgAgkqlTp8rw4cPNWJFwt4x+yGk8o0arIdqF88tf/pIdCfhlzEhWVpYMGDBA1qxZ06DfVq/Xr340Rz+h6HoA4RIqAMRi1apVsnbtWnn00Ucb3K4VkfphRMeejRo1ygys14osAB9102j3yfjx42XgwIEyaNAgM0hMB4aFZ9fop5Bu3bqZcR9K+3MvueQS+drXvibHjx+XRx55RPbs2SO33HJL8lsDwPdGjhwpx44dO+32J598ssEU5e9///vyrW99y8yqAeCzMHLdddfJ4cOHZc6cOXLgwAG5+OKLZfXq1XWDWnUgmc6wCdODhk4F1vueeeaZprLy1ltvSb9+/ZLbEgD4wl//+lezJpIOnP/9739vbvvtb3972ngSAO4QcvQjhMvpAFZd9lln4+gCagCS4+TJk/Lxxx9Lr169Ar0yMvsBsPv+zblpAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBIBn6Rl5s7OzZcyYMbY3BUBrnijPL/SUPBVVNbY3A43kZqZLKBRivyAqM2fOlO7du8udd95pzhCuZwcH4D2BDSMaRPrNedn2ZqCRfl3yZeVtg8WNeSSZQckNYVjb43V6Aq6JEyfKtGnTZMuWLYEJI6l4/fj9g0Aq/+b8vu9aQ2DDCNxp26elcv7cl30dlPQ82dcuWW/aars9T03oL7WOIzW1n19sSgtJXAf06upqycvLk61bt8ro0aPFptYImal6/Qw898wvXt/ufFNNZN+m+m/O7fvOCwIbRjTJbrt/mO3NgMveoL0alOJtz1WL3pT/+mZHqT70mYQyTln/m/zK2WfE/Lj77rtPTpw4IVu2bK0LVPEGm4rKaqlNqxa/voab886eY/LPskrJy3Jfxczt+zaefRdPNcVpJpB5vToTcrR1LldaWmrKsSUlJZKfn297c5Aibui6aM0Doa0uqfrt6dY23YSRjl27Sygj6/NvnjwpVuTkaIKI6SHbPnhPxo0eJpf8vyFSvG+vPL9mvbm9qvwzmTxmtKma6OXOO6fKLZMmNflzTp48Ke9s2SH3vnZQij9z32swla+f8soaGfjj1yQIkv03l8i+i3VbnBaOQ26tzkT7/k0YAQLYRx9uz6mTJ2X/J3ulZ89ekpOTI7Xl5bJ74EAr21T1wlqR3Nyo719bWys3jrxCBlxymRT2HyD3Tpssb+8slszMTKmpqZHKylOSm5sn5eVl8t2hl8ryF1+Xdme2j/iznOpKObT/E/mv1w8lHEZaK2Qm6/WjrwV9k9NP926X6L5N9t+c2/bdO7OGNlmdsXW8iTaMBLabBoiF/hHnZWX4rj1ptRmSFgpJetrnl5D2b1jSt0u+pOXlRX3/n//8USkrPSaPzX9Y9u7dK3dXVUl66aeS27mXVOjBN/fzn1V1qtJ8rIymCPzVs8+QV/7jkoSChNfK5bqt+gbvxqqk2/dtPPsu0Uprv0aBrH51prkqjVsrJ2H+OboCSFgoN1fO27zJ2u+O9kBZXFwsc+fMkeXLl0t+2zOkz3lfN+uNbN/2oVx/YaHo0JHjx4/Lt745RHbt2iU/+elP5fILvtJsN01GeY48flNfyc0O3mHRb2Hb7fvuxamXxx3+chsFMr2uQaOl6kxL41psBz1efQDq6MEoFEN1wpapU6fK8OHDZcSIEeZ6RkaG9O3b18yo0Takh0TOan+mvP/++3Lw4EG55ppr5HvXXiudOnWK+PO0KqQVIrd+aoS/JDP8hVqoznilcsIKrAA8ZdWqVbJ27Vp59NFHG9xeWFhowkhjGkAuuugieeONN1pxK4HWDzd5ES5ntckyQaMlWjmx2VVHZQSAp4wcOVKOHTu9JP3kk0/Wfa3VEF17pG3btmbg3F/+8he5/fbbW3lLAftCMVRObCKMAPCdPXv2yK233moGrepFl4vXygkQRKFmuoXqr7llc1VmwggA3xk0aJC89957tjcDcL2QSwYvM2YEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEQ1Xlb/ExPugfAHvvzeQBYo2e41al9hw8flrPPPjtwy6FrCKusrDTtT0tLk6ysLNubBAQSYQQIsPT0dOnevbt88skn8o9//EOCSldrPeecc0wgAdD6CCNAwJ1xxhnSu3dvqaqqkqAGMj3RXtCqQoCbEEYAmDdkvQCADdQkAQCAVYQRAABgFWEEAABYleGlNRBKS0ttbwoAAIhS+H27pbWMPBFGPvvsM/N/jx49bG8KAACI4328oKCgye+HHA8svairI+7fv1/atm3rqul3mvg0IO3bt0/y8/MlKGg3z3dQ8FrntR4EpSl8L9OIoUGka9euza7j44nKiDZAF2ZyK33yghRGwmh3sAT1+Q5y22l3sOSn6HXeXEUkjAGsAADAKsIIAACwijCSgOzsbJk7d675P0hoN893UPBa57UeBNkueC/zxABWAADgX1RGAACAVYQRAABgFWEEAABYRRgBAABWEUYa+ctf/iJXXXWVWS1OV3v9/e9/3+TOu+2228x9Fi5c2OD2o0ePyo033mgWj2nXrp1MnDhRTpw4IV5td1VVldxzzz1SWFgobdq0MfcZN26cWRXX6+2O5jnXMd5z5syRLl26SG5urgwdOlR27drli7bXV1NTI7Nnz5ZevXqZdn71q1+VBx54oME5JaLZF15UXFwsY8eOlbPOOsu0S1/r77zzju/bXd/DDz9sXv8/+MEP6m47efKk3HHHHWa/nHHGGfLd735XDh48KF42b948+Zd/+RezonfHjh1l1KhRsnPnzgb38WO7m7N48WLp2bOn5OTkSFFRkWzcuFFaG2GkkbKyMrnooovMk9Oc559/Xt5++23zBtaYvil9+OGH8uqrr8qqVavMm92tt94qXm13eXm5bN682bxR6f/PPfec+eO9+uqrPd/uaJ7zn/70p/Lzn/9clixZIhs2bDCBbNiwYeaA5fW21/eTn/xE/vd//1cee+wx2b59u7mubV+0aFFM+8Jrjh07JpdddplkZmbKSy+9JNu2bZP58+fLmWee6et21/e3v/1NHn/8cbnwwgsb3H7XXXfJCy+8ICtXrpQ///nP5gPINddcI16m7dCgocdv/XvVD1vf/va3zXHAz+1uyooVK2T69Olmaq8e3/VYqK/tQ4cOSavSqb2ITHfP888/f9rtn3zyidOtWzdn69atzrnnnuv893//d933tm3bZh73t7/9re62l156yQmFQk5xcbGn213fxo0bzf327Nnjm3ZHanttba3TuXNn55FHHqm77fjx4052drazfPlyX7V9xIgRzs0339zgtmuuuca58cYbo94XXnTPPfc4l19+eZPf92u7wz777DOnd+/ezquvvur867/+qzNt2rS6NmZmZjorV66su+/27dvNa339+vWOXxw6dMi06c9//nOg2h02aNAg54477qi7XlNT43Tt2tWZN2+e05qojMRx0r6bbrpJ/vM//1POP//8076/fv16U6YfOHBg3W1a0tXz6+gnKr8oKSkxJV1tq5/b/fHHH8uBAwdMW+qfZ0FLmdpmP7X90ksvlTVr1sjf//53c/3999+XN998U4YPHx71vvCiP/7xj+a5u/baa03Zvn///vLLX/6y7vt+bXeYVglGjBjRoH1q06ZNpmpQ//Y+ffrIOeec44t21z+Wqfbt2weq3aqystK0t35b9bil11u7rZ44UZ6baOk6IyNDpk6dGvH7etDSA1p9en99oev3/EBL0zqG5IYbbqg7qZJf2x3e9k6dOjW4Xa+Hv+eXts+YMcOcvVMPvOnp6WYMyYMPPmi6oKLdF1700Ucfme4pLVXfe++9pstC/76zsrJk/Pjxvm23euaZZ0xpXtvcmLZN90H4A4ef2l3/w6WOkdFuugsuuCAw7Q47cuSI+TuP9NresWOHtCbCSAw0QT766KPmj1erAkGknxi+973vmQF9egCHfzz77LPy9NNPy7Jly0zV77333jMHah0XpW/KfqVvSFoZeeihh8x1rYxs3brVjA/xc7v1dPHTpk0z4yZ04GIQaVVIn2utAMIuumli8MYbb5hBPVqu00++etmzZ4/88Ic/NCORVefOnU8b+FNdXW1mW+j3/BBEtM16AKt/qmm/tju87Y1H0uv18Pf80nbtetTqyPXXX29mk2h3pA7k09kH0e4LL9IZMv369WtwW9++fWXv3r2+brd+uNLX7Te+8Y2645kO1tSBuvq1fjrWMv7x48d91e6wKVOmmMHmr7/+unTv3r3udm2bn9tdX4cOHUwV1A2vbcJIDPTg/MEHH5hPjOGLfmrUg/jLL79s7jN48GDzItY/9LC1a9eaT1/ax+z1IKLTGV977TUz5a0+v7Zbp7nqH6WOpQjTrgwdC6Jt9lPbddaU9hfXpwcqbUe0+8KLtETfeGqnjps599xzfd3uK664QrZs2dLgeKYVIu2WC3+tM4zqt1v3k4Y0L7dbq7oaRHRGpP6d6vNb34ABA3zZ7ki0O0rbW7+t+veu11u9ra06XNYjI8vfffddc9Hds2DBAvN1eNZIY41n06grr7zS6d+/v7NhwwbnzTffNCPVb7jhBser7a6srHSuvvpqp3v37s57773nfPrpp3WXU6dOebrd0TznDz/8sNOuXTvnD3/4g/PBBx843/nOd5xevXo5FRUVnm97fePHjzezxFatWuV8/PHHznPPPed06NDBufvuu+vuE82+8BqdGZaRkeE8+OCDzq5du5ynn37aycvLc5566ilftzuS+rNp1G233eacc845ztq1a5133nnHGTx4sLl42e233+4UFBQ469ata3AsKy8v93W7m/LMM8+YmWG/+c1vzMzAW2+91bzWDxw44LQmwkgjr7/+unlDanzRA3W0YeSf//yneSM644wznPz8fGfChAnmDc+r7dY3pkjf04s+zsvtjuY516mds2fPdjp16mT+aK+44gpn586dDX6GV9teX2lpqXkj0oNwTk6O85WvfMW57777GgTOaPaFF73wwgvOBRdcYNrUp08f5xe/+EWD7/u13S2FEQ1b//7v/+6ceeaZJqCNHj3avHF7WVPHsl//+te+bndzFi1aZP7us7KyzFTft99+22ltIf2ndWsxAAAAX2LMCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAQGz6/57sWxfNOZVHAAAAAElFTkSuQmCC",
240
- "text/plain": [
241
- "<Figure size 640x480 with 1 Axes>"
242
- ]
243
- },
244
- "metadata": {},
245
- "output_type": "display_data"
246
- }
247
- ],
248
- "source": [
249
- "n_time_bins = len(change_times) + 1\n",
250
- "for s in states:\n",
251
- " estimates = [\n",
252
- " log_summary[f\"birthRatei{i}_{s}_median\"].median() for i in range(n_time_bins)\n",
253
- " ]\n",
254
- " plt.step(change_times, estimates[:-1], label=rf\"$\\lambda_{{{s}}}$\")\n",
255
- " plt.legend()\n",
256
- "plt.gca().invert_xaxis() # This reverses the x-axis"
257
- ]
258
- },
259
- {
260
- "cell_type": "code",
261
- "execution_count": 39,
262
- "id": "b3f4b7c8",
35
+ "id": "646db342",
263
36
  "metadata": {},
264
37
  "outputs": [
265
38
  {
266
39
  "data": {
267
40
  "text/plain": [
268
- "1378"
41
+ "array([[0.57960784, 0.77019608, 0.87372549, 1. ],\n",
42
+ " [0.3313341 , 0.62206844, 0.8047674 , 1. ],\n",
43
+ " [0.14666667, 0.46039216, 0.71869281, 1. ],\n",
44
+ " [0.03137255, 0.28973472, 0.57031911, 1. ]])"
269
45
  ]
270
46
  },
271
- "execution_count": 39,
47
+ "execution_count": 6,
272
48
  "metadata": {},
273
49
  "output_type": "execute_result"
274
50
  }
275
51
  ],
276
52
  "source": [
277
- "len(trees[0].get_leaves())"
53
+ "plt.cm.Blues(np.linspace(0.4, 0.9, 4))"
278
54
  ]
279
55
  },
280
56
  {
281
57
  "cell_type": "code",
282
- "execution_count": 31,
283
- "id": "3548e424",
58
+ "execution_count": null,
59
+ "id": "f2fcb1f0",
284
60
  "metadata": {},
285
61
  "outputs": [
286
62
  {
287
63
  "data": {
288
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOYtJREFUeJzt3Qt4lOWZ//E7CTmiHBQhHGKgLpeAIkehCF3pShsPfy1KLRUVhIqXrBQUuwoKuChKd1kRQVpaWqorWkGL2oqiFkWlRqgJoVIlwnIUDYdSCSYhgeT9X/djZzo5z0xm5j19P9c1kBlmkvedkJlf7ud57ifJsixLAAAAbJJs1xcGAABQhBEAAGArwggAALAVYQQAANiKMAIAAGxFGAEAALYijAAAAFsRRgAAgK1aiQvU1NTI559/LmeeeaYkJSXZfTgAACAM2lf1xIkT0qVLF0lOTnZ3GNEgkpOTY/dhAACAKBw4cEC6desWuzDy7rvvysKFC6WgoEC++OILefHFF2X06NGN3l/vc/fdd8uHH34ou3btkmnTpsnixYsj+ppaEQmcTJs2bSI9ZAAAYIPS0lJTTAi8j8csjJSVlUm/fv1k0qRJct111zV7/8rKSjnnnHNk9uzZ8thjj0k0AkMzGkQIIwAAuEtzUywiDiNXXHGFuYSre/fu8vjjj5uPV65cGemXAwAAHufIOSNaTdFLaJkHAAB4kyOX9i5YsEDatm0bvDB5FQAA73JkZWTWrFkyY8aMehNgAABw2tLV06dPS3V1tfhRSkqKtGrVqsVtNxwZRtLT080FAACnqqqqMitGy8vLxc+ysrKkc+fOkpaW5q0wAgCA05tx7tmzx1QGtKGXvhH7rSmnZVkmkB05csQ8Fz179myysVlMw8hXX31l+oUE6AEUFRXJWWedJeeee64ZYjl48KD87//+b/A++u+Bx+pB63X9xvXp0yeqgwYAwE76JqyBRKcQaGXArzIzMyU1NVX27dtnnpOMjIzEhBFtXvbtb387eD0wt2PChAny5JNPmpLV/v37az1mwIABwY+1Wdqzzz4rubm5snfv3qgOGgAAJ4i2EuAlyTF4DiIOIyNHjjSlmcZoIKmrqfsDAAB/I9IBAABbEUYAAICtfLuaRoeOrIqKmHyupMxM382iBgAgVvwbRioqpHjgoJh8rvTevaX7qqd1JyCJFQIOAMAvfBtGYqnyk0+keNDgmH7OzIEDJfeZVVRcAMBFFfeKU/Z0Ys1MTYno/WLTpk1mZeyJEyeCy3F1hWuPHj3M37riNZF8G0a08nB+YUHLPollyd6bbjZhJNYqCgtN9SbJx+vXAcBNNIj0mfu6LV/74wfzJCst/Ld07ffVu3fvWn1Btm7dKu3bt094EPF3GElKiskbfY+1v4vZ3BNVU1EhO4ePiNnnAwCgrm3bttXqARYIKP369Qtef+WVV+Tuu+82zd3uvfdeufXWWyVefBtGnBZqAADupkMlWqGw62tHQoPHuHHjat2mlZH+/fubj3XzP21q+vbbb0vbtm1l0KBBcu2118rZZ58t8UAYAQAgRr+cRjJUYpfq6mrZvn17vcpIYWGhjBkzxny8ZcsWueCCC6Rr167m+hVXXCFvvPGG3HDDDXE5JvqMAADgI8XFxXLy5EmzwV9Afn6+2VcuUBn5/PPPg0FE6cf67/Hi/AjnYzp/JBwsAwYAhCuwee3SpUtl2rRpZvNb/VvpZnd2IIw4WLgTWVkGDACIJIzk5eXJ7t27pW/fvtKnTx+ZN2+eTJkyRZYsWSJPP/20qZqEVkL04yFDhki8EEYcRqscGi50aW+4WAYMAIhkJc3FF18s8+fPr3V76IRWDR46r0RDiE5gfe2112TOnDkSL4QRB06A0mZn4SwXZhkwACCaMDJp0qQm79OqVSt59NFHTWM0Xdp7zz33xG0ljfl6cfvMiBrLhQEA8VBSUiKHDh0ywzPNueaaa8wlEQgjAAD4RHZ2tmlb7zQs7QUAALYijAAAAFsRRgAAgK0IIwAAwFaEEQAAYCtW0/isdXwo2sgDAJyAMOKz1vGhaCMPAHAChmk80Do+WoE28gAA2InKiE9ax4eijTwAwEl8G0a0A13F6dhUBTJbZZpgYAdaxwMA3M63YUSDyNBnh8bkc/U6q5c8dflTEkt2BhwAABLJt2EklnYc2xGzYBMwoOMAE3AIJADgErrny6lye752apaWysO++6ZNm8yOvCdOnJCMjAxz2969e6VHjx7m79zcXEkk34YRrTxsHre5xZ9nwvoJJozE2tbDW031Jkv/gwEAnE+DyCNd7Pna930uktY67LsXFRVJ7969g0FEbd26Vdq3b5/wIOLrMKIVh1i80a/5f2tiNvdE6ecauWakOLk/STzR+wQA4m/btm0yYMCAegGlX79+wevXXnutbNy4US677DJ54YUX4no8vg0jTgs1bupPEk/0PgHgWvpeoBUKu752BDR4jBs3rtZtWhnp379/8Pr06dNl0qRJ8tRTsZ0T2RDCiI/7k2ifEacJ9D5JynJvwAPgUzpnI4KhErtUV1fL9u3b61VGCgsLZcyYMcHrI0eONJWRRCCM+FC0/Uniid4nAJAYxcXFcvLkSenS5Z/zW/Lz8+XgwYO1KiOJRBjxKfqTAIA/FRUVmb+XLl0q06ZNk127dpm/VVVVlS3HRDt4B9PJrOWnypu9aAM3AADCDSN5eXmye/du6du3r9x///0yb948adOmjSxZskRcURl59913ZeHChVJQUCBffPGFvPjiizJ69OgmH6NjTjNmzJC//vWvkpOTI7Nnz5ZbbrmlJcftC+GuqqEnCQAgkpU0F198scyfP7/W7XUntDq6MlJWVmaW/ixbtiys++/Zs0euuuoq01xF09idd94pt956q7z++uvRHK8v+p9ouIimJwkAAOGEEa2INGfUqFFy/fXXy6uvvirdunUz80ocUxm54oorzCVcy5cvNx3dHn30UXNdm6xo57fHHnvMlIlQfy6Hdl4NJ1wkuicJAMDdSkpK5NChQ2GFkT/+8Y/imQmsmqQ0XYXSEKIVksZUVlaaS0Bpaan4idt7l3itEVsADdkAuF12drYj5xm2SkQK69SpU63b9LoGjIqKCsnMzKz3mAULFpjJNPAnpzViC6AhGwD4aDXNrFmz5Pjx48HLgQMH7D4kJKgRm5MFGrIBAFxWGdGSkI5PhdLruoSooaqISk9PNxf4hxMbsQXQkA0AXB5Ghg0bZmbihnrzzTfN7UAoGrEBgD9FPEzz1VdfmSW6gQ5uunRXP96/f39wiGX8+PHB+99+++2msco999wjO3bskJ/97GeyZs0aueuuu2J5HgAAwC9h5MMPPzSb6wQ22NFmZvrx3LlzzXVthBYIJkqX9a5bt85UQ7Q/iS7x/dWvfsWyXgAAEN0wje7i19SyoCeffLLBx+jWxIifaJqeaYM1HRoBAMBObJTnEdE0P6ONPADACRy5tBfxax0fijbyAAAnoDLik9bxoWgjDwBwEiojHmkdH8lFKyoAAP/atGmTpKamysmTJ4O37d2717yn7Nu3L+HHQ2UEAIAY0MUddu2gnhnhggRtyaEb12ZkZARv04Um7du3l9zcXEk0wggAADGgQWTos0NteS43j9sc0Qar27ZtC7boCA0o2oJD6TYsN998sxw+fFhatWolc+bMkeuvv17ihWEaAAB8pqioSPr371/rNq2MBG7TALJ48WL5+OOP5Y033pA777xTysrK4nY8VEZ8zq6SYmPofQLArfT1SysUdn3tcFVXV8v27dvrVUYKCwtlzJgx5uPOnTubS2CPuQ4dOsixY8ekdevWEg+EEZ+Lpj9JPDm994lumhfLnYqdep4Aol9Q4HTFxcVm4mqXLl2Ct+Xn58vBgwfrVUtUQUGBCTA5OTlxOybCiI/7k2ifEacJ9D5x6g/0zuEjYva5MgcONDsVE0gAJFJgb7mlS5fKtGnTZNeuXeZvVVVVVeu+Wg3R/eZWrFgR12MijPhQtP1J4snJvU+0gqHBoaKwMKafVz+fVVEhSVnODF4AvBtG8vLyzCa2ffv2lT59+si8efNkypQpsmTJEnn66afN/SorK2X06NEyc+ZMueSSS+J6TIQRn3JLOdEpz5VWMDQ4xGqoJ5YVFgCIhK6kufjii2X+/Pm1bh83blytZcq33HKL/Nu//ZtZVRNvhBEgzEBCBQOAV8LIpEmTmrzPn/70J1m9erVcdNFF8tJLL5nbtGKilZR4IIwAAOATJSUlcujQoWZDxYgRI6SmpiZhx0UYAQDAJ7Kzs80QjNPQ9AwAANiKMAIAAGxFGAEAALYijAAAAFsxgRWO46RmbKHYNwcA4oMwAsdxaidWp++bAwBuxTANHLVfjpMF9s0BAMQWlRE4ghP3y3HDvjkA4AWEETgG++UAgD8xTAMAAGxFZQSwke7gG4mkzEwm0ALwHMIIYKOdw0dEdP/MgQMl95lVBBIALbJp0yb59re/LSdOnJCMjAxz2969e6VHjx7m79zcXEkkwgiQYFrd0FBRUVgY8WP1MVZFhSRlZcXl2ABETzeg059POyRFWDUtKiqS3r17B4OI2rp1q7Rv3z7hQUQRRoAE0xcMrW5E8qKlwzmRVlEAJJb+TBcPHGTL035+YUFEv6Rs27ZNBgwYUC+g9OvXz3z85ZdfyqhRo+T06dPmMn36dJk8ebLEC2EEsCmQUN0AYJeioiIZN25crdu0MtK/f3/z8ZlnninvvvuuZGVlSVlZmVx44YVy3XXXydlnnx2X4yGMAAAQo6ESrVDY9bXDVV1dLdu3b69XGSksLJQxY8aYj1NSUkwQUZWVlV8PQVmWxAthBAAAH1U8i4uL5eTJk9KlS5fgbfn5+XLw4MFgZSQwVHPppZfKzp07ZeHChdKhQ4e4HRN9RgAA8NkQjVq6dKkJGq+99pqMHz/e3FZVVSUB7dq1M3NL9uzZI88++6wcOnRI4oUwAgCAz8JIXl6e7N69W/r27Sv333+/zJs3T9q0aSNLliypd/9OnTqZia3vvfde3I6JYRoAAHxk27ZtcvHFF8v8+fNr3R46oVWrIDpnRCeyHj9+3ExmnTJlirMqI8uWLZPu3bub9clDhw6VLVu2NHrfU6dOyYMPPijnnXeeub+mq/Xr17fkmAEAQAvCiFZEmrJv3z751re+Zd6z9e8f//jHzT4moZWR1atXy4wZM2T58uUmiCxevNiUe3RCTMeOHevdf/bs2bJq1SpZsWKF9OrVS15//XW59tpr5f333683kxdwuljuKpzZitbuABKrpKTEVD2aCxZDhgwJzi1JhCQrwrU6GkC0vPPEE0+Y6zU1NZKTk2NS08yZM+vdX2fr6njUHXfcEbxNlw5lZmaakBKO0tJSadu2rSkV6ZgWkEjlp8pl6LNDY/55B3QcIE9d/lRYXRNrysuDzZR06WCyC2bsA16mq1F0Yqe2Tw/tYupHJ5t4LsJ9/45omEZn2RYUFJiubMFPkJxsruuyoIbo+uS6B6dBRPviN0YfoycQegHsohUMDQ6xtvXw1phWWgDArSIapjl69KhplqIza0Pp9R07djT4GB3CWbRokfzrv/6rmTeyYcMGWbt2rfk8jVmwYIGZ2Qs4gVYutIIRq+Cgn2fkmpEx+VwA4AVxX9r7+OOPS8+ePc18kbS0NJk6dapMnDjRVFQaM2vWLFPSCVwOHDgQ78MEmg0kWalZMblopQUAEGUY0e5r2iK2buMTvZ6dnd3gY8455xx56aWXTG97nZ2rFZQzzjhDvvGNbzT6ddLT083YUugFAAB4U0RhRCsbgwYNMkMtATqBVa8PGzasycfqvJGuXbua3f9+97vfyfe+973ojxoAAAeI534tfnoOIl7aq8t6J0yYIIMHDzZLf3Rpr1Y9dOhFaUtZDR0670Nt3rw52O9e//7P//xPE2DuueeeFh88AAB2SE1NNX+Xl5ebRRl+Vl5eXus5SUgYGTt2rBw5ckTmzp1r1itryNAmZoFJrfv37681H0SX/GivEW07q8MzV155pTz99NOm5z0AAG6kUxb0fezw4cPmunYrDWeZvtcqIuXl5eY50OdCn5OE9RmxA31G4NW+JZvHbTaTWptDnxHAefTtU38p191t/axdu3Zm3mhDYSzc92/2pgEAIAr65tu5c2fTfVy3PvGj1NTUFlVEAggjAAC0gL4Zx+IN2c8IIwAA+Hioyar4uqFjUqZ9+2XFvekZAABwJquiwux7pZdAKLEDYQQAANiKYRrARuHud1Nzig31AHgXYQSwUbgb5qVXWfL0Pz52wWp8AIgIwzRAgulGeQM6Doj68RWnT8b0eADAblRGgATT2epPXf5U2EM0qvzEMTny6HfielwA/MWyLKmxcdJqKMIIYFMgCafzakBNijNeMAB4J4jsG3ejVGzdWus2uzBMAwCAz1gVFbWCyI5uIiej3+euxaiMAADgsyZnNSHDM7dOS5HSLJE8Gzf6I4wAAODToRlVqRURm3ccZpgGAAAfDs2o9AH9vg4jNqMyAgCAz/T80yZJzsyUilaWyG+/affhEEYAAPDikExFSPsA7W8USoNIclaWJJ0qFyegMgIAgMeCyPjXxkvRkaLgbb3O6iW/+dflwevlpyok+ZQ4hn/DiK6njlUi1H4RNk/+gX+YmfCpzf/ftXM7cAD2qThdUSuI6PvdnpJPJO+ZS+VX/7hp5JpLpTItSXLb5IoT+DeMaBB5pEtsPlfON0UmrSeQICE+GxleJ9bMgQMl95lVBBLAx966/i0pvPZyOXdfw7/A7CvdJ07AappYOPCBSNlRkaqy2F3YDA0hkjIzTFOiSFQUFpoqCgD/yjyVXC+I6AqadyZsNkM3AbpfVt15JYnk38qIDq3c93nLPkdVucj//MvXHwf+jhWqLQihwy1zb0qR9FMiG3/wjmSlNv6ioc2Mdg4fwfMHoMEVNIEh3DX/b01wkqsGETuHdf0bRvRJT2vd8kCjoUErI7Gmn1OHklp6jPCOpCSpTBNJzsqU5Aj2tQGA0BU00e6RFU/+DSOxCjQ6VySWS6NCqy0AAES4jDeSHcGdgjDihAoLAAAxWsbrRkxgBQDAK8t4Q3w9KTVD3IDKiJPpkE046HMCAL638Qcba62I0Y/dsqKOMOJk4c4dYeUNAPheZqvMehNSLZc8KwzTOE1ghU40K28AAHAhKiNuXqHDyhsAgAcQRpyIFToAAB8hjAAA4MJ+Im7tKdIQwggAAA5neaSfSGOYwAoAgIv7iThho7uWojICAICL+4k4YaO7liKM+K1BWiiapXme7uDbmMDOnQDc30+koWEdbXjW1GuA68PIsmXLZOHChVJSUiL9+vWTpUuXypAhQxq9/+LFi+XnP/+57N+/Xzp06CDf//73ZcGCBZKR4Y42ta4QzeZ6NEvzvJ3DRzT6b5kDB0ruM6sIJIADJqI2J5L76+ffN+5Gqdi6Vdwi4jCyevVqmTFjhixfvlyGDh1qgkZeXp4UFxdLx44d693/2WeflZkzZ8rKlSvlkksukU8//VRuueUW8wK4aNGiWJ2HvxukadOzaASapbHRn6doxUODRkVhYZP303/X35ySQrYUB+D+iahWRUW9IKKvCfra4JkwogFi8uTJMnHiRHNdQ8m6detM2NDQUdf7778vw4cPl3Hjxpnr3bt3lxtuuEE2b94ci+P3t0gapIWiWZqnadDXikdje1Jo2bapigkA+yaiNifSiao9/7RJknVI1uHDshGFkaqqKikoKJBZs2YFb0tOTpZRo0ZJfn5+g4/RasiqVatky5YtZihn9+7d8uqrr8rNN9/c6NeprKw0l4DS0tJIDtNfaJCGBv9bJFHxAFw4EbU5kU5U1SCS7ILqZ0Rh5OjRo1JdXS2dOnWqdbte37FjR4OP0YqIPm7EiBGmPHX69Gm5/fbb5b777mv06+h8knnz5kVyaIBvhDt27PbZ9YDXhTMR1S/ivppm48aN8sgjj8jPfvYzM8dk165dMn36dHnooYdkzpw5DT5GKy86LyW0MpKTkxPvQwVcYeSakWGXc5+6/CkCCeCgSape6ZhqaxjRlTApKSly6NChWrfr9ezs7AYfo4FDh2RuvfVWc71v375SVlYmt912m9x///1mmKeu9PR0cwHwz9+gNFxsPRz+7Hi9r77w8ZsXkFhe75ZqexhJS0uTQYMGyYYNG2T06NHmtpqaGnN96tSpDT6mvLy8XuDQQBP4hsGF/Uniid4nDdLhFq1yhPNbld4n3OoJAHsmqbq9Y6rtwzQ6fDJhwgQZPHiwmZCqS3u10hFYXTN+/Hjp2rWrmfehrr76arMCZ8CAAcFhGq2W6O2BUAKX9SeJJ3qfNBlIqHIA3pikypyuFoaRsWPHypEjR2Tu3Lmm6Vn//v1l/fr1wUmt2tgstBIye/Zs8yKqfx88eFDOOeccE0QefvjhSL80nNKfJJ7ofQLAQzvpMkk1jhNYdUimsWEZnbBa6wu0aiUPPPCAucDl/Uniid4nAFyGuSGxw940fkV/EgBoEa/vpJtIhBHAx5y0iZbTO0QCfttJN5EII4CPOaktPBv3wc2YG9Iy9Zt8APDFRnpOE9i4D4D/UBkBfKa5jfQSjY37ABBG4DxOa8TmwYZsbKQHwEkII3AepzViC6AhGwDEBWEEzuDkRmwubsjWVPt4ZvoD3ul3YoUMuzpplVy4CCNwBic2YvNAQ7am9qhhV1/AG0Fk37gbpWJr+JtoOhFhBM5BI7aE7vDLrr6A+1kVFY0GEV01p6vn3IAwAvhsh1929QW8qeefNklySPhwUyNBwgjgQezwC/hPcmamJGdliRvR9AwAANiKMAIAAGxFGAEAALYijAAAAFsRRgAAgK0IIwAAwFYs7QV8rKl28YlSc8r+YwDc2Pbdra3fG0IYAXysqXbxiZJeZcnTIS+2ALzb9r0xhBHAZ8JtF2+HitMn5Qxxz0aE8NabfaSVwkRWFq0m2r5H1PpdA39je4DphqU2dWwljACRbpoXKzb94DfXLj7Ryk8ckyOPfsfuw4DPg8j418ZL0ZEicWPb92ZbvwcCiP79m8tFSj5q+H73fW7bruSEESASsdy9N+ebX+9UbFMgydIw5AA1Kc4IRfAvDeYtCSJaadSKoyPbvluWyMo8kQObxckII0Bz9E1bg8OBD2L7XOnn099WbPpNBEB9G3+wMeJgofd37IZ0p8rrB5HsviITG/hFyMZfUAgjQHP0B1YrGI2Ns0Yz1BPLCguAmNFg4ZSqYYsEhmZCh5Z/skskLcvWuSGNIYwA4dAfXCoYANzAamRoRoOIQ1/HCCMAANjcL6Q5EfUTaWhoRoeaHVzxIYwAcAx9ga5JbflwWJMrCwCv9Qux6izXdcnQTCjCCADH+GxkbJb4as+F3GdWEUjgOM31C2lOvX4iza2WcfDQTCjCCABbJWVmyI5uIr0+i93nrCgsNC/6SeEufwQc0i8k4qpfQ0MyLhmaCUUYAWArfWGde1OKpJ/SZZXvSFZq9P0adFx95/ARMT0+wBH9QhrrntrQkEyAw4dmQhFGANgvKUkq00SSszIl2SW/yQEJZYXRvMwlQzINIYwAAHy994xtWyNoVaNVmJtD6n2bCiIuGpJpCGEEAOBpduw909jy3ZrykGEVbX4YbhgJVXc4xmVDMg0hjAAAPC3cvWditcdMXJbvhlZAWndwdfCIWRhZtmyZLFy4UEpKSqRfv36ydOlSGTJkSIP3HTlypLzzzjv1br/yyitl3bp10Xx5AABivvdMVHvMNDCp1CorbzaIZHaolKR7PxVJj3COh8srIDELI6tXr5YZM2bI8uXLZejQobJ48WLJy8uT4uJi6dixY737r127VqqqqoLX//a3v5kAc/3117f86AG3C50J7+MXIsCVe8/oUMyvvyvW3j/XurnmtP6MZpuPe44ukeQGhmKSug+RpDPO4ec52jCyaNEimTx5skycONFc11CiFY6VK1fKzJkz693/rLPOqnX9ueeek6ysLMIIoCLdME9LtLppH4EEsJ1VVSb7ntwtFUc7N3qf5Hs/leTWDYQffrGIPoxohaOgoEBmzZoVvC05OVlGjRol+fn5YX2OX//61/LDH/5QWrd25/IjoMX0RUhDxYEPIn+sPkZLwi5dvteclq5qqDlVEd1eHv9AG3lEwqo4KRVH05rultrOe/M7bA8jR48elerqaunUqVOt2/X6jh07mn38li1bZPv27SaQNKWystJcAkpLSyM5TMDZ9IVJqxt1mxc1N5wTaRXFhUauGdmix6dXWfL0Pz6OpvkZbeQRrZ5vvyHJbc+udRvh1qGraTSE9O3bt9HJrgELFiyQefPmJey4AFsCiUerG9GM4esqhq2HW77yoDJVWtRanjby7uwT0pxE9BGJuJsqog8jHTp0kJSUFDl06FCt2/V6dvbXk3UaU1ZWZuaLPPjgg81+HR0G0kmyoZWRnJycSA4VgEvo6oWnLn8qJm8Y+jlGyqURt5anjbyz2dEnBA4OI2lpaTJo0CDZsGGDjB492txWU1Njrk+dOrXJxz7//PNm6OWmm25q9uukp6ebCwD/BJKYrXCgtbxnKhqR9glJVB8ROGCYRisWEyZMkMGDB5vhFl3aq1WPwOqa8ePHS9euXc1QS90hGg0wZ59de0wNAOBN8ahoNNUnpDlR9RGBM8PI2LFj5ciRIzJ37lzT9Kx///6yfv364KTW/fv3mxU2obQHyaZNm+SNN96I3ZEDABwtVhWN0MrGWRlnESg8KKoJrDok09iwzMaNG+vddv7555uEDADwp5ZUNAKobHgXe9MAANzV+RSeQxgB4EmRTJoMbZYGIPEIIwDE7w3UQpulMaQMJB5hBIBnxKKBWsXpk3KG0JAuFkt1E9FsDN5AGAEgfm+gVn7imBx59DtxOy6voPkY4oUwAkD83kCtJoXf4OO5VNcVzcZ0xWck+0WpSO+PRhFGAABxXarr+CW5GkRW5okc2BzZ407rOXWO11H5CmEEAODvpbpa4Yg0iNQV5j5IaBhhBADge1ocsaqTRKb/RSTMkKUbLMoL3/36ipMrPy5AGAEAiN8n5u7b0EEqjqaJvJBn9+H4EmEEAEJYFRVSk1p/YmJSpsPnPSBqVsXJr4NIlDIHDjT/PxA9wggAhPhs5HcafcPJfWYVgcTjer79hiS3jWx3eYJqyxFGAPheUmaG7Ogm0uuzxp+KisJCUzVJyvLIpE00KDkzU5L5HiccYQSA7+nwy9ybUiT9lMj6MeslI+WfJXcNII1VSwDEBmEEAFRSklSmiXz7D1fUej7Yt8YjmmpqRvMy2xFGAPheuHvasG+NSzXX1IzmZbYjjABuUxVmC2rtlcDqjxbvacO+NR5wqlys/Zu/7iPSgBoTRv6B5mW2IIwAbvM//xLe/XK+KTJpPYGkhXva+GHfmnB34nXrLry1+og0hwBvC8II4Ab6Jqnh4sAH4T9G76tj4Wmt43lkvtJYDxI3L/P0w0684fYRoV+IfQgjgBvom5tWOcKZaKfDOOFWTxCRcFbVuK0fSTQ78bpiF94o+oi4LUh6CWEEcAt9kaTK4cgeJF7pRxLuTryO34W3CfQRcSbCCABE2YMkVGg/ErOBWpzF47d4J+/Ea9XUiFV6LKrH1kT5OCQOYQQAouxB0lg/kp3DR8T9ObVrOEjnmGjwSqiaGtl75SVSefhUYr8uEoYwAgAx6EFSmSoRDee0lA4HVR87ZoYdWqLmVIUJUnr8Ya1KGXejVGxt+rlwqsyu6ZLU5iy7DwMNIIwAQJQ9SELpv4+US81wTjzp5//VkuqYVmC0oqNByhpnNXk/rYjYGUTS252S7r/fEPXcKQ0iScnJMT8utBxhBACi7EFSr4LSaWCzFZSWqky14lKB0c+nS2DDfaPv+adN4VVlTBv2Fg7r6Cqyxy+SpBRLktp1YCK3BxFGACCBFZRYmHDWeNlzaEfMKy2ZrTJiuyqluTbskeDdytP49gJ+bR1Pu3hbKiixsObq52MWemrKK+TAkq+He6yTJ6WmiQmxEa8S0opGLIJIgDb+c+hqH7QMYQTwsqaan9Eu3rViGXpqQiauxnUV0E92iaS18JgJ0J5FGAH82jqedvH4R78SXSasq3PCFVXbdA0iNO1DIwgjgN9ax9MuHrX+uySZfiWR9A6hbTpijTACeBGt4xHRf5ek8NvXm9UxYeyR1NycJSAEYQQAEJ5Yro4BQtD9BQAQ39UxrIJBM6iMAADiuzqGVTBoBmEE8DMnjenzhuUurI6B3WFk2bJlsnDhQikpKZF+/frJ0qVLZciQIY3e/8svv5T7779f1q5dK8eOHZPc3FxZvHixXHnllS05dgDx7EOSaPQ9AXwr4jkjq1evlhkzZsgDDzwghYWFJozk5eXJ4cOHG7x/VVWVfOc735G9e/fKCy+8IMXFxbJixQrp2rVrLI4fQLR9SJwm0PcEgO9EXBlZtGiRTJ48WSZOnGiuL1++XNatWycrV66UmTNn1ru/3q7VkPfff19SU79u9de9e/dYHDuAePQhSTT6ngC+F1EY0SpHQUGBzJo1K3hbcnKyjBo1SvLz8xt8zO9//3sZNmyY3HHHHfLyyy/LOeecI+PGjZN7771XUlJSGnxMZWWluQSUlpb6/hsFxBR9SAC4dZjm6NGjUl1dLZ06dap1u17X+SMN2b17txme0ce9+uqrMmfOHHn00Udl/vz5jX6dBQsWSNu2bYOXnJycSA4TAAC4SNz7jNTU1EjHjh3ll7/8pQwaNEjGjh1rJrPq8E5jtPJy/Pjx4OXAgQPxPkwAAOCGYZoOHTqYoZVDhw7Vul2vZ2dnN/iYzp07m7kioUMyvXv3NpUUHfZJS0ur95j09HRzAQAA3hdRZUSDg1Y3NmzYUKvyodd1XkhDhg8fLrt27TL3C/j0009NSGkoiAAAbGjzXlUWxsUhk57hORGvptFlvRMmTJDBgweb3iLaL6SsrCy4umb8+PFm2a7O+1BTpkyRJ554QqZPny4//vGPZefOnfLII4/ItGnTYn82AIDIsN8M3BhGdM7HkSNHZO7cuWaopX///rJ+/frgpNb9+/ebFTYBOvn09ddfl7vuuksuuugiE1Q0mOhqGgCAC/ebYa8ZxFiSZWksdjZd2quranQya5s2bew+HACxpOX/R7pEvt9JU2gtH9/nn+cXMX7/Zm8aAN5rT09r+eiw3wy8urQXABLenp7W8oCrUBkB4J329H5pLa+j67Fq588KGTgAYQSAN9vTR/Mm64a5EKx+gQcRRgB4UzQVEjfMNYlm9Us4WCEDGxFGAHhv/onOGWnJXJNYV2niJVarj9xSFYJnEUYAeEe080/cOteE1S/wCMIIAG+Jx/wTOyaWNoYJp/AgwggAxCJk6H1+c7lIyUc8n0CECCMA0FTlwakhgwmn8BDCCACEaunckey+IhMTsCKHCafwEMIIAISzCifckEFIACJGGAGAcFbhEDKAuCGMAIDdq3AAn2OjPAAAYCvCCAAAsBVhBAAA2IowAgAAbEUYAQAAtiKMAAAAWxFGAACArQgjAADAVoQRAABgK8IIAACwFWEEAADYijACAABsRRgBAAC2IowAAABbEUYAAICtCCMAAMBWhBEAAGArwggAALAVYQQAANiKMAIAAGxFGAEAAO4LI8uWLZPu3btLRkaGDB06VLZs2dLofZ988klJSkqqddHHAQAARBVGVq9eLTNmzJAHHnhACgsLpV+/fpKXlyeHDx9u9DFt2rSRL774InjZt28fzz4AADBaSYQWLVokkydPlokTJ5rry5cvl3Xr1snKlStl5syZDT5GqyHZ2dniJJZlScWpanGqzNQU87wBAOB1EYWRqqoqKSgokFmzZgVvS05OllGjRkl+fn6jj/vqq68kNzdXampqZODAgfLII4/IBRdc0Oj9KysrzSWgtLRUYk2DSJ+5r4tTDc5tL8/fPoxAAgDwvIiGaY4ePSrV1dXSqVOnWrfr9ZKSkgYfc/7555uqycsvvyyrVq0ygeSSSy6Rzz77rNGvs2DBAmnbtm3wkpOTI37z4b6/O7pyAwCAbcM0kRo2bJi5BGgQ6d27t/ziF7+Qhx56qMHHaOVF56WEVkZiHUh0GOTjB/PEacqrqmXw/D/afRgAADgzjHTo0EFSUlLk0KFDtW7X6+HOCUlNTZUBAwbIrl27Gr1Penq6ucSTzsfISot7FmtxMAkH80sAAG4W0btxWlqaDBo0SDZs2CCjR482t+mwi16fOnVqWJ9Dh3k++ugjufLKK6M7Yh8Jt0LC/BIAgK+W9urwyYoVK+Spp56STz75RKZMmSJlZWXB1TXjx4+vNcH1wQcflDfeeEN2795tlgLfdNNNZmnvrbfeGtsz8Qitcmi4iATzSwAAbhbxOMXYsWPlyJEjMnfuXDNptX///rJ+/frgpNb9+/ebFTYBf//7381SYL1v+/btTWXl/ffflz59+sT2TDxCh490FU04k1eZXwIA8IIkSxtuOJxOYNVVNcePHzcN1PC18qrTweXJOhnX6XNgAAD+Uhrm+zd70wAAAFvxq7RHhLvyJhSrcADA36yQbuR2vicQRjwimt4krMIBAH+rCOlGbudwP8M0Plt5E4pVOADgv0pIedXpkIszOn1TGfHJyptQrMIBAH8Gke8vz5eCfX8XpyGMuFxLO8k6JRUHMI8FAOIzL0Rf7xsLIlpl19dfuxBGfM5p++AwjwUA4l8N+XD2KMlKS3HML4LMGfGhls41iSfmsQBA7GhFpG4Q0df/s1unmap64GJnEFFURnwo2rkm8cQ8FgCIr0A1xO4qSEMIIz7lhl2LAQCxo0HEqa/7zjwq+JrTJtUGOPG3CQDwAsIIHMdpk2oDmFwLwI0raNyAMAJHTarVCaxOFZhc69QyJwA4vZ9IY3hVhSM4cVJtAJNrAXhhBU2mjX1EmkMYgWMwqRYA/LOCJhRhBAAAj8py8AqaUDQ9AwAAtiKMAAAAWzm/dgM4SCyXyTl9DBeAu5bxBrhlOW8owghgUw8U+pYA8OMy3oYwTAPYtLEgmwICiMcyXrcs5w1FZQRIcA8U+pYAiMVwTN0hmcAyXjcOBRNGgDDQAwWA04djslyyjLchDNMAAODi4Ri3Dck0xJ0RCgAADw23NKep4Ri3Dck0hDACAICLVr9kuXg4pjHeOhsAABxc/dAKR0uCyGCXD8c0hjAC2CjS5kRuL8UCfggdliVy/fJ8+fiL0iYf29Bwi19fAwgjgIuaqNEoDfDGkIv+LJ/dOs2TwSIahBHApiZq2vQs2kZpXhsvBry4wqVP5zamR1FDecOrFY5o8YoGuKCJGo3SAGfz4gqXRCKMADagiRrgLV5c4ZJIND0DAAC2IowAAABbEUYAAID7wsiyZcuke/fukpGRIUOHDpUtW7aE9bjnnnvOjJWPHj06mi8LAAA8KOIwsnr1apkxY4Y88MADUlhYKP369ZO8vDw5fPhwk4/bu3ev/OQnP5FvfetbLTleAADi0jOkvOp0hJfImhaicRFP/V20aJFMnjxZJk6caK4vX75c1q1bJytXrpSZM2c2+Jjq6mq58cYbZd68efLee+/Jl19+GemXBQDAsfvFIIGVkaqqKikoKJBRo0b98xMkJ5vr+fn5jT7uwQcflI4dO8qPfvSjsL5OZWWllJaW1roAAGBH8zK/7hfj2MrI0aNHTZWjU6dOtW7X6zt27GjwMZs2bZJf//rXUlRUFPbXWbBggamiAACQSOwX48HVNCdOnJCbb75ZVqxYIR06dAj7cbNmzZLjx48HLwcOHIjnYQIAUKt5WSQXuqwmuDKigSIlJUUOHTpU63a9np2dXe/+//d//2cmrl599dXB22pqar7+wq1aSXFxsZx33nn1Hpeenm4uAOoLd9IcragBeDKMpKWlyaBBg2TDhg3B5bkaLvT61KlT692/V69e8tFHH9W6bfbs2aZi8vjjj0tOTk5Ljx/wnXB3+mWHX6D2JNXG9oNiVYwLV9Post4JEybI4MGDZciQIbJ48WIpKysLrq4ZP368dO3a1cz70D4kF154Ya3Ht2vXzvxd93YAsd3plx1+ga+xWsaDYWTs2LFy5MgRmTt3rpSUlEj//v1l/fr1wUmt+/fvNytsANiz0y87/ALRrZZhVYx9kiyNjA6nS3vbtm1rJrO2adPG7sMBHE2bMfWZ+7r5+OMH89hJFL4X+jPR1GoZ5lnZ9/7NfscAAFfP+WhO6JyQwGoZOAvfEcDDmpqYx2+BcAvmfHgfYQTw6cobVtvA6RWN0FAdi1btzAlxLsII4NOVN6y2gRsrGtF0SA2gGuhchBHAZytvWG0Dt+z5UpeG7LNbp9Hx1IMII4BHA0k4k/Sc1OyJ31q9N+wS+v+rJRWNAP6PeBdhBPCxcLu5JgJzWLw97MIqFjSF7mSAT+eUOE1gDgu8N+zCxFE0h8oI4DORdHNNBOawuFMkwy4Mr6A5hBHAh8KdUwI0hmEXxBKvRgDgc+FOSnXShGd4C2EEgGPE6s2OYYHw0d0UTkAYAeC51T2szInvpFQmpCLWCCMAXNExNhL6uf5WVhVxXwu/V1TCnZTq9+cJsUcYAeCZ1T2hK3OiqbK4paISi/1eAtjRFk5AGAHgmdU9La2yRFtRSSTLErl+eb58/EWp3YcCxAxhBID4vcrS0oqKFzAPBHYijAAQv1dZ4jFvJd76dG7zjyGl2Hw+5oHAToQRAL7ntK604SA8wEsIIwBAV1rAVmyUBwAAbEUYAQAAtiKMAAAAWxFGAACArQgjAADAVoQRAABgK8IIAACwFWEEAADYijACAABsRRgBAAC2IowAAABbEUYAAICtCCMAAMBWrti117Is83dpaandhwIAAMIUeN8OvI+7OoycOHHC/J2Tk2P3oQAAgCjex9u2bdvovydZzcUVB6ipqZHPP/9czjzzTElKShInJT4NSAcOHJA2bdqIX3De/vp+K77n/vqe8/3m+x0rGjE0iHTp0kWSk5PdXRnRE+jWrZs4lb5I+emFKoDz9h++5/7C99tf2sTpvaypikgAE1gBAICtCCMAAMBWhJEWSE9PlwceeMD87Sect7++34rvub++53y/+X4nmismsAIAAO+iMgIAAGxFGAEAALYijAAAAFsRRgAAgK0II3W8++67cvXVV5tucdrt9aWXXmr0ybv99tvNfRYvXlzr9mPHjsmNN95omse0a9dOfvSjH8lXX30lbj73U6dOyb333it9+/aV1q1bm/uMHz/edMZ1+7k39z3XOd5z586Vzp07S2ZmpowaNUp27tzp+vOuq7q6WubMmSM9evQw53neeefJQw89VGtPiXCeCzc6ePCg3HTTTXL22Web89L/5x9++KHnzzvUT3/6U/P//8477wzedvLkSbnjjjvM83LGGWfImDFj5NChQ+JmCxYskIsvvth09O7YsaOMHj1aiouLa93Hi+fdlGXLlkn37t0lIyNDhg4dKlu2bJFEI4zUUVZWJv369TPfnKa8+OKL8sEHH5g3sLr0Temvf/2rvPnmm/LKK6+YN7vbbrtN3Hzu5eXlUlhYaN6s9O+1a9eaH+BrrrnG9efe3Pf8v//7v2XJkiWyfPly2bx5swljeXl55gXLzedd13/913/Jz3/+c3niiSfkk08+Mdf13JcuXRrRc+E2f//732X48OGSmpoqr732mnz88cfy6KOPSvv27T193qH+/Oc/yy9+8Qu56KKLat1+1113yR/+8Ad5/vnn5Z133jG/fFx33XXiZnoeGjT09Vt/XvUXre9+97vmdcDL592Y1atXy4wZM0ybCn1t19dC/b99+PBhSShd2ouG6dPz4osv1rv9s88+s7p27Wpt377dys3NtR577LHgv3388cfmcX/+85+Dt7322mtWUlKSdfDgQdefe6gtW7aY++3bt88z5173vGtqaqzs7Gxr4cKFwdu+/PJLKz093frtb3/rmfNWV111lTVp0qRat1133XXWjTfeGPZz4Ub33nuvNWLEiEb/3avnHXDixAmrZ8+e1ptvvmldeuml1vTp04PnmJqaaj3//PPB+37yySfm/3p+fr7lFYcPHzbn9M477/jqvAOGDBli3XHHHcHr1dXVVpcuXawFCxZYiURlJIpN+26++Wb5j//4D7ngggvq/Xt+fr4p0w8ePDh4m5Z0dX8d/Y3KS44fP27Kunq+Xj33PXv2SElJiTmP0H0WtJSp5+ul877kkktkw4YN8umnn5rr27Ztk02bNskVV1wR9nPhRr///e/N9+766683ZfsBAwbIihUrgv/u1fMO0CrBVVddVev8VEFBgakahN7eq1cvOffccz1x3qGvY+qss87y1Xmrqqoqc76h56qvW3o90efqio3ynERL161atZJp06Y1+O/6oqUvaKH0/vofXf/NK7Q8rXNIbrjhhuDGSl4898Bxd+rUqdbtej3wb14575kzZ5rdWvWFNyUlxcwhefjhh80QVLjPhRvt3r3bDE9pqfq+++4zQxb6852WliYTJkzw7Hmr5557zpTm9Zzr0nPT5yDwy4aXzjv0l0udI6PDdBdeeKFvzjvg6NGj5ue8of/bO3bskEQijERAE+Tjjz9ufni1IuBX+lvDD37wAzOpT1/E4Q1r1qyRZ555Rp599llT9SsqKjIv1DovSt+UvUrfkLQy8sgjj5jrWhnZvn27mR/i5fM+cOCATJ8+3cyb0ImLfqRVIf1eawUQ9mKYJgLvvfeemdSj5Tr9zVcv+/btk7vvvtvMRFbZ2dn1Jv6cPn3arLbQf/NKENHz1hex0O2mvXjugeOuO5Nerwf+zSvnrUOPWh354Q9/aFaT6HCkTuTT1QfhPhdupCtk+vTpU+u23r17y/79+z193vrLlf6/HThwYPD1TCdr6kRd/Vh/O9Yy/pdffump8w6YOnWqmWz+9ttvS7du3YK367l5+bxDdejQwVRBnfB/mzASAX1x/stf/mJ+Ywxc9LdGfRF//fXXzX2GDRtm/hPrD3rAW2+9ZX770jFmLwQRXdL4xz/+0Sx7C+XFc9dlrvpDqXMpAnQoQ+eC6Pl66bx1xZSOF4fSFyo9j3CfCzfSEn3dpZ06byY3N9fT533ZZZfJRx99VOv1TCtEOiwX+FhXGIWetz5PGtLcfN5a0dUgoisi9edUv7+hBg0a5MnzbogOR+n5hp6r/rzr9YSfa0Kny7pkZvnWrVvNRZ+eRYsWmY8DK0bqqruaRl1++eXWgAEDrM2bN1ubNm0yM9VvuOEGy83nXlVVZV1zzTVWt27drKKiIuuLL74IXiorK1197s19z3/6059a7dq1s15++WXrL3/5i/W9733P6tGjh1VRUeHq865rwoQJZpXYK6+8Yu3Zs8dau3at1aFDB+uee+4J3iec58JtdFVYq1atrIcfftjauXOn9cwzz1hZWVnWqlWrPH3eDQldTaNuv/1269xzz7Xeeust68MPP7SGDRtmLm42ZcoUq23bttbGjRtrvY6Vl5d7+rwb89xzz5mVYU8++aRZGXjbbbeZ/+slJSVWIhFG6nj77bfNG1Ldi75QhxtG/va3v5k3ojPOOMNq06aNNXHiRPOG5+Zz1zenhv5NL/o4N597c99zXdo5Z84cq1OnTuaH9rLLLrOKi4trfQ43nnddpaWl5o1IX4QzMjKsb3zjG9b9999fK2yG81y40R/+8AfrwgsvNOfUq1cv65e//GWtf/fqeTcXRjRs/fu//7vVvn17E9CuvfZa88btZo29jv3mN7/x9Hk3ZenSpebnPi0tzSz1/eCDD6xES9I/EluLAQAA+CfmjAAAAFsRRgAAgK0IIwAAwFaEEQAAYCvCCAAAsBVhBAAA2IowAgAAbEUYAQAAtiKMAAAAWxFGAACArQgjAADAVoQRAAAgdvr/y8I+MqvIei8AAAAASUVORK5CYII=",
64
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAb+1JREFUeJzt3QmcU9X5PvAnezL7xs6wqFhQKu7WtVq3olUptbWuVKutC2qlrdWfe11QsdZdW1ul7ta21LqU1j8WrRVFUKxWwQUEhGFggNkn2839f94zk5CBGUgyublLnm8/qUkmmblMMsmT95zzHpeu6zqIiIiIyPbcZh8AEREREeUHgx0RERGRQzDYERERETkEgx0RERGRQzDYERERETkEgx0RERGRQzDYERERETkEgx0RERGRQ3hRhBKJBNauXYvy8nK4XC6zD4eIiIioX7KXRFtbG4YPHw63e/s1uaIMdhLq6uvrzT4MIiIiooytXr0aI0eO3O5tijLYSaUu+QuqqKgw+3CIiIiI+tXa2qoKUsn8sj1FGeySw68S6hjsiIiIyA4ymT7GxRNEREREDsFgR0REROQQDHZEREREDsFgR0REROQQDHZEREREDsFgR0REROQQDHZEREREDsFgR0REROQQDHZEREREDsFgR0REROQQDHZEREREDsFgR0REROQQDHZEREREDuE1+wCcLJHQzT4EGgC322X2IRAREWWFwc7AUPd5Q7PZh0EDEPR7UT+o3OzDICIiyhiHYon6EY7GWXUlIiJbYcXOwGG8nYdVmX0YlANd17F8XYvZh0FERJQ1BjsDcY6WPSUSvUNe+mUj8HlCRET5wmBHtB2FqNz5fR7U1+U2l4+hkIiI0jHYEfURlmThhMyxK4RoTMt5oQ0XeBARUToGO4N1ReKIawaP5VHeVZUG4C4LIhQw9k9kdVObCna5kvCpaQm4XAOv3LH6R0Rkfwx2Boe6fy1ZjfZw1OxDoRyUBf04Ys96Q8Pd6MEVOa28TV/gka/hYlb/iIjsj8HOQFKpk1AX8HoQ8HvMPhzKQiSqqceuENXW3Cpl+R8uTrZ3YeWOiMi+GOwKQEJdScBn9mFQliJxDZ0R4+fZeT3unKqCUl3LR589tnchInIOBjuiPnjcbrR3xfDaf1cXZMh3//FDEfB5ChYK0xndzoWIiAqHwY6oDxKypCKmGZx6YvEE1m3uwKtLVhU8FCZJ1a+jKwaPhxvREBHZnenB7vXXX8esWbOwePFiNDQ0YM6cOZgyZcp27xOJRPDLX/4STzzxBNatW4dhw4bh2muvxTnnnFOw4ybn6w5LBs+NDHQvWsglQA40FCYldB3rN3eq6QJjh1SgJGjfaQOcH0hExc70YNfR0YFJkyapUDZ16tSM7vO9730PjY2N+P3vf49ddtlFBcIEx5Oo2ALkAELh1hW7za1hdEZi+GxtM0pD9g12XNlLRMXO9GA3efJkdcrU3Llz8dprr2H58uWoqalR140ZM8bAIyRyflWxvMSPTW1h2B1X9uZPPhbm5AsfTyIbBbts/e1vf8O+++6L22+/HY8//jhKS0tx4okn4sYbb0QoFDL78Ihsqa4yBK/XjbFDK1XIsxuu7M2v1Rva0NweUc2vrUCqyONGVJt9GES2YLtgJ5W6N954A8FgUM3Ha2pqwoUXXoiNGzfi0Ucf7XdOnpySWltbC3jERPbgdrkQjmlwh2OwGy4Aye/vUkLd2x83qOF5K5D5n8Nrymw9TYCoUGwX7GQunWyf9OSTT6KyslJdd+edd+Lkk0/GAw880GfVbubMmbjhhhtMOFoieyhkexcj2GUBiF2GFKVSJ6Guvq7c1ObqMhi8qrFVHQu3ZiRyaLCTFbAjRoxIhToxYcIENRTz5ZdfYty4cdvc58orr8SMGTN6Vezq6+sLdsxEVleo9i5GscsCELst7pBQVxbym/q4+n0exBjqiJwb7A4++GA899xzaG9vR1lZmbruk08+gdvtxsiRI/u8TyAQUCciMrm9i4HssABEFndINUxGHYqpAkhERRTsJKB99tlnqcsrVqzAkiVL1IrXUaNGqWrbmjVr8Nhjj6mvn3baaWqhxNlnn62GV2WO3c9//nPVLoWLJ4iKV3IByJDqUpQMcDeOfJMRhS8aW9UcwHwu8jCqAijHG41pKojK7iZmVuwiMU0dDxFlxvRXv0WLFuGII45IXU4OmU6bNg2zZ89WPepWrdrSgFWqdK+88gouvvhitTq2trZW9bW76aabTDl+IrLOPMHOcBz//vBLWNHG1i74PB7ssVMd/N78VEbDUQ0jasvyWrmTEPXju+fhgxVNsIoxQyow7ejdzT4MIlswPdgdfvjh2/00JuFua+PHj1fhjojILvMEQ34vGps781Ox04H1zcYsFpFFNFYKdUKqnZ2ROKrsMz2RqHiDHRFRUcwTzNNOIanFIm3GLBaRtjFJj/z0aNRWmDfFRSqwp8582bSfT2RHDHZERDYMnsnFIl1RDfmUHux8XrcKo2ax0u4XRHbBYEdEZEOySEQaSq9cn98dN7oi8dR5j4sNn4nshsGOiMim1b/RgyvyPqfQm7YQo7vCSFT4Kipb+eSOwY6IyKaMmFOY0La8cesmD4dyKNZ6ewhLC5xCsFszbythsCMioj6taGxRq3nN0lWgEEGZhWwJddJiR5psG82IVj7FgsGOiIhS0t9IO8MxU6tm6dWhjkjUlGNhsOgdtt7+uAFlsgrbqF9LWiufnYZWWnZ7QCtjsCMioj59++BxGFxVYtrPb+uI4LrH3lLn3/+8CU3Nhd8yrrYyiF1H1hT851qRVOqkxU5tRRAhg3Z3SW/lE+cewTlhsCMioj6VBn2oLDNvn+30atmZt8015Rh2GlaJt+85FWUlflN+vlXndkpFzahg5/d5EGOoyxmDHRGRDcmOPbKPqhHDbVYhe/7uMbYO/zVxJ4zlDS1o7Ywy2JFtMNgREdkw1M34zWv4aOUmOJnH48bjV3wTryxeha7IlsbJhRCOxXHzU+8MaH4f5+eRGRjsiIhsRip1Roe6MbIHrUHzqLIh89tG1JYXfL6VzO9LBrtlqzajoyv7Fboy8X/ciGoDjo6of+b/1RIRUc6eveq4vG77JZWp5etaEItrcLmsUXEyY2VkerXto1Ub1e8kWzIPbXhNGVd2UkEx2BER2ZiEunwHO5kczxWJWwyvLUVNeSjj28ug7arGVset7JQpANGYptrQeD3GbDcnzz+pSMvPotww2BEREe2g8lYW8ue0slMCSiH67xk9n0/+HT++ex4+KNBCFpkKMO3o3Qvys5yGwY6IiMggH6/ejJDf+D13jZ7P1xmJFyzUiS9UxTOOKu4qljUGOyIiojxXz0IBH9Y3d+GdZQ0FqyoOqy5FSdBneJXvkZ8ejdqKzIems9EZjuPUmS8b8r2LBYMdEZHN+s4VaiN26iaPW7a/87qKIGrKAkgYPFcsfT7fB19szKo6mGuVT+Zg5nNeZzozt7BzCgY7IiIb952TN8J8vhnybXVb5/zqlZzut/voWvzqx4cZvrq4siyIlY2tWVUH5TnpdrtRHvRntGq3vSs6wKOkQmGwIyKyad+5nYdV4sumtrwHB1n5WOzysevF/1ZuVI+9UdWtpBG1pSgNeKElMluBK7f62W9eR+PmTlz+8L9hWVksPGEz6C0Y7IiIbNZ3Tt7sVq5vw8bWLjXB3AhVpUG1srNYSVh+6NIjMe+9VWq/2GxWxcqw7Sk3v1yQYXMZ6f3pb17D5w3Z99nLNURm87sYiKVrmrG+pSuj27IZ9BYMdkRENus7J8HO63GhLOTDyYftilIDNmSXUBeywM4TZoc7+T0M5DFLBjwrknmA00/aE9kUfOOarsKkUdIrb+9+si7jDxdsBr1Fcf/VEhHZnIS6yrKA2YdBWy0ukPl1MhRbKCPrynDZ1L0kjWY83K5Dx/cOG68+IGQyJ09at8g8vkyHfAdqRF2Z+l1u97gArF7fho5w1FHNoAeCwY6IiCjPlT5ZNJGvVdCZDsvH1Xy0zOekVZWGUFMRzKgyKz8nueJWN3D1avr3zWbRChsab8FgR0REtB25BhmjF00MdFg+1+F2aa9i1PxLqQzKnMblWc4ZZEPjLRjsiMgR8tknLt/Yd87ecg0yEuxG1JbBSHqBhuWlwifz12Qum/TMk+3SjPKj4yaiuSOKSTsNQnAHv3dpaHz6bX837FjsiMGOiGzPyD5xVJzyEWRk5wnp/+b1uGGkQrWnkVWnskDByLls6XP5Gja27zBQd/FD0zYY7IjI9ozqE5dvMqF+R5PByToGEmRWrGvBok8aVSgsRCW5UO1pCrHqtK4ymHGgTq+Gy+2JwY6IHCYffeKMIqHO6F0IyBpBZs9dBqtgWKiVmk5qT5NNoG7riOC6x95S5zVuR6Y441lARJTHPnFE+cCearnj7y53xg78ExEREVHBMNgREREROQSDHREREZFDMNgREREROQSDHREREZFDMNgREREROQR7AhhIOmirLZn17vNkL+w3RkREdsNgZxAJcm0RDRpckF7YUeY623HpOvxuhjsiIrIPBjuifnRXW3VW7ihvuiJxaIlEXp6bhdoflIjsxfRg9/rrr2PWrFlYvHgxGhoaMGfOHEyZMiWj+/7nP//B17/+dUycOBFLliyBlUgYKA944IEO6Z/tZzawFVZYKd++bGrHysZWlAbz97Ir+2kavcE8kV10RKJoaY9s9zYVpX7Hf1g3Pdh1dHRg0qRJOOecczB16tSM79fc3IyzzjoLRx55JBobG2FF8uSRp488h5z+RHISzoekfEskdHRFYirU7feVYQj5PXnbdolbLxF1O/jSP+7wNhNG1WDxA6c7+j3Z9GA3efJkdcrW+eefj9NOOw0ejwd//etfDTk2IqJ8m1BfjYrSQF6+l5tzQKnISQVOwtrHqzZldPuPV23CFw0tGDu8Ck5lerDLxaOPPorly5fjiSeewE033QQr0xI6YlpCncg+Fbu43l1pBYe5KM+kUsBARpS/vyepwElYi27nfbYjEk1V9LZ3OyewXbD79NNPccUVV+Df//43vN7MDj8SiahTUmtrKwohriWwqTOKzriOYNTZTyQnkYFYebS8HheGlsgcpvwMmxERkTHhbkcVuJYdzL1zElsFO03T1PDrDTfcgF133TXj+82cOVPdp9ASOhBP6HC5AZ+Hn9DtFOxiUrXTdPUYFkuVMmLjVZbhaNzsQyAisgRbBbu2tjYsWrQI7733HqZPn66uSyQS6k1Jqnf//Oc/8Y1vfGOb+1155ZWYMWNGr4pdfX19wY7b43LBw6EX25C1ExJxEiriOZ/8/cz4zWv4aGVmc1SIiMi6bBXsKioq8MEHH/S67oEHHsCrr76KP/3pTxg7dmyf9wsEAupERNuSSp1TQt3uo2sR8HHonIiKl+nBrr29HZ999lnq8ooVK1RPupqaGowaNUpV29asWYPHHnsMbrdb9axLN3jwYASDwW2uJ6LsPXvVcQj6TX9ZyJmEOie3MSAi2hHTX8FlaPWII45IXU4OmU6bNg2zZ89WTYtXrVpl4hESFQ8JdXYOdkRExc70V/DDDz98uw1hJdxtz/XXX69ORERERMWOTbqIiIiIHILBjoiIiMghGOyIiIiIHILBjoiIiMghGOyIiIiIHML0VbFERPnSFYlDS1hvX2ZZ9x+18ZZtRGQfDHZE5AhfNrVjZWMrSoPWfVkrCfjg9XCghIiMY91XQCKiDCUSOroiMRXq9vvKMIT81txWrDTkUyciIqMw2BGRo0yor0ZFqTX3hna7ud0ZERmLwY6IHEX2imWAIqL+6NBVlT+dk14zGOyIiIioaKze0A6Pu/dcV9kju35QOZyAwY6IiIgczZ1WkYtE4+joivX6ejiqYURtmSMqdwx2REREVDQ2tHShPdwT7HRgfXOnWrG+09BKRyxuYrAjIiKiouH3ulHVs8BK5tptbgujMxJDXLNeD8xcMNgRERFR0Qj5vapClwx2fp8HMYeEOsFgZ6CErkPvOcl5sgd5qPh4ERGRHTHYGUQ+BXy5qQstXRoSrjjC3E3IVqK6DhdcGF7mN/tQiIiIMsa9bYj6IfMtWLkjIiI7YcXOILJkemRNCJUhD6pKvI5YaVMsJMuta4+afRhERERZY7AzkNvlUl3wVSd8l/174xQLLb1KpwNawthJtVs3ysyUzN2MxAY+xh+Oxgf8PYiIyBoY7Ii2o6E9mnPwypTf48bQcn/WoW7Gb17DRys3GXZcRERkPwx2Botp3VUVn5fTGW1F06FttZegUaJaApqWgCuLjudSZct3qNt9dC0CPk9evycRkdVEYlpqpEIWOspl+bDsFAx2BorENazc0AG/14NQkHPs7ESClsyTHD+oFKUBg8KODqxp657Lt749qobsMyVb4iQ9e9Vxap/DgZJQl80xEBHZ0Tm/emWb68YMqcC0o3eHEzDYGUgqPtL0sCTgRcDHip2dRKEjIlU0V+5z4HZEPiHKMKxU7AZCmmvmI9gRETlVScCLPcbW4b8rmvr8+heNreiMxFFVDtvju0EBuD3dW5iQfagFE5r8V4bTE4YFu/KgBzrcCHncWVXLwhE+n4iIMuVyufDQpUdi3nursNOwSpSFuuc1d4bjOHXmy3ASBjuiPkhzYsl2a1u7DAvlMqNDd7ngc7tQXxHIrjLIEVMioqzDnb9nhCM5yiFz7JyGwY6oD16PW/WzW7m+w9Cf4/a61c+q8HlRksXC2K5oWpuTPG2BxpY8RET2x2BH1Aevx4WaMr/hO0/IIG97OI6P17bCk0WuSl88sbY5jLJsUmE//PJvLuUWakREdsZgR7SdcGf0mKfakTYEBL0eZDPimx4C8xU+o5quvhcrd0RE9sVgR2QiWUChaTrg1VXIy/h+aedry/yoLhtApU3vbrdCRET2x2BHZGKoe/SFJVjd2Dqg7yMVtoFU2RK9YiIREdkZgx2RSWLxxIBDXf3gCrXSq9diiizJ8Kt0XucQLBGR/THYEVnAdWcfilDAm/XuGC09Cy8GWjlsDWvw+9wYVO5HkNuKERHZFoMdkQVIb6Ws92n1edT9BtqHSYJdR0xHNJYo2P64RERmiagRju55xZ2RGJyGwY7IxqQHHgZYYJNg53XHoWn564lXaHLM8j8iov54PG6UBHxY3dSWui6c1joq/bydMdgRUUpTRxSBqMeWwW5zR1zNFSQi2prb7UJVWQAHTBimprEkdXRtqdgZtX1koTHYEfVTxZLFDUaKxq0RQmTxhfTsc8KIhAwlO3GLICIauPpB5RhRW9brutaOCJyGwY6oj1D3SB7akNhJecCrRnTryvwI+W1YsdN0rDb7IIjIFpW7rT/YOg2DHZEBbUiyMXJIBfxed04zxPL5kiQvcAPtiWeWhItVOiIiwWBHtB0/O+NA+L3GVbBktwm3xwWXLILIIVBJnHHlcbFD1ODhZ6PEtYQa2pb/EhEVM9OD3euvv45Zs2Zh8eLFaGhowJw5czBlypR+b/+Xv/wFDz74IJYsWYJIJILdd98d119/PY499tiCHjcVBwl10lLEKDIdbKBRRIW7PAxPdMUT+GhNC+wokUhgxYYONccurJb3EhEVJ9ODXUdHByZNmoRzzjkHU6dOzSgIHn300bjllltQVVWFRx99FCeccALefvtt7LXXXgU5ZqJ80WWyv1TcJOG5s7xzHodMpW2KzK+z68IDLeFS4TQc0xCPW3cBxdbze4iIHBfsJk+erE6Zuuuuu3pdloD3/PPP44UXXmCwI1vL5i1ft2hPPDODnbcn6K7d3IV4Xmcf5k/Q58awqpDZh0FEDmZ6sMvHEExbWxtqamr6vY0M2copqbW1eFY7kj3ktONDT4Uv20KfE8nCD48NqmHhWEJVE1m5IyKj2D7Y3XHHHWhvb8f3vve9fm8zc+ZM3HDDDQU9LqJMSJFJ03S0hLNvIuf2uOFxuVDu99gi1BitxO9GJObGiJoQhteUwEoktq/a2Gn2YRBREbB1sHvqqadUYJOh2MGDB/d7uyuvvBIzZszoVbGrr683vBea7EEXi2vqFGVHfNsoZONgqdwEpNWJnmMotOH2X0aS34ms7O1Ue0Fah1TpOiNxeDwuFfLyNQeQlT8ickywe+aZZ3Duuefiueeew1FHHbXd2wYCAXUqJHkR3/NHjxf0Z5I95frmLK1SjJltZ08utwvRuI53VmxCabAdViILZJraoqnmz4E8tdDhnD0ickSwe/rpp9UqWgl3xx9/vNmHQw5VP6QCPq+7qCqVVl1Nmklwkip5RciLUr8XZUHrvbR1RTV0RDR0RjQ1/J4PkbgLQyqCrNwRUYrpr34yP+6zzz5LXV6xYoXqUSeLIUaNGqWGUdesWYPHHnssNfw6bdo03H333TjggAOwbt06dX0oFEJlZSWsoiTgxZLfnonb57yP6nI/KkuCZh8SZUlCnRO3m+kv1G3Y3IFQwAc7klAnbU7KAj4V6qy4Ldrw6hC+3NyFLzflYa6dDjS1d1cAR9WUqNcbIhoYHb1bJdn1A5PprwaLFi3CEUcckbqcnAsn4W327NmqafGqVatSX//tb3+LeDyOiy66SJ2Skre3CgkEJQEffF6POhnZ5JZooOTFLOj3YtLOg9V/7fiC3LCxQy0iCVj0+GXbuJHVodxWQPdRoZQFN1IFjGnG9O2z65saUa5Wb2iHx71llEZeC+sHlcNuTH8FPPzww9Wn7f5sHdbmz59fgKMiKi7N7WG0dUSxqS2MkE2rP3Y4bgl3+SDBzu9xq4VZUgE0omLH+XtUDNxpH2Ai0Tg6urZ0KAhHNYyoLbPdhxzrvxISkaEkJMRsukfs1gI+j+1ehHPhdrngk4bS0BBRj1087z+D8/eoL4Wah2vG825DSxfapfWUDqxvlg9MPuw0tBKlIXtNUWGwI6KUYbWlKA36YVfFFEIGVQQQ0RL5mbOXjvP3qB8NzV2qyXYhmFEx9nvdqCoNqPC6uS2sWpbFNft96OVfLBGluNC95ypZXz7n7PU1f09aNkVjCQR95q+U5nPSfBJ2JNRF4vlb1W21inHI71VVOvm3yrz4mA1DnWCwIyKyqXzN2ds62HWG49jUEcOHa1sQssDCr5pSP8YOLjP7MIqehLr3vmhGqaw6NypvsWI8YPyNERFRipZI4Km3v0RDcxiPvrESVjCqJoTnf3IQSoP2muvkNFKpk5XY1aU+BA0K/OkrvuMFqAw6EYMdERGlyJZsEuqsZNUmmdSuMdhZqFJsVK/I9BXflBsGOyIi6rXiNmn6kTvBn6ftz3JtnH3fvOXqfFc8/yt/iZyIwY6IiPp0wt7DUVta2H2207WH46lgl+9FIkROxWBHRER9KvF5UVFi5vAnwxxRthjsiIiIqOhFYhrC0bhqdyLnt7crlpUx2BERkeXJe2yhdj1Ixx56xeOcX73S6/KYIRWYdvTusBsGOyIisryVTR2IFGjXg3SlAS/GDCot+M+lwigJeLHH2Dr8d0XTNl/7orFVNequKoetMNgREZElpVfLPmlox8qmroIfg7T1GFwRYKNcE0h9NtMqba6VVZfLhYcuPRLz3luFnYZVoizkVw26T535MuyKz1QiIrK8IVUBVJUUcB9jHVjT3KUa5cY0PadhYA7jDszn69sRyHB3lYFUVl0ul9pCLOj3qpMZQ/75xGBHRGRDMrE7Es//0KQR3zMfZGszefMulPRGudkEjHQcxs2tj6LsaiHbii1Z2Zzx/VhZ3YK/ASIHGMjnS3t/Ni3eUHfj80vxaWO72YfiWLkGDCeHDXneyc4ksmLUY2A1sqrUh8oSLzIqnKVVVrkFWTdnPNuIipm8wKbtFpDb93DD5eGwkV1IVc3oUDeyOoSgL/sqlZH/5nCssNtMZRUwHB42JNT935/+h6UNbQX5ebsOLcPVJ45Xw6Tbwy3ItsVgR2RT+e6xJK+fdu3bVMzuO2vPnIYJ+yPPgdUbu1RlZkdvqoV0+bMfmvJzMw0YTg8bXTGtYKFOfLKuXYV5qZpSdhjsiGxKT+jqDUSVEwbyvs4wZ2sS6vL55qdCidetFgxYYV7d+GHlBQ0UfQWM1nA8q/CcHLKU/2azsnMgCrlQ4/ZTJqK61JiFLBLmpj+2JKf7ZvK7dhfBghYGOyKbG+gemvJGLm9ACWvOmaciJlWyW07eHW98shGj60IFnauWHjByDRoynL3n6KqCVJ0KuVAj3x8m8uXLTZ07fI7I9IJhVSE4GYMdkU3JyJCm6WgJxwb0fSTUtUXiiMfj3GidLEe1ovC6EZB2FAUMExJeZBhWKna5+nJzF95Zvlkdv9GctlAjm0UuPo/8frWeFd3x7d4+EndhSEXQ0ZW74noGEDmIvDDJm89AR1Ll7vIaJxU75jqiLYFS5tbl0v4lvdonlUYJpVbst2f1cJPp774i5EU4rqmKXb90qBXOEoBH1ZT0GYAjUZkTGUVnZGAfls3GYEdkY/l4YWaYI+o/3A20SigBwshK40D67Vm9z142Q+C7DCnFzyfv2u8iF/k9yehGXyuVPR43SgI+rG7qnssZjm6p+qWftwsGOyIisryo2ie28G+yMsw3kKHUQjR8luHIzmg86357Ur0aVBFQi1R2pFC7MeQ6BP5ZY4f6oBvs59/S30pluU9VWQAHTBgGTet+rDq6tlTsYj3X2QmDHRERWZbH41IBZG1z2JSfL2/sYweVwKvmcWVGGvgm5brwIlu7DC7FTyePy6wtS9rw7RcbOjKal9cZiVtyCHwgq2iT6geVY0RtWepya0cEdsZgR0REliTVlMqQD3uNqVILhQotltDx8ZpWfLkpnPWCJFkRK4snCuWz9R0qfGY67Fvq96I5HstowYGQimCSarNk8SHwgUxrsVL/xlww2BER2WxvV6vu52oEaU0hqxjN0NASRjDHUCltTmRFrNFtWnKtWMkQbERLbH/BQZqwWljQzcjtxGjgGOyIiAzGvV0HxqzVmyOqQ0gksg+VEgOXrm3tbtPi9Rja7iR9t5hsA/+IqmDGi6fSR6IL0b4lF9v79+tpTaOdjsGOiMime7vKJPN8bidG+QmV6QsNZC6bTNo3ioSVpGwrd6NrS3D1SeMd0Rol03//yOoQTt5vJJyMwY6IyKZ7u8r3sft8ICeSECStRGTRh+ovZ+CesQOZz7dyYyfOe+TdrO/XFZF/j8sSq5GzXUX75eYuhGMJVMK5GOyIiAoon9sxhWNa/ncL0YGoDVs8WI30h5OdILbumZZveo7z+W56fqkKdtkaVB5AQ3MYbrexleJ4QseE4eU7DHeZrqINxzRc/Pj7KAYMdkRENrSuOayqD5n0IMuFVJu8HlYDB6IQ23vJsK98UMh227Ubv7NbVnPypDL44epWVYHcc0y1Yc87IcclPfli8UTGz8Ed/bv1Iphbl8RgR0RkM9JuQioQ8uYq1Roj5tnJUGKx7TtaTLJtKSLPOVlJ2x6OY5dBZago8RlyXMmFJ9nOT5R/y9CqzBa66H00XLbDHMJM8a+WiMjGdh5chvJg/l/KnfRGVzR0A3vM6VsCoTw3jHx+5DI/UfaBrSr1ZRRWl29ox8b2iK22V8sGgx0RkY3J2ytDGBVkBW6B5l5mMz9RbiF75MrQ7fbmm7rSFhn9d1XLNnP3JEjKz3RCldr+/wIiIqIiVcgVuEKGYP0+41vsZBqwZEg1NRVhOxVLPe16WWQi8xG33l7N6IUuhcJgR0REZGOFWoErJNQVeruvfFQso2kLRSQ0Jv8NEgTlPkYH4kJisDOIfDqQ5dpS/mWbKSJ7bdmVb1Y9LnIOJwwhGlmxjKb9DUZimmXDaT4U5zOhACTUvfzpRkyc6OwO106mxeLoau4w+zAoA9yyi6h4ZVKx7IxquPMfn6rzee/9aDGm70Xz+uuv44QTTsDw4cNVdeuvf/3rDu8zf/587L333ggEAthll10we/bsghwrFRePj597in3LrnzjFmBExlUsZf5fRT+nsqBzK3RbM/2dq6OjA5MmTcI555yDqVOn7vD2K1aswPHHH4/zzz8fTz75JObNm4dzzz0Xw4YNw7HHHgur8LpdOG5cLW6f8z6qy32oLMl+I2kyh3zAKK2rMPswyAJbduUbtwAjIscHu8mTJ6tTph566CGMHTsWv/rVr9TlCRMm4I033sCvf/1rSwU7efGWcCdDREXU8NoRiqlDuRPlc8suIiK7sebH2u1YsGABjjrqqF7XSaCT6/sTiUTQ2tra60RERETkNLYLduvWrcOQIUN6XSeXJax1dXX1eZ+ZM2eisrIydaqvry/Q0RIREREVju2CXS6uvPJKtLS0pE6rV682+5CIiIiInDfHLltDhw5FY2Njr+vkckVFBUKhUJ/3kdWzciIiIiJyMttV7A488EC1EjbdK6+8oq4nIiIiKmamB7v29nYsWbJEnZLtTOT8qlWrUsOoZ511Vur20uZk+fLluPzyy7F06VI88MAD+OMf/4jLLrvMtH8DERER2afvZTimqZPsQiG7UjipG4LpQ7GLFi3CEUcckbo8Y8YM9d9p06apxsMNDQ2pkCek1clLL72kgtzdd9+NkSNH4ne/+52lWp0QERGRNV3+7IfbXDeyOoST93PGTlGmB7vDDz98u0m5r10l5D7vvfeewUdGREREThDyeTB+WDmWNrT1+fUvN3chHEugEvZnerAjotzJhteJAe57KB+stO3ssUhEZHculwu3nLw73vhkI0bXhdQWZEKGYy9+/H04CYMdkY1D3cbmLgR7XqAGFOwSGnw+DzxubndFRM4Nd36vGwGfJ7U7jZPm1iUx2BHZlFTqJNRN3GkwAv7ct9DSEgl8uaEd8vIW8PMlgYjIzvgqTmRj8mnTpz6B5v6nnNB1+H0eaAMc0iUiIvMx2BHtoHRv1VJ9a0cE7Z1RNG7qQHAAlTZd1eqIiMgJGOyItqO0rsLwn6HF4uhq7si6yhaLJ/J6HDLHzs05dkREtsZgR9RP2PIMYHgzGwP9OUNqShEK+HK+v1Qku6RRp6arZp0SGu3YcJSIiBjsiPqUbQUt12HefFUEB1Jpk0UYD//rC6za2JmXYyEiIvMw2BGZxCpz96Ka7phQt+vQMgS8pu+U2C/Zuigfi1SkqhrVWKUkom0x2BFRyq9P2wNlQfu+LEiok0qoVUOddLcvHUBrmhRd+hjqCPk98Hqs+e8lInMM+BVc0zQsXboUH374Yeo0Z86c/BwdERU8GCUbd1J+bWiNoCui4StDy/NSVdx5CODxuPh4EVHuwW758uX44IMPeoW4Tz/9FLFYDH6/HxMmTMBXv/rVbL4lEZHjqVXMPUOnEuqS2xkNVNDn5kpmIuol41eXM844A08//bQa5igpKUFHRweOP/54XHvttSrMjRs3Dh4PPzkSEW3PyJoSlOdpuJuhjigHeveHLWHHLgA7kvF4wJ/+9Cfcc889aG9vx9q1azF9+nT885//xDvvvIPRo0cz1BERZcDVE8jycSKi7K1p7sKqpk51Wr2xC06T8cfGyy67DGeddRaCwaC6fPfdd6vL559/vgp9DzzwAL75zW8aeay2onqDRTW1Ai6ubRmGIfvwul2WnYhPRESZc7tdKA141YIjeW+OxTV1vfTuTOqKx/vcmUdaQm39vRwR7GbOnLnNdfvssw8WLlyoKnmnnHKKGpqVwDdo0CAUO2n4+q27FvRcckYriWJTU+rFtybWGvozZPcIWdWY09Zl1n5tISKylDGDSjG4IqCKLUnt4Th+/c/P1Pm+WhF99mUzwpEt4U+UhnwYN6IaVjXgiR7yhnTppZfi5JNPxiWXXILx48dj48aN+Tk6IhNt6ojjsbcbDf4pjRhWE8J3DxmVVXVQ5oVUe7yIRmPc65WIKEMl2yxc2vL6KZ+tt67OfbRqI5ava9nqe/gwvKZMBTwrylvDqhEjRuDPf/4zXnrppXx9S1sL+Tx48ScHYtZf30dVmR+VpQGzD4my8OKHG1WwK4SGTV1qaMDncWe9ytLl8aj+aJGeYYVcyP2JiIpdQ3MXPG432ruiqeuG15aipjykzkvkW9XYis5IDHELT6/KeydSGY6l7kqmjOV73C411JbNmzaZb8oedYjnYYeA7ZHhgKcWrVfnH57bPRSQKRm2jUdj6rzX7+NcQCKiHLjT5svJh9zOSBxdkS0f6oMBL8pCfnVeqnl+n8fyc+bt22KeyEASlHwGd/T3unUMKfehsa07oJltVG0J/BbejouIyEgb26PoiGjo7NrymtzWFUNFKJ4KdrLYwirbQfaHwc5AMlwmD788B6z+RKBtGV0Fk+9//MTanCqD8nwKe7r/fMcPlrke3Z8ocyFPzUg8AfnnsvJHRMXK73WjIuSDO23e3YV3v7rN7cYMqcC0o3eHVTHYGRjqmjpiSLhckOwfsXbllvrgdunwG7ysXQUpPbHNhN0dkY8MPr879WIU8ObeR1JCovx0o4eeiYisLOB1d++/7PajfkgFVje29nm7L9Q8uziqymFJDHZE/ZCcI6HHyCqW9FLa2Nyl5nFkR0egu6UkXC4OnxIR5YvL5cI539oLSz5fj2/tPQKDK0vU9Z3hOE6d+TKsjsHOIG6XC3WlPhmUh0cDPDpLdnYS0aVNnEseSEN/jlTqJNRN3GkwAv7Mq25aIoGPG9vV+QA3gSciynu483rcCPq96iSyHVkxC4OdwaseW7riiOtudNrkCUHdS9qleYjX5UagzAcjd8tLTr2UUBcKZN4TycpL7YmIyDwMdgbSdF11spaij8/N4TK7UItdoCOuJxDWdXgTxlXtojoQTXRvWWOXT4NEREVD31Kps8trNINdAUgLOyOrPpR/WtyFRAF2dGjriKAjHMW6Te0I+TOv2BXi2IiIit3qDW1o6Yio8+FoYZrWDxSDHVEfvK7uxRNe3bj5kaplSSye+hSYzdZgaiWrrsPv91p+Q2oiIjtxu11q7rPf292MuCMc2ybYye4TVsVgR9QHWQgrw+gbOrZsLWNES5zNnXEkNA3+UAAlWfSik1BX4vbCy1BHRJR3Q2vK4NvNhxP3HIbyYPdoSltnBNc99pY6L+8PVsVgR9QHmRJZ4vOkFjcYQcKZ5LJYQmp1cj7zkCaHJbdPtmRRSZSIiPIm6POioiSAipLMp8lYAYMdUT+MXu8iecwHF6QmGJRl9VnMw9TSAqf64JjIfbhYgmEikTA0xBIRUWEw2BGZSAptMseuoTWCzVlsT6KqdD27TXzaHM7LschGFiMqeroeExGRLTHYEZlINo0IersbYfpl+XQWJM7ls8gWTfTsb2zj0l1M624xZDXye42y9yARFQCDHZEFOpz73C74PNnNk3MldLSF41nfry+JnupfZ0yDy6Y9F2X12rqWMCqy3p6tAHTZPk7v3ocyD48XEeVfJJ5AOKapD7fRuExPsd6HxExY8BWQiDIhK2Irgt7uOXYDbbvScz6e0NWOKXa0rjmM9kgcE4aWI2jBbdZ2HiL9LF2WPDYiAi5/9sNel0dWh3DyfiNhNwx2RDbmcbsw0JjQvfii+3xrV0x9arUbGerc0B5RQ7FSESuxYtVOrbJzs+8gkYWEfB6MH1aOpQ1t23zty81dCMcSqIS9WPPVj4hM4fO41bCw3XRv3aergDe8KoTasgCsiKGOyHpTYW45eXe88clGjK4LqQ+FMhx78ePvw64Y7Ij6EY8nVFAwigyBapoGK+mMa9Bgv/AhK4s7Y90LFGSlMQMUEWUT7vxeNwI+j5oqYde5dUkMdkT9hLrNrV0I+L0GBzsdfp+524LJi1p3tQu2JwHPyDBORCSkqXxyO0irfZC0TLC7//77MWvWLKxbtw6TJk3Cvffei/3337/f299111148MEHsWrVKtTV1eHkk0/GzJkzEQyyDxcNnIQDCXW7jq6Dr2fFqBE/Y2Nzp3pR8Js8oT75KbXE64Ed5/bHe7aAY6gjokJYtb4dnp4OAkG/F/WDymEVlgh2zz77LGbMmIGHHnoIBxxwgAptxx57LJYtW4bBgwdvc/unnnoKV1xxBR555BEcdNBB+OSTT/CDH/xAVR7uvPNOU/4N5EwS6mQzaOPCo3VSlPz9rGmNwI5k54xNnXFoCU21KSAiyrf0ylw0GkdHV0ydD0c1jKgts0zlzhLBTsLYeeedh7PPPltdloD30ksvqeAmAW5rb775Jg4++GCcdtpp6vKYMWNw6qmn4u233y74sZNzqa22ek7G/ABYTrZNkq0iIfPqXEBEhrdZtSMig21o7UJ7OIb1zZ0oCfgwdkgFykr8sALTg100GsXixYtx5ZVXpq5zu9046qijsGDBgj7vI1W6J554AgsXLlTDtcuXL8fLL7+MM888s8/bRyIRdUpqbW014F9CTtLeGUFnV0wNlVqpqmY0aRVijc+c2dHUPEGzj4KIioXf60ZFiR+b28LojMTw2dpm7LHTIEtU7UwPdk1NTWpl4JAhQ3pdL5eXLl3a532kUif3O+SQQ1RVJR6P4/zzz8f//d//9Xl7mXt3ww03GHL85DzqOVXAJr0y3OuWpZyUN1ada8fHmcgZQn4vykJ+lJf4saktjGjcOh0OTA92uZg/fz5uueUWPPDAA2pO3meffYZLL70UN954I6655pptbi/VQJnDl16xq6+vL/BRkx3VVpYgGDT2z4Rv9vnV1BGDzxux7Kf8ulJrDNcQWflDk11eF4dUl6q+d+ubuxCJaQhZoDm66UcgK1o9Hg8aGxt7XS+Xhw4d2ud9JLzJsOu5556rLn/1q19FR0cHfvSjH+Gqq65SQ7npAoGAOhFlzWWfF5hiJgs/kg9TTPZ7tOgCCumzV1Pi43OKbKmpI6q27StEa6Sg143hldbvchHweTCkqkQNx8Y1a7zumB7s/H4/9tlnH8ybNw9TpkxJrXCTy9OnT+/zPp2dnduENwmHwu6NBYkoN0GPS+152yRbi1nsZUAOp6UrjoDXhSFlAQR8+VmkwoBIhazUSaj7ZH07InHj/8Dkb6U65Mvb34qRfzM+rxtdUViG6cFOyDDptGnTsO+++6rFENLuRCpwyVWyZ511FkaMGKHmyokTTjhBraTda6+9UkOxUsWT65MBj4iKi3zYC/i8au5LqYGNpXMhHzg7Ipp6Q2xoi6hqRD5waJcKSSp18hyuK/UZtoJeIuOG9mje/1aSfB4XatP+Zro7H8BRLPHqd8opp2DDhg249tprVYPiPffcE3Pnzk0tqJAmxOkVuquvvloNvch/16xZg0GDBqlQd/PNN5v4ryAis8mn8YBsDZTnN4N8bTbeFomr4dh84dAumUFCnTQ1t9PfSlJUA2JapHej+I4oumLWWfzgiGAnZNi1v6FXWSyRzuv14rrrrlMnIiI7qAp5EdM0bGiL5Hdotzyg3giJnCKffyvp2iIa5DPfmJpS1dopGeyiiQQiiYRjpnJZJtgRETmZz+PGoLJAXoZ90od2jdofl1VAcsLfSrqA14OWriga22Q2bjdpaP75hk5saIsiVsA2V0ZisDOIvPAmtzaSp4rTxvCdTN4j5eHiQ0ZGvGHlgwQ5qTjEEzoa26N5n4ckOH+PnPC3kk56Y/g9vQOjlkjA63ZBRn1lONYXjqErGoedMdgZJBJP4IZ5K+Cuq0YzgGbnDN87nqqGuPzw+DyOKc2Ts0g1zed2I4yEIfOQBOfvUTEExniie0GFzwssb+qEz+3q1Ww4otnvzZvBjqgfmtvDSisV3Twkzt+jYuJ1u1ER8mFUXRlGVgVU8Euv2EUstKNEphjsDCKr8q47ciyue/Zd1JQH1LYjZA8yzLXM7IMgMmkeUq/5e6xY20YujxWrsd12GlSK0qAntdJX5t0lxQrQsy/fGOwMIu1YZI6KOq/+gMw+IsoU38uomOchpc/fI2fvCGGX3R0K8Xc0pDy45feX9iZgxw83DHZERNQ33RpvbKwsGbMjhNrdocTH4Xb0/pAUyWAxkuwLG+4ZsrXaXGwGuwKQ/eOiDmp+6HTpZXiiYmbUittscYVufneESN/dIdN2OXxZ7O2cX72SOj++vhpXfH8/WAWDnYG8Hjf8Po8KduGIvZdPF5PuF7nuT7BujqFTkSnEittscYVufneESB9uX90Sznh7MKs8H8xSEvBij7F1+O+Kpl7XL1292VLFGwY7AwX9XowaUYOKoBdlAf6q7SKmJbDm043qvARzomJj1IrbbHGFroFb73ncaOmK4dP1HVndV/q+eYr0A6/L5cJDlx6Jee+twk7DKlXx5pSbX4bVMG0YzOf1IOD3IshgZxuetE+lMizrNngSubxGygsGUTZkXo+RnfJl6FNXS7/MwxW6xqkt9aM8kH1LJwl1RizasdXCSJ9HFW4k2FkR0wbRdvx7Zavhoasy4MG+w8sY7iirwPPIwi+xunnL1kj5Vl8VxDn7jzT1eckVusbyez05fZhI7qpkJGkazNfE3DDYGUgmpcofgrw48dOmfchnsHK/G23RwswnaYlo6lNzz57URDskb65Ghjoh319+jt/LJyYV5sNEuqHlAZwtHyxsEgR1WAeDnYGhbmVjCza3dEGLxhAJcG6InUwcXKJWgdVWlxo2YVuGeV9f2Zo6jxxyJIdx6WeHj8148numE+TvmL8idd5M8oFY5rxarZ1EpgrxgV7tbd3ze5LHK5vXq2zCUCE+TKRb1xbBzHmf5z0I+gwKgDc/tRBTDtoFVsBgR7SdeRSGziVJe89MBrxscRi3OOfEpQcuCXXJZuj5lgx4ZhtU5sc3dq1FMTQNzuV59cB/VmLV5nDBhtvz/WEinfy6Hl34pQp2RgTB+jxOMQj4PNh5WCU+b2jBqvVt6IzEUVEagNkY7AwibTJGD6lEdeVGVJb4UB7kr9pujG6tINU2CWYyFJsruW8soQ9oGFdeSDWXzt1RHDSMNRBS0ZA3Pysdq/Rci8oCCr9ui9eBgTQNzpZU6nIJdUIe446ollFIK9SHCfHjA+sz/hCUbRBcnccpBhIOf/Xjr2PK9X+DlTBtGBzu5IGXFwb2X6KtyXNDqm25fKJPH8bNtdq3NWnLs++wUttW/5LzWdWQVAEmd2dD3hSNCEoSwCSI5ZM8/lLRMHLFbaZkA/ZfvfaFOr++PYqwCY9rrs2Rs20anKv0wJVpJS19uN0qVdltt+R05TUIRncwxSDXIdqg34On/28y2jqjqs+dFVjjKIiKlLyQ5PK+7NYHXu3bWms4PuDqn1kk6H68sQtdsQSWv7na0uE0n8NYRs0XyvaNtRDkzdiMYCc/tzrkQza/ZrVgLpFQHzKEkR/s0793ppW0gVRljfgwUejn6x19hNlch2jl9tL6RD5MWuV1h8GOqMiqfVuL67pq6yKS/7VjtS4as1aVri/y5lHq91jmDcBOmtojqqGuGc2RRTZhXJr43vvvlVjbam6DZyOqsmavPs2Vbwdh1kmrwBnsiIqs2rfN99FlGNaD1rB1tsTJVYnfgx9+bSTqyoKwIju9KUrFyWwJfcsxlPi9hg5p9iUS664SyimbD1HhmFbwUJdtJc2KVVkzwmw0bYjWKRjsiIqcDOXsOyw/1T+zyNDXprCmFoAYPbF7oJXFfLbuMKoNiCxWyDbMGCE5lCkCJjyushp3Q3sk663VZG5g0iWHjEJZwAej2elDg1lcRRJmGeyIqGeBD2xLPoRbff/KcFxDPotgMidSAoQR4UvmLLZH4/CZHBTSd5yIxOPwe7NfxDAQ0u5oUFkg+2230n5tIb9H7Z5hNIY6SmKwIyLHsWJDWwl1mi7NdvPz72uPxtAW0eA3INCq/Knr2HlwKbwmBuZIWsUuvXpXSLn0skzoW+7T2BbJeuuuXMjzoCbL1bvs1uBMDHZE5CjRREKtjrUaCXWbOmNZra7cXrBrjcTVSryvDC83ZO6Z5M+KoM/USm5XNL7leKyX1fvlStv/IByTIW3jf4ktcQ1d8URWlWsZ3q7NoZULWRuDHRHZXvpbmQybxS0w8b+v4WKZCyghzDPAdCfBzud2IeF2ozTgRYkv/xUhqeaYPbwdK/BiCSN8bWw1qkLGzrFrbIvisw3dzZCzWekqq4zLAtntsMMqn/Ux2BGRo7RGYrlsu1swMrQ50DdHqV51By+ogGfo1nc0ICGfB6V+Y99qd6r1YliFzAXMMNTpwOqWMD5d36FCYTZzAFnl6xaJygKZqDofN3lP5a0x2BGR0r3ZOmw/p87vdhe8LUamXF5WPMi4AJmNioBX9eiTKl/6IpVMqnzlAU9B5g1akcfjRknAh9VNbanrYvEE6geXwyoY7IhIhbrN7TEEfNYMRBkFO3f3sfu8btOHEMkZ5HmVSxNfsxZ6ZGN4ZRDVJb6cqnxmt8Exc5vQqrIADpgwDFrPY9wV1fDOsobMf48FwGBHRKpSJ6Fu/PAKy/aA2x6ZU7dkTfcnaDseP1kz1D2y8EtD9vi1Y5UvOT+0v71W881jwhSDaM+/a3t7TdcPKseI2rLUc+SDFU2wGgY7Ikq9SMlcG78Nq3beBCt0lF9SqRtoqJMGx36L7as6EFIIl+Hbpo5YQT6sDa8IZtxuJx9B8I6eHSjiaQ2mdbU+fNvKnbDgGi2FwY6I0NYVQ0dEQ1NrBAEDVlgazUrDIOQ8Pzt8bFbzNuX52NgeQVzTHdM4WOaGlgW82HWw8bvUyO/ti00dWN8ezfw+iQTGVIfg3cHjtPUc1x3tIZvLULzZGOyIipxU6rKZPG1lUnG08uKEWJ52ipBvoTnkMbODbLepk2An1SPNqiWdHNWV+lFTYvz2aBs7ovB7Mw+QMoQqc//WZbDCN7DVqt6+9pDd1BHGBZ9shF0x2BlI/rjVm6aW2O6YPVmTlPaLbRJ+XXkAwYA9K3YbI3FLV0eaO6PY1CnbYuVvqFuG+ZLDQk4nb7yFfB0txDwyOyrEByfZxq02iyp8Q0sk4xW+LX2s6t16D9kdVf2sjsHOyE3JO2KQqT+dMR0atozZk30ew9oSX3GFO5d923FYOdTJB7yopqtQN6YmlLdtumTBS7BI2k489NaXZh8CFVA2r0MjqoKoKd3BCl+9eFb1MtgZSF7EB5X6EfR7iubF1ylkjseG9qga7iqqYEeGG1LuRzBP8xjtGsKzqUjK70ua6JpF5l/JPCyyth2t8E2krep1OgY7g8gLrrwgVUoTSJ/blhPSi5V8mGvuiquhGD1tM2+ifHF6IMtnFfbE3Qfh841d2H1wKcqDhd/xQEKdlavBlJ9hdk+Oq2qTDYvDEU3tbVxeYv6uHAx2BvJ5PGquQMjvRcjPYGcXMmzmckXQ0BrpY6E7ERWShKrkmy57FJJR7Vo0WVVbU5LdvrluFypK/dhtdC2+WNcy4D2g84XBrgCfzOUTH0v59iHTNDw928pL+d7whW1qXpvBP4OIchLNYSWz3jOdg+zRriXas6pWpt5kO7hWX1eOaExDWciH6vIgrIDBzuDKT/qJ7KH7seruPyWZLm7wYydb0wS8Hoa7PD12kZhmuaFOtiexJ2m7sb5dVlzmNuIi1SGrPReLWV0f7Vrk5X3l5q6cv6dU7XYeVpU6bwWWCXb3338/Zs2ahXXr1mHSpEm49957sf/++/d7++bmZlx11VX4y1/+gk2bNmH06NG46667cNxxx8EqbzCtkTjiOhBN6HDz05ttyGMna5jL/G5UB32GDv/Ie31zONb9zm+N1wTbCse6KysbOmKWfTMtpvYkRijkB2T1ISGuqVA3bnBpThPvg153Vtt2kfHcW702JPIw4cZqf9OWCHbPPvssZsyYgYceeggHHHCACmjHHnssli1bhsGDB29z+2g0iqOPPlp97U9/+hNGjBiBlStXoqqqOzUT5YPL5VZVNCPnTeh69zivJi8uuWyLxWHc1JtwsiBWXxm07Fws2a7N63bnrSG0zPAolon9ndLDLhIv6HOqI6qpHQ3kOZXLPGmrfsAgZ7NEsLvzzjtx3nnn4eyzz1aXJeC99NJLeOSRR3DFFVdsc3u5Xqp0b775Jny+7rLqmDFjYCXyYlsR8EJ6HvrdLgQ4x8420osCEruMnGKn9/SNk7l88Rw+OXIYd1v/W98Oq8p3CKsMenHo2Gr5xsg3K4RG+fnyGqondGzuiqIj5ilosNscjiGRkB6EGkrAyhvZg+nBTqpvixcvxpVXXpm6zu1246ijjsKCBQv6vM/f/vY3HHjggbjooovw/PPPY9CgQTjttNPwi1/8Ah7Ptn98kUhEnZJaW1tRqBel9BPZR6EeLY/LjYog4NKzfxPlMO4Wrp6tgiI9bQyK5e+tJRzHix9vMOR7y1wkCY1m/y5VVwGfGyGvG4ECVmIl2DW7gJgOtIZlV5McWmG4XSgPmP42S0XG9GdcU1MTNE3DkCFDel0vl5cuXdrnfZYvX45XX30Vp59+Ol5++WV89tlnuPDCCxGLxXDddddtc/uZM2fihhtuMOzfQM4jS97l7Uxeyo18K0n0hLtcKm4DHsZNfR+piHSvALYrCR9Dy3wIazr2G1WJEr/pL23G0nX8e8VmFeyMsqkzBpkanLbTkmnkw74MYRdyqycJdl6XC9L0SEaBc9nOTP6uy/we08Mx5U5eFqVqa+U5dVuz5atfIpFQ8+t++9vfqgrdPvvsgzVr1qjFF30FO6kGyhy+9IpdfX19gY+a7Eb+dI2stqZPBE+YMIybfhyy8jemJWwd7mQ4Ul5vZbuufG3ZZV0uHL5zjQpe+Sard/++tLsKaPZKXnk+yjGY1VVAPY90He2RmJprl43OWAJSYKwIenNqfJsthkdjfNbY3j0qkqam1I+xg8tgVaYHu7q6OhXOGhsbe10vl4cOHdrnfYYNG6bm1qUPu06YMEGtqJWhXb+/d+fnQCCgTkTZkjcVWRln5BuXfPqTasRAhnEHQt40u8IaIjHZaWNg34sKP//MSMmAZxb13IwlVB/QQaW921QU6ncsq1p9WQ4DqxW1GlSlb2NnrCCNa+V3VBXyGR4GCxWyzQyq7rSffc2fP9rm66NqQnj+JwehNFj456Qtgp2EMKm4zZs3D1OmTElV5OTy9OnT+7zPwQcfjKeeekrdTkr04pNPPlGBb+tQRzSQxtKt8upsMKmWDSn1ZR3uksO4A51fJ+FSXsf4gZ+SiyZkfp0MxVpFTNNN2wVGAoYvh+2mApqO1lgc69q2zO82kuTOSDyR1UrcbMNgW0RaChXmkTBzfmJA2tQEvejqZ6rDqk1daA9rDHbbI8Ok06ZNw7777qt610m7k46OjtQq2bPOOku1NJG5cuKCCy7Afffdh0svvRQXX3wxPv30U9xyyy245JJLTP6XkBPIC3nQ50Z9dcjwFzHpTv9lc1gthMj6E2qej01+PhtpkzwPZNGEFVpvyvSAOR/0Hs2xC9nlQPrYFSIIybBvZ1RDQ5YhUsKgjEpkM3cxrqZs5HCQNpqf6HG7MXpkBRKajqPGViHo86Z2Iblv3nJ1viteuNY7tgx2p5xyCjZs2IBrr71WDafuueeemDt3bmpBxapVq1KVOSHz4/7xj3/gsssuwx577KFCn4Q8WRVLlA/Sqqbcb+yrl3z39e1RdV5eXPvamHpHXNBzGsbti7wBRROJnCaJW6KpNHd2sNUwbyYSMpHUxgq12MPv9agQlE2I7IhpiGlALCE9IDP7m5fvv6kravjQcnJ+orTz8eW468dABfxe9bry7f1HojrYPRLYHo6ngp2VX28sEeyEDLv2N/Q6f/78ba6TdidvvfWWocckq3VlpW2uIpE4PHocbnkCaMYP6VmbzPT32mq8z/BPijK/rmfIVxrWxhPZP0fkRbnEP7AmyjKlQUJlJBZHOKrB57Hfc1Vt2aVzZwcn0wu98wScHSKlKtUajqlTNuQhkDmHRv2Zpc9PNDs7uVwulAd9qEhtQ2aPZ4Vlgp2VyBNLKoeybdlAyKebIZ4EXBrUqdhpugvxkrrugEepVXe5DvnKJ8b1bRHE4gkMZDaU/Owu+ejucqG21I/qUpsuNCrvbkOQy9ZPZH2bu+JoL8Cc13RWrsrkYw5bRdCX9WtPyOVS9zXy/dcNTW3rSLnhO2wfkqFOWqqUlJTkXLmRF4WOSM+KKBtVqowgneM3NDagI9wMLVRb9L+P1HBXakeSHH4fHmBE1cDnAWqJBLqicfUJXOYWFrIJbL7JBHdu4+Qc8ljK81INeqi2J4U/BmmOXMj+eYUkAc1T7N3NHYjBro/h12Soq62tHdj3SuiIwaOCHXsMATV1dQivXQtN5nO4uD1Pci5frsNLW1bsDuy5pbnlDbS7AWxVyIvKkH1fFvI135CsI+jzqL8RaTxtRn9CCXWsApOd2PcV3CDJOXVSqaP88nr93RFETdRlsEvKNfTLxOJ8zDmSil1FwINwzIMEXKq1hF11xeKqRYKRQ0Vkzt+I7Cbi/MbTRAPHYNcPVtgMkPqV2jc4OPF5Kt/D45H5Nl7UhAIotenelpquY0N7RA1Nc3iJiHJpryOvh7l0KLASe76CO9SPzzsHLc0teOa5P5t9KFRE1LZpPfOZZM6f36Zz7KRNixQb2YvPmcxayCDTYPlB39ncLmlK7EJUpk9F46pfXZId2z8x2GXpBz/4Af7whz+kLtfU1GC//fbD7bffrnrqERU8zAzwDU8qXJKF5MWgwu9VlTu7kd9AU09PQHIms7Y3k104pGEzw521W9wM5PHxe9zYdXBZqr1KWLoE9LDjwmj7vYJbwDe/+U08+uijqRW0V199Nb71rW+pRspEhQx1a5vDKPV7BhzsYnEdoYA0A3Xb8w1sqxd/q1btbPm7LfLtzeRnRzUduayfYLVvYFrD8YxHEHLdgszt2naUIv31o1BbqOUTg10OAoEAhg4dqs7Lf6+44goceuihaveMQYMGqes/+OADXHLppXhrwQKESkpw0pRvY+Ztd6CsrCy1+vaqK3+BJx6bDbfHg7Omnd3ryfTUk4/jist/hk+Xr1I/L+n73/0OysvL8PAjW6qGSStXfoGJ48fhD48/hYcevB/vvbsYu+22O343+zG0trTgskun45Nly3DQwYfgN797NHWsixe9gxuuuwbvv78E8VgMX91jEm69/Q7sudfe6utyXDNvvhGP/2E21q9vRE1NLaZ8eypm3XmX+vrDv3kQ9997D778cjUqKitx0EGH4ImnnzX0MaDuoSkJdV/bpVatHMxVIqFj9aZONc9uIN/HKtqimuqDZdV2LLLVFFl/ezP5+0pWCXOtFrLal+OcX7dLNV+XebOZDoUOZAuyulJ/rwDXEbHudmGZ4CvMALW3t+OJJ57ALrvskmqPIvvcHnvssfja1w7EvNffxKamDbj4wvPx08suwW8efkTd5p67fo2nnngM9z/0ML4yfjzuvfvXePFvz+Owrx+hvv7tqSfj8p9ehpdffAHf/s7J6roN69fjH3NfxvMv/n27x3TzTb/EbbN+hZH19bjwx+fhhz84E2Vl5bht1p1qte+0M07DzTdej7vuuT/1bzjtjDNVUJMQJ8fynW+fiCUffIzy8nI8P+cvuP/eu/HoY09iwoTd0Ni4Dh988F9133cXL8LPf3oZHv79bBzwtQOxefMmvPmfN+AE+RjmzIS8iOU6r01ejGQYoWQAVTv5F5bYPGzIi7nsOiG/Rnkf0Cy8aldWduZrcafsHuD0FcBmbW+Wj2qh3FdCqRW2Z7OTUr8XWiLzXTHysQWZOy0Q2j2H2/vV3CQvvvhiqvImIW7YsGHquuR+tk899RTC4TBm/+EPSHikxYdLhaZTTv42fnnjLRg8ZAgeuO8ezPjZ5TjxpCnqPhKy5r3yinqblXAVDAZx8ve+j8cf+wOmTP2Ous0zTz+JkfWjcMihh/U51JS87pJLL8ORRx2tzl9w0XScM+1MvPDyP/C1Aw9S15057Qd48onHUrc/7OuH9/o+99z3IOqHDcK/X38Nk487HqtXr1LHfPgR34DP51OBcZ9991P3X71qFUpLS3Hs5ONUCKwfNQp7TNqz76EwmcslW63FEkhYfIs12eh6Y0dswMOcmeiIaqgt9WXdBLWxJYyOiKaqbXYPZvlQVeJXj5cV58TIITV3xbChI5LWf3DgEnoMg0oDjg93dqsWplf7CrXow0nDvtnsimGlLcisgu8GOTjiiCPw4IMPqvObN2/GAw88gMmTJ2PhwoUYPXo0Pv74Y0yaNAllpaVoj8TVk3O/rx2o9uRc+skyeAMBrFvXgL323U+VmoXL48Gee+/dvZl5z3Vn/eAcfOOwg7B6zZcYPnwEnnj8MVVZU4XpPp7wyT+CCRMnpr5H3aDB6r/jd9u913UybJy8vL6xETf/8nq88e/X1PUSujo7O7Fq9Sp1mxO+PRX333cvvrrbV3DU0cfg6GO/iW8edzy8Xi8O+8aRKmzusftXcORRx+DIo4/Bt048qc8+gPK95EdKGNFs8AI0qDyAPUdXGdqcVJbVL1nZjE4p/ccyX30lj7X8HkN+jxpCzQfZdcLu+6yatWF4JkoTuqrW5evNR/6e1rVFVB9Cj9u6/+5irxYWatGHVKskiGZTbrJyGMx0VwxuQbYtBrscSIVKhl6Tfve736GyshIPP/wwbrrpptT18iYp82nkdTwR6d5EWJpsyqbCW59Pds2XJ2nyuoO/tp8KiHP++DSOPvoYLP34I5z3w5d63afXcQW6r68sDW35GT3XVZeXpK4L+b3QE4nU5VPOPw+bNm3EXXfdrYKpzOk75OCD4NY1dZsJu+yEpUuX4v/9v/+Hef/vFfz8sktw/z2/xr/+NR/lg2rw7rvvYv78+XjllX/itpt/iVkzb8Jbby9EVVVVr+MLQ0PA58b+Y2oQCARhdd4CzTk7aFwt4lmWBdLnxY0bUp6Xrm12D3VWJxO7ZQ5QPnAVsLWZseijJRzHix9vKOowSN0Y7PJAnuQyDNvV1aUuT5gwAbNnz1bDtBICxVsL3lS32W3CeNRUV6nh20XvLMQRh39dfT0ej+Pddxdj77337jWscu655+Kuu+5Cw9q1OOqoozBm9Kh+jyN5P/VJJ+381tcl38CTl9988z+q6njCt45Xl1evXo2mpiY15yB5m7LSEkw56UR1mj59OsaPH4+P/vdh9/H6fTj2mKPV6Ybrr1eB7rX5/8LUqVO3OT75ntIAN2iDlhoSnuRkNBUe+87q/ZLjSg6/qh50DGW2kLc3xLSKffcE8/zXK4ph/p4jFn3oOv69YrMKdlYNg7lggMyd9d9dLSgSiag2J8mh2Pvuu08tQDjhhBPUdaeffjquu+46TJs2Tf1XhjcvvvhinHnmmWoPWqnKXXLJJbj11ltV5U9C0p133qn2qBXp89NOPfVU/OxnP1PVQOmft702DsmvyX/Tz2/vOjFu3Dg8/vjj2GeffdDa2orLL78coVAodR8JqbKK94ADDlBDrHJb+fqoUaPwwgsvYPny5TjssMNQXV2Nl19+WQ0577rrrtsca/f3K1xgGoiGlnDBGlPKwolhldlVMK3926NCkMwlE8bbIsY8Tzl/zy6LPlw4fOea7EJkgcNgLriiOHcMdjmYO3euqrgJWTAgwey5557D4Yd3L0KQ8CO3kXYn+++/v7os7UFun3VHKixcfOllWLO2QTU8lkretB/8QC2kkLYk6YEiVFqu7jv37y/juG+duN2wkfxaLJ7Ycr5na5Ro2nXxnlCVvPzgQ7/FRRdeoILdyJH1+OWNN+GKKy5Xk37lNmXllbhj1m346U9/qgLexIkT8ec5f0V5ZTVKyyvw57/8BTfccINaMLLLLuPw2ONPYtxXJmxzrHJcMh9obXMXPD77dfM2ivyeVm7sNPswyEbkzS7g82BYedCQCeOcv+f0EFnYMOjEFcV6T5ECFhwxcelW7eRpIKlKyZy4lpYWVFRU9PqahJMVK1Zg7NixamVqruTXmq+KzzePPVr1o7vz19194+wqEg6rXnuhmmHw+Lb05rOqXCppha4MyoKHYVWhvB4T2YcRL9/J+XtrWsOoCnrgt/CCFCqs7sV9xv6M9BXF39ptsFpwtKNjkhXnsvZst8Fl6gPPQLVHYjj76Q/U+V9PmYCRPa+xrZ1R7Hv9q+r8g9P2xNDK7utletGYQd3TrszILVtjxc7IvloD3HNThnllUcLrr72GBx94wLZ7eCYlvDJnx43hVaEBheZCKcSnsBHVoQENS1vtkyIVliHDVMX3WZ8s3lPQKtxpr7efNLRjZVP3vHrpTjC4ImCZtlPWOAqHGuiLrixMkHB32223qeFeR2w27+r+42Ag2YK/C7IqGZJNTucwU/pCLqJCS/R82EnvqzekKoCqkB9rmrvQFdUQM2N7lH4w2FnYF198YfYhEFERL8yQTCfz7Mwm84KlXQzDXXHJpLmzGh5OdC/M0zOYnuDKsuAi0xKSu1KkbzUW8nkQCnhUn9NYXMOKpg7sMbLSEh/UGeyIiKgX2QXFqIUZuVQNN7RHVLUkk4a15BzZNHcuD3gwoiK4wzl28uFAPiRkur2YNJEP98yDjqTNh1aNkV3dvU4l/H28phW7DimzxHCs+UdARESW24QdcFtnz2ZdqnYJQxaL7Aj7+dmjuXNbREM0kYArvv3HSh5KaRSeaeWuLRxLBbrO6JaKXaznU8/QqiBCfjfCslWmBT4ICQY7IiLqRSoaVmiYIEewqSNqaL++HWE/P2s3d05fRdsWjqPT3X+z7s5YQj2XpMlyptsP+jxulPp7olLa30T6n4esHI/Gzf97SWKwIyKibVihMawcgZH9+jLt5xfVNHgS2f8+WO0r7Opb6Rzh7ef3LR9UIppUfiWsZ/49JdgFejpSxDRrVLF3hMGOiIiKYo/dQlcLWe0rLAlh3u0EOzc05H/zPethsCMiIkszo3o40Gohd+9wtmg8gXCsOyZaYdpCOgY7IiKiPFYLk7t3JANeNG58nYjDvttvj6KntUXJh6v//FHq/M6DS3HhN3aCVTDYUcr999+PWbNmYd26dZg0aRLuvfdetdctEVGxyqlaqFphoKCLPhKJGOpK/VmFOyvMoyx0e5TygEdtPZYLmWs3siaELzd17ziR9Pn6DkTZoJis5tlnn8WMGTPw0EMP4YADDsBdd92FY489FsuWLcPgwYPNPjwiItuQwFTIRR/JYd+WSDyrJjUyJ63MAn3XCtkepS2iqYbXuT6upx8yGv/7shWHjatRPeumP7YEVmPvR5Ty5s4778R5552Hs88+W12WgPfSSy/hkUcewRVXXGH24RER2UohF300d8VUdVBWfGYz6NsVi6vFBtmM4FptyDfT9ihxLYG5y5rU+b52qMi0eqlW7PaslE2ulrUaBjtCNBrF4sWLceWVV6auc7vdOOqoo7BgwQJTj42IyK4KNdRZXeJXITLTQpTeEwY3dETQKj1AbL7SN5P2KLq+5QbN4Ri6Yr2HyP0eF6pK/NvcT/aAlYUSQppkxzWZp7ftL1puY5VFFAx2BpIHOdeS70DJp7BMX1SampqgaRqGDBnS63q5vHTpUoOOkIiI8iXThrtJpQldvU9k8xY10L5+2ch3ZdCV9n7Y2Bbd5ntL8a3U79nm93jvGyt7vadHoxqCXvc2Ie66OR/hqN2HoDwE0zHYGUhC3W/fWmXKz/7R10bBJ5MPiIiIBjhUXOhdQLJdDJJNdbTM3zs0tkc1SOeSZMiVIdYx1SF8sbn3Iokk2TtW3t/ldrsOLcMn69phJQx2hLq6Ong8HjQ2Nva6Xi4PHTrUtOMiIiLjZBOGCrkLSC6LQbJZCDLvs03bXS0rv5fzDx6F99e0YlhFAMGeKp7MSbz1lc9T95HbXX3ieLR0xtAe0RD0WWPOHYOdgaTMLZUzs352pvx+P/bZZx/MmzcPU6ZMUdclEgl1efr06QYeJRER2UWhFoTkshhkRwtBdF1HdciLzV3xjFbLSmiTsOiXU88iiXjC3e8KaJmLZ5X2MQx2Bup+Yljjgd4RaXUybdo07Lvvvqp3nbQ76ejoSK2SJSIiKkR4yWYxSDYLQcYPLlOLHKSylvxXyIKIt1a1Zn+QugzdWmOxxNYY7Eg55ZRTsGHDBlx77bWqQfGee+6JuXPnbrOggoiIyGjZLAbJdCFIQtdVAJRKYPKmibTVslGte2WrWhixg9C2tjWyZWWtSxZeWCdOWedIyHQy7MqhVyIicuoQcW2Jr1cAjMQ1LFzdos5v7IiqhRESAJvkfEyaHgdSt3W7XHC5XdATOjQtgY6eCmFXTEOoxjr7ATPYERERUVEMEfu2qgSm3+2fn25U/5WKnVTjZOVsfWUcQd+W+/h9HvX1b+09HFVBPz5f344lK5thJW4r7VM6ZswYBINBtaXVwoULM7rfM888ox7Q5KR/IiIiokzIEK5U8fqiJaQX7bbXS+YoD/pQHvRacvcJt5X2Kb3uuuvw7rvvqg3oZZ/S9evXb/d+X3zxBX72s5/h0EMPLdixEhERkTO4XC4csXMtDhhVhYPGVOGQMVX42uhK2JnbavuU7rbbbmqf0pKSErVPaX9kp4TTTz8dN9xwA3baaaeCHi8RERHZn0valah9X2VM1oWEnNKqdGbtHmXrYJfcp1T2Jc1mn9Jf/vKXGDx4MH74wx8W6EiJiIjIaapK/Bg/qEw1KJbTroNKU1/ToavFFHKS//WnuVMWWliD6Ysnctmn9I033sDvf/97LFmyJKOfEYlE1CmptTWHnjVERETkSL60RRUJfUvJblNnFPGelijReO8+eW63CyG/R53UZYu0rTU92GWrra0NZ555Jh5++GG1FVYmZs6cqYZsiYiIiLZH2ppISJNRWC0BhHv61Ulz46SwbC4LYExdqep/J9JXzxZ1sMt2n9LPP/9cLZo44YQTUtfJ9lfC6/Vi2bJl2HnnnXvd58orr1SLM9IrdvX19Qb8a4iIiMjugj1tTQ7aqRrVJd297LqiGp5Zsk6dT069k6rdrkPKU+etwPRgl+0+pePHj8cHH3zQ67qrr75aVfLuvvvuPgNbIBBQJyIiIqJMF1aU+DypXSXUjhR9sEqgs0ywy2Sf0rPOOgsjRoxQQ6rS527ixIm97l9VVaX+u/X1RERERMXE9FWxyX1K77jjDrVPqexRKosi0vcpXbVqFRoaGsw+TMd6/fXX1dD28OHD1SeUv/71r2YfEhEREdm1YrejfUrnz5+/3fvOnj3boKMqDlIdlabQ55xzDqZOnWr24RAREZHdgx2ZZ/LkyepERERE9sZgZyCZaBnpa6O5ApBO2pluikxERETOwGBnIAl1Zz75vik/+/HTJ1mmpw4REREV0eIJIiIiIho4VuwMHg6VyplZP5uIiIiKC4OdgWSOG4dDiYiIqFAY7Ajt7e347LPPUpdXrFihegnW1NRg1KhRph4bERERZY7BjrBo0SIcccQRqcvJfXVlNxD2CCQiIrIPBjvC4Ycf3u8eeERERGQfDHZEREREfZCSR7LwYZcCCIMdERERUR9auuLQEt3N/jui8S1f0IFET9BzW2wzAAY7IiIioh7puzZt7IyhJaKp8+HYlmC3urkT0UR3sAt63RheGYRVMNgRERER9aHM7061LQundS9bvakLTR3dQS/gdaE65EPIb432ZuxiS0RERNQHr8cNv9ejTnI+qSzgQW2pT827C8cSWN0cTg3Nmo0VOyIiIqIsPLqoIXW+rtSnqnb11UGELLApASt2RERERH3QEjriPSe3CxhS7t/mNk0dMfjSqnlmY8WOiIiIqA/zPtuUOi/DrqOqgxhdE8JOVQH4fF48vmjtNgsuzGadiElERERkMq/bhdoS3zbXS3jzSNmu+wLi2pY5ddF4wjJ97lixIyIiIkoLcEfsXIvVLWFUBrsXToi4lsDcZU0qwB26Uw28Hg+efq97rt3v3v4SB4ypQgnMx4odYebMmdhvv/1QXl6OwYMHY8qUKVi2bJnZh0VERGQKV091zpt2Slbr5Gslfi8qQ16MqQ7BahjsCK+99houuugivPXWW3jllVcQi8VwzDHHoKOjw+xDIyIisiSXy4XzDx6FU/cahgsOqoffIgsoOBRLmDt3bq/Ls2fPVpW7xYsX47DDDjPtuIiIiKwe7nwetzpZZQEFg52BZBy+K9a9FUmhSS+dXJ9kLS0t6r81NTV5PioiIiL70HQd0Xj3+3hMS/R7u7aebcesgMHOQBLq9rz6/5nys5fcdJSaA5CtRCKBn/zkJzj44IMxceJEQ46NiIjIytwuWR0rgW1LmJPFE0mxhA4pnfjdLtWcWIRjmiUaFDPYUS8y1+7DDz/EG2+8YfahEBERFZzL5ULA58Gw8iASaR1M4tqWqtzmzihimg6vR1qj+NEe1ba0QjEZg52BJLlL5cysn52t6dOn48UXX8Trr7+OkSNHGnJcREREVlce8KLM3/t9NJpWsdvYGUNLz/CrzwvsOagcFcFte9+ZgcHOQMkl0XaYC3jxxRdjzpw5mD9/PsaOHWv2IREREZnKtdU89fRLZX43gj4P2qIatIQLkbiu3kutsIDC+qmDCjL8+tRTT+H5559XvezWrVunrq+srEQoZL0ePURERGbyetyqcbEvnlD7ySYssuuEsEbTFTLVgw8+qFbCHn744Rg2bFjq9Oyzz5p9aERERJZV6vfC5wY6Y3EV8KyAFTuyzP52REREduJxd0+5iquqHSyBFTsiIiKiHFlkMWwKgx0RERGRQ3AoloiIiCgLMp9Ohl+tOJ2JwY6IiIgoC/M+25Q6Xx3yYp+RlbAKDsUSERER7YDXLbtMbNuEeHNX3DILJwQrdkREREQ7IM2Hj9i5FqtbwqgMeuBxu/H3pRtSQ7NWGZJlxY6IiIgow3AnLU6kepe+N+xryzel5tyZjcGOiIiIKEseF1DTx9Cs2TgUS0RERJRD9e7QsdUIxxOIabqq4lmBZSp2999/P8aMGYNgMIgDDjgACxcu7Pe2Dz/8MA499FBUV1er01FHHbXd2xMREREZEe6Sw7Jy3gosEexkT9IZM2bguuuuw7vvvotJkybh2GOPxfr16/u8/fz583HqqafiX//6FxYsWID6+nocc8wxWLNmTcGP3Sl7xe6xxx6oqKhQpwMPPBB///vfzT4sIiIismOwu/POO3Heeefh7LPPxm677YaHHnoIJSUleOSRR/q8/ZNPPokLL7wQe+65J8aPH4/f/e53SCQSmDdvXsGP3QlGjhyJW2+9FYsXL8aiRYvwjW98AyeddBL+97//mX1oREREZKdgF41GVaCQ4dQkt9utLks1LhOdnZ2IxWKoqakx8Eid64QTTsBxxx2HcePGYdddd8XNN9+MsrIyvPXWW2YfGhERkeVouo5oXFMniyyGtc7iiaamJmiahiFDhvS6Xi4vXbo0o+/xi1/8AsOHD+8VDtNFIhF1SmptbUUhSE+bzkgcZigJeHMa75fH4rnnnkNHR4cakiUiIqJusj7C6wbaIomea4CEnkB5wDqrY00PdgMlQ4jPPPOMmncnCy/6MnPmTNxwww0FPzYJdXXfeRBmaPrzBSgNZv5E++CDD1SQC4fDqlo3Z84cNSxOREREUMWSgM+DYeXBVJVOKnfr2iKWaU5siaHYuro6eDweNDY29rpeLg8dOnS7973jjjtUsPvnP/+pJv/358orr0RLS0vqtHr16rwdv1N85StfwZIlS/D222/jggsuwLRp0/DRRx+ZfVhERESWUR7worbUj0FlftSV+eGxyEpYS1Xs/H4/9tlnH7XwYcqUKeq65EKI6dOn93u/22+/Xc0F+8c//oF99913uz8jEAiokxnDoVI5M4P87Gwfh1122UWdl8fjnXfewd13343f/OY3Bh0hERGR/biSYU7XU0OzUU162SXglwvFHuyEtDqRCpEEtP333x933XWXmuMlq2TFWWedhREjRqghVXHbbbfh2muvxVNPPaV6361bt05dL0OIcrLSg5/NcKiVSLhOn5dIRERE2w7NSgWvLRyH2/xMZ51gd8opp2DDhg0qrElIkzYmc+fOTS2oWLVqlVopm953TVbTnnzyyb2+j/TBu/766wt+/HYnQ9WTJ0/GqFGj0NbWpgKzzFmUaigRERH1PzRb5vegrkSqdR5YgSWCnZBh1/6GXiVkpPviiy8KdFTFQRpBS1W0oaEBlZWVar6ihLqjjz7a7EMjIiKyfOXOb5FQZ6lgR+b5/e9/b/YhEBERUR5YZESYiIiIiAaKwY6IiIjIIRjsiIiIiByCwY6IiIjIIRjsiIiIiByCwa4fVtr3zSn4OyUiIjIWg91WfL7unSI6OzvNPhTHkabSQvYGJiIiovxjH7utSOioqqpSTXtFSUnJln3haEBblMnuIvL79Hr5tCMiIjIC32H7MHToUPXfZLij/JBt4WTbMgZlIiIiYzDY9UGCx7BhwzB48GDEYjGzD8cx/H5/rz1/iYiIKL8Y7HYwLMv5YERERGQXLJ8QEREROQSDHREREZFDMNgREREROYS3mBvltra2mn0oRERERNuVzCuZNPovymDX1tam/ltfX2/2oRARERFlnF8qKyu3exuXXoT7PEmz3LVr16K8vNwxPdUkzUtQXb16NSoqKsw+HMozPr7OxsfX2fj4OltrAR5fiWoS6oYPH77DtmFFWbGTX8rIkSPhRPKk4guHc/HxdTY+vs7Gx9fZKgx+fHdUqUvi4gkiIiIih2CwIyIiInIIBjuHCAQCuO6669R/yXn4+DobH19n4+PrbAGLPb5FuXiCiIiIyIlYsSMiIiJyCAY7IiIiIodgsCMiIiJyCAY7G9E0Dddccw3Gjh2LUCiEnXfeGTfeeGOvLUbk/LXXXothw4ap2xx11FH49NNPTT1uytyaNWtwxhlnoLa2Vj1+X/3qV7Fo0aLU1/n4Osett96qGqT/5Cc/SV0XDodx0UUXqce/rKwM3/nOd9DY2GjqcVJmZs6cif322081vh88eDCmTJmCZcuW9boNH1/nuf/++zFmzBgEg0EccMABWLhwodmHxGBnJ7fddhsefPBB3Hffffj444/V5dtvvx333ntv6jZy+Z577sFDDz2Et99+G6WlpTj22GPVCwpZ2+bNm3HwwQfD5/Ph73//Oz766CP86le/QnV1deo2fHyd4Z133sFvfvMb7LHHHr2uv+yyy/DCCy/gueeew2uvvaZ2yJk6dappx0mZk8dLQttbb72FV155BbFYDMcccww6OjpSt+Hj6yzPPvssZsyYoVbEvvvuu5g0aZJ6PV6/fr25ByarYskejj/+eP2cc87pdd3UqVP1008/XZ1PJBL60KFD9VmzZqW+3tzcrAcCAf3pp58u+PFSdn7xi1/ohxxySL9f5+PrDG1tbfq4ceP0V155Rf/617+uX3rppanH0ufz6c8991zqth9//LGU4/UFCxaYeMSUi/Xr16vH7rXXXlOX+fg6z/77769fdNFFqcuapunDhw/XZ86caepxsWJnIwcddBDmzZuHTz75RF1+//338cYbb2Dy5Mnq8ooVK7Bu3To1PJe+BYmUhxcsWGDacVNm/va3v2HffffFd7/7XTWUs9dee+Hhhx9OfZ2PrzNIVef444/v9TiKxYsXqypP+vXjx4/HqFGj+PjaUEtLi/pvTU2N+i8fX2eJRqPqMU1/PGW7Urls9uNZlHvF2tUVV1yhNhuWFwOPx6Pm3N188804/fTT1dflTV8MGTKk1/3kcvJrZF3Lly9XQ+1S2v+///s/NVx3ySWXwO/3Y9q0aXx8HeCZZ55RQzby2G5NHkN5rKuqqnpdz8fXfhKJhJo7KVMrJk6cqK7j4+ssTU1N6j24r9fjpUuXwkwMdjbyxz/+EU8++SSeeuop7L777liyZIl68Rg+fLh64yf7vxlIxe6WW25Rl6Vi9+GHH6r5dHx87W/16tW49NJL1fwrmWhNzq7Kyt+ujKgQFRqHYm3k5z//uaraff/731erJc8880w1GVdWY4mhQ4eq/269ykouJ79G1iUrXXfbbbde102YMAGrVq1S5/n42psM28ik6r333hter1edZAK9LIaR8/JJX4Z3mpube92Pj6+9TJ8+HS+++CL+9a9/YeTIkanr5THk4+scdXV1auTMiq/HDHY20tnZqcbw08kTSyo9QtqgyBNK5uElydCtrJ488MADC368lB0Zttm6PYLMpxw9erQ6z8fX3o488kh88MEHqtKePEmFVqZSJM/Liuj0x1eeDxLs+fhan7QiklA3Z84cvPrqq+rvNd0+++zDx9dB/H6/ekzTH095L5bLpj+epi7doKxMmzZNHzFihP7iiy/qK1as0P/yl7/odXV1+uWXX566za233qpXVVXpzz//vP7f//5XP+mkk/SxY8fqXV1dph477djChQt1r9er33zzzfqnn36qP/nkk3pJSYn+xBNPpG7Dx9dZ0lfFivPPP18fNWqU/uqrr+qLFi3SDzzwQHUi67vgggv0yspKff78+XpDQ0Pq1NnZmboNH19neeaZZ1RXgtmzZ+sfffSR/qMf/Ui9Pq9bt87U42Kws5HW1lb1JiAvDMFgUN9pp530q666So9EIr1aYlxzzTX6kCFD1BPuyCOP1JctW2bqcVPmXnjhBX3ixInqsRs/frz+29/+ttfX+fg6O9hJQL/wwgv16upqFeq//e1vq3BA1id1kr5Ojz76aOo2fHyd595771XvyX6/X7U/eeutt8w+JN0l/2duzZCIiIiI8oFz7IiIiIgcgsGOiIiIyCEY7IiIiIgcgsGOiIiIyCEY7IiIiIgcgsGOiIiIyCEY7IiIiIgcgsGOiIiIyCEY7IjIcX7wgx9gypQppv38M888E7fccgvM9tBDD+GEE04w+zCIqIC48wQR2YrL5dru16+77jpcdtllalP2qqoqFNr777+Pb3zjG1i5ciXKyspgpmg0qjajf+aZZ3DooYeaeixEVBgMdkRkK+vWrUudf/bZZ3Httddi2bJlqeskTJkZqM4991x4vV5VLbOCn//85/jiiy/w3HPPmX0oRFQAHIolIlsZOnRo6lRZWakqeOnXSajbeij28MMPx8UXX4yf/OQnqK6uxpAhQ/Dwww+jo6MDZ599NsrLy7HLLrvg73//e6+f9eGHH2Ly5Mnqe8p9ZIi1qamp32PTNA1/+tOfthn+HDNmDG666SacddZZ6nuNHj0af/vb37BhwwacdNJJ6ro99tgDixYtUreX46qoqFDfK91f//pXlJaWoq2tTV3+xS9+gV133RUlJSXYaaedcM011yAWi/W6jxyL/Kyurq4B/NaJyC4Y7IioKPzhD39AXV0dFi5cqELeBRdcgO9+97s46KCD8O677+KYY45Rwa2zs1Pdvrm5WQ2p7rXXXipwzZ07F42Njfje977X78/473//i5aWFuy7777bfO3Xv/41Dj74YLz33ns4/vjj1c+SoHfGGWeon7/zzjuryzKIIuHt+9//Ph599NFe30Mun3zyySqICvnv7Nmz8dFHH+Huu+9WYVV+Tjo5lng8jrfffjtPv0kisjQZiiUisqNHH31Ur6ys3Ob6adOm6SeddFLq8te//nX9kEMOSV2Ox+N6aWmpfuaZZ6aua2hokGkp+oIFC9TlG2+8UT/mmGN6fd/Vq1er2yxbtqzP45kzZ47u8Xj0RCLR6/rRo0frZ5xxxjY/65prrkldJz9XrpOvibffflt9r7Vr16rLjY2Nutfr1efPn9/v72PWrFn6Pvvss8311dXV+uzZs/u9HxE5Byt2RFQUZKgzyePxoLa2Fl/96ldT18lQq1i/fn1qEcS//vWv1Jw9OY0fP1597fPPP+/zZ8hwZyAQ6HOBR/rPT/6s7f38/fffH7vvvruqNIonnnhCDeEedthhveYYShUwOQR99dVXY9WqVdv87FAolKpEEpGzMdgRUVHw+Xy9Lkv4Sr8uGcYSiYT6b3t7u5qftmTJkl6nTz/9tFe4SidDvRKgZDXq9n5+8mdt7+cnF2LIUGtyGFbmAyZvt2DBApx++uk47rjj8OKLL6oh3quuuqrPn71p0yYMGjQow98UEdmZ1+wDICKyor333ht//vOf1cIHWeWaiT333FP9V+a8Jc8PhMy/u/zyy3HPPfeo7zlt2rTU1958801VwZMwlyQtVrYm1cVwOKzmChKR87FiR0TUh4suukhVuk499VS88847KiD94x//UFUzWf3aF6mKSSB844038nIMsoJ36tSpqmWJLO4YOXJk6mvjxo1Tw67So06OTcLfnDlztvke//73v9WKWVmcQUTOx2BHRNSH4cOH4z//+Y8KcRKqZD6ctEuRpsdud/8vnTJ8+uSTT+btOH74wx+q4dVzzjmn1/UnnniiasQ8ffp0VR2UCp60O9na008/jfPOOy9vx0NE1sYGxUREeSQLKL7yla+ohQ0HHnjggL/f448/rgLc2rVr4ff7s7rv//73P9Wy5ZNPPlE9/4jI+TjHjogoj2QF6mOPPbbdRsaZkEUYDQ0NuPXWW/HjH/8461An5P5yLAx1RMWDFTsiIgu6/vrrcfPNN6sVuM8//7zp+84SkT0w2BERERE5BBdPEBERETkEgx0RERGRQzDYERERETkEgx0RERGRQzDYERERETkEgx0RERGRQzDYERERETkEgx0RERGRQzDYEREREcEZ/j8rqcoheieXygAAAABJRU5ErkJggg==",
289
65
  "text/plain": [
290
66
  "<Figure size 640x480 with 1 Axes>"
291
67
  ]
292
68
  },
293
69
  "metadata": {},
294
70
  "output_type": "display_data"
295
- }
296
- ],
297
- "source": [
298
- "n_time_bins = len(change_times) + 1\n",
299
- "for s in states:\n",
300
- " estimates = [\n",
301
- " log_summary[f\"deathRatei{i}_{s}_median\"].median() for i in range(n_time_bins)\n",
302
- " ]\n",
303
- " plt.step(change_times, estimates[:-1], label=rf\"$\\mu_{{{s}}}$\")\n",
304
- " plt.legend()\n",
305
- "plt.gca().invert_xaxis() # This reverses the x-axis"
306
- ]
307
- },
308
- {
309
- "cell_type": "code",
310
- "execution_count": 43,
311
- "id": "0e4a01c1",
312
- "metadata": {},
313
- "outputs": [
71
+ },
314
72
  {
315
73
  "data": {
316
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOdpJREFUeJzt3Qt0VOW5//FnhlyYIKCAgAhKRZZcBA1QLkoFKktQezx4qxcQRA8uLVQUSpW2aD1gkYrWlvovx7rw0CMUxaqlVvHCpVUPIiRBsQrHWo0URESqKDPkOv/1vDgxCZNkJtkze797fz9rjSYzk2TvIZn5zXt5nlA8Ho8LAACAJcJuHwAAAEA6CC8AAMAqhBcAAGAVwgsAALAK4QUAAFiF8AIAAKxCeAEAAFYhvAAAAKvkiM9UV1fLnj17pG3bthIKhdw+HAAAkAKtmfvFF19It27dJBwOByu8aHDp0aOH24cBAACaYdeuXdK9e/dghRcdcUmcfLt27dw+HAAAkIKDBw+awYfE63igwktiqkiDC+EFAAC7pLLkgwW7AADAKoQXAABgFcILAACwiu/WvKS6HauyslKqqqokiFq1aiU5OTlsJQcAWClw4aW8vFw++ugjiUajEmQFBQVywgknSF5entuHAgBAWgIVXrSA3fvvv29GHrQIjr5wB62QnY46aYD75JNPzGPRu3fvJosBAQDgJYEKL/qirQFG95HryENQRSIRyc3NldLSUvOYtG7d2u1DAgAgZYF8y81IA48BAMBegQwvAADAXoQXAABgFcILAACwCuHFBxYsWCDDhw93+zAABGjXYnU0mtJF7ws4LVC7jfzqjTfekDPPPNPtwwAQABpGSq+eKLGSkpTuHxk0SE5e8WjgylIgsxh58QHCC4BsicdiKQcXFSsuNl8DOImRF8sUFRXJrbfeKlu2bJE+ffrI0qVL5b333mPkBUDW9X71FQlHIklvq47F5N2zR2b9mBAMgQ8vOgQaq3Cnx1Ekt1VaQ6k7duyQMWPGyMyZM+WRRx6Rbdu2yYQJE8xtAwcOzOCRArD5Oc7JkQ8NJQkaXMIBLvgJ9wQ+vGhw6XfH8648+G//5zgpyEv9n2D69OkmrMyfP9983qtXL1m1apVs377dVAx+5plnZPbs2aaK8G233Sb/8R//kcGjB+C39SmALQIfXmyhpfzXr18vxcXFda7XMv+6WFe7ZM+aNUs2bNgg7du3l8GDB8vFF18sHTt2dO2YAWR3VCTZKEmmgosuxA01MGUEZFrgw4tO3egIiFs/O1U6RZSTkyMDBgyoc31JSYlMmTJFXn/9denfv7+ceOKJ5vrzzz9fXnjhBbnqqqscP24A9o2KNLY+pTk0uLCDCG4JfHjRP750pm7c7Mek00HaSFFDjHr22WfNOhgdedmzZ09NcFH68e7du108YiC4UhlRyeSoSLJRklYdOhA24Bvef9WGodNAOkU0Z84cs67lrbfekptuusncpuHllVde4ZECLB1RcXpUpD5GSeA3hBdLdOvWTR5++GGZO3euLFu2TIYOHSqTJ082u466du1qbq890qIf630AeLsOCqMiQPoILxaZNGmSudS2cOFC838NKjoao6FFF+w+99xzMm/ePJeOFECqIypBGBWpvb26KUF4PNByhBef0HUw9913n6kDo2tjfvjDH7LTCHAZdVCOSKdYHe0EkArCi49cdNFF5gIAbtMRFA0i2h4gHYl2AiGK36ERhBcAgON06kcbMqZax6Z2O4F0ppka/PlMP/ka4QUAkLEA05wRFCd6IuX37Ss9H/0fPYhmfT3hx9sILwAAa6eZGlL2zjuyc/CQZn89a2+8jfACALBumqlB8bh8MOkaE15agrU33kZ4AQAHK+g6sV4jqJo7zVTfN578Q7NDUO21N/AuwgsApIFOzcEJQfCusNsHAAB+rKBL12XA8vDy4IMPSs+ePaV169YybNgw0wG5Ib/97W/lW9/6lhx33HHmMnbs2EbvDwBuVtA9rbgo6UXXb1ApFrA0vDz22GMya9YsufPOO6W4uFjOOOMMGTdunOzbty/p/Tdu3ChXXXWVbNiwQTZt2iQ9evSQ8847jw7JADxbQTfZheACWBxe7r//fpk2bZpMnTpV+vXrJ0uXLpWCggLTXDCZFStWyPe+9z3TKblPnz6mGaGWu1+3bl2mDxUAAAQ9vJSXl0tRUZGZ+qn5geGw+VxHVVIRjUaloqJCOnTokPT2srIyOXjwYJ1L0CxYsECGDx/u9mEAAGB/eNm/f79UVVVJly5d6lyvn+/duzel73HbbbdJt27d6gSg+l2VtYty4qLTTEHzxhtvmJEqAIBzdNt0dTSa9KK7zuAeT2+Vvueee2TVqlVmHYwu9k1m7ty5Zk1Ngo68BC3AaHip/RgAAFqusXovVOD18chLp06dpFWrVvLxxx/XuV4/79q1a6Nfu3jxYhNeXnjhBRk4cGCD98vPz5d27drVufiZTsOdc845EolEpLCwUDZv3izvvfceIy8A4GCbglQr8MKHIy95eXkyePBgs9h2woQJ5rrE4tsZM2Y0+HU///nP5e6775bnn39ehgxpfm8Kv9mxY4eMGTNGZs6cKY888ohs27at5nFtLOABAJxpU0AF3oBMG+l0xpQpU0wIGTp0qDzwwANy6NAhs/tITZ48WU488USzdkUtWrRI7rjjDlm5cqWpDZNYG3PMMceYi+N03rIiKq7ILUir4+n06dNNWJk/f775vFevXmZabfv27WYH18UXX2ym2M4991x54oknMnjgAOBfVOj1voyHlyuuuEI++eQTE0g0iOjC0rVr19Ys4v3www/NDqSE3/zmN2aX0mWXXVbn+2idmJ/+9KfOH6AGl591E1f8aI9IXpuU7lpaWirr1683tXJqy83NrZky0hGZ6667TpYvX56RwwUAIDALdnWKqKFpIh0pqO2DDz7IxiFZR6eIcnJyZMCAAXWuLykpMSNbavTo0Uc9ngAA+I2ndxtlbepGR0Dc+tkp0tEpXS+ko1IaYtSzzz5r1sGwTRoAECSEF11zkuLUjZt04bNOEc2ZM0dmz54tb731ltx0003mNsILACBI6CptCS3Up60S1qxZI/3795f77rvPLHbWtUNNbTsHAMBPGHmxyKRJk8yltsQuLQAAgoLw4iPaQkGr7epW9O7du8vq1atlxIgRbh8WAACOIrz4yEsvveT2IQAAkHGEFwAAmkGr7Tan/YAWwUPLEF4AAHC4cWNDaOjoDHYbAQDgcOPGhtDQ0RmMvAAA4FDjxobQ0NFZhBcAgRaPx9N6IWrOOgf4C40b3Ud4ARDo4FJ69USJlZS4fSgA0sCaFwCBpSMuzQ0uuu5B1z8AyD5GXgBARHq/+oqE0wgjbHkF3EN4AQAdho5EJFyQeqd3AO5h2ggAAFiF8AIAAKxCePGBBQsWyPDhw90+DAAAsoLw4gPaSfrMM890+zAAAMgKwosPEF4AAEFCeLFMUVGRnHPOORKJRKSwsFA2b94s7733HiMvAIDACPxWaa2wGat0p9x3JCe91ug7duyQMWPGyMyZM+WRRx6Rbdu2yYQJE8xtAwcOzOCRAgDgHYEPLxpchq0c5sqDv/nqzVKQm3pdienTp5uwMn/+fPN5r169ZNWqVbJ9+3b59NNP5YILLpB9+/ZJTk6OzJs3Ty6//PIMHj0AAO4IfHixRWlpqaxfv16Ki4vrXJ+bm2umjDSwPPDAA+bjvXv3yuDBg02YadOmjWvHDABAJgQ+vOjUjY6AuPWzU6VTRBpQBgwYUOf6kpISmTJlipxwwgnmorp27SqdOnWSAwcOEF4AAL4T+PCia07SmbpxSzgclurqaikvLzchRj377LNmHUz9bdK6qLeqqkp69Ojh0tECAJA57DayhE4D6RTRnDlz5B//+IesWbNGpk2bZm6rHV50tGXy5Mny0EMPuXi0AABkTuBHXmzRrVs3efjhh2Xu3LmybNkyGTp0qAkpuutIp4lUWVmZWdB7++23y1lnneX2IQMZ3SUYj7V8l2C1A98DQPYRXiwyadIkc6lt4cKFNU/m1157rXz729+Wa665xqUjBDJPf9dLr54osZISHm4goJg28olXX31VHnvsMXn66afNNJJedAs14Dc64uJ0cIkMGiShSOoL6AG4i5EXnxg5cqRZ0AsESe9XX5GwA6FDg0s6BSMBuIvwAsBaGlzCBd7fLejFCt/ZrhAOOInwAgAuhZIpa6fIjgM7rHz8CzsXyvLxywkwcAXhBQAcDi6Tn5ss2z7Z5uvHtWRfiQloNtTJgv8QXgDAQfqCnk5w6dOhjxnBsOn8Rj8+2u3DQMARXgAgQzZ+d2OTbUBYOwKkj/ACABmiwYRpFcB51HkBAABWIbwAAACrEF4AAIBVCC8AAMAqhBcfWLBggQwfPtztwwAApNjNvDoaPeqiNYKQGnYb+cAbb7xhGjECALzv3bNHNtgg9OQVj1K1OAWMvPgA4QXILn2HHK2IJr3Y2qsImaXNPzWcNCZWXGy6pqNpjLxYpqioSG699VbZsmWL9OnTR5YuXSrvvfceIy9AlgSl/D+cpU0sdVQlWTjRaaSGRmOQXODDiz4RuZV0NYmn05V1x44dMmbMGJk5c6Y88sgjsm3bNpkwYYK5beDAgRk8UgDplv/XxoVNVdc1DRwrqjL+4EZyWzEV4QH6fB+yuAu6lxBeYjHZOWiwKw/+acVFaf0iT58+3YSV+fPnm8979eolq1atku3bt0t5ebmcc845UllZaS4acKZNm5bBowfw3MXrGgworVu1bjSY6NrMy5dukrc/OpjxB7LfCe1k9Y0jJI33Sg2KVX59TqlMkdH+AJkQ+PBii9LSUlm/fr0UFxfXuT43N9dMGbVt21b++te/SkFBgRw6dEhOP/10ueSSS6Rjx46uHTPgR7V3hIxc+KpIPE+8TgNS/zufd+abhcqlbZ8jH6bSoFFHoLTxZDqjzEGmU0hOjNT7XeDDi/5C6AiIWz87VTpFlJOTIwMGDKhzfUlJiUyZMkVatWplgosqKys7Mh3GtjvAcYcrqz07KpKV0Z14rlRGT5acgtKU7l6yr8SM0NDjKTXsREoN4cWSOchwOCzV1dVmekhDjHr22WfNOpjENunPPvtMRo0aJe+++67ce++90qlTJ5ePGvC3l28bIx0LjvH0epQ/3zzS0XU10fIqGbJA331VSNG8seb4k9HAksrIDL7eiaS7jZraiWTD61U2BD682GLw4MFmimjOnDkye/Zseeutt+Smm24ytyXCy7HHHmu2TX/88cdmyuiyyy6TLl26uHzkgH8V5LWSgjxvP41qMHL+GENmuuxI12xvn78N2ImUPuq8WKJbt27y8MMPy5o1a6R///5y3333yeTJk0046dq1a5376nVnnHGGvPzyy64dL2BVzZbyyjQumd8dhGAGmHBBwdGXNJYXBAmR2SKTJk0yl9oWLlxo/q+jLbrmRRfufv7552bxbmJkBkDDweWypZukqPRfzVqwCsAdhBcf7Ua64YYbahbqfv/73z9qcS/gNzoSEs6pbMHXV6UXXOppncPgNeAGwotPDB061OxIAvyu9i66wQtekrKcfEe+79afjDVrWJpiFqKuvsN8zNZVwB2EFwBWyURF2iEnHycd2+SlFkZCTQecoGhs/U/tYnaA0wgvAKz1ym3fljbtW7ZVWVE+v3mGLHgppbVB1JyC0wgvAKwVyQ17fquy32jQ05GqrWmsFdLCfm28X4gYFuGvHgCQMp1a04rATU3ffRr9Ui74Iw8sMiOQ4YUhTB4DAJktfBerZG0QMidQ4UUr1KpoNCqRgBf+0ceg9mMCBJW+mUmlO3JCOvcFstG0sSF+buYYqPCizQu1hP6+ffvM51rUza//sI1WE41GzWOgj4U+JkBQ6d/D5Ocmy7ZPKDMAe5s2NkT7JZ284lFfvs5lJbw8+OCDplHg3r17Tdn6JUuWmLokyfztb3+TO+64Q4qKikzhtV/84hdyyy23OHYsiVL6iQATVBpc6rcVABodncjAFuXmiFU419VZR1GaG1wKOxea3j6A200bg9jMMePh5bHHHpNZs2bJ0qVLZdiwYfLAAw/IuHHjZOfOndK5c+ej7q+jAqeccopcfvnlcuuttzp+PJpATzjhBPOzKyoqJIh0qogRF2S0hH4G5VeWydMZ+L4bv7sxrTCi9/XjO9pM1YOJpFgJmW3rqTdtbGx6Kd1RGttkPLzcf//9Mm3aNJk6dar5XEPMn//8Z1m2bJncfvvtR93/m9/8prmoZLc7RV+8eQEHmqYjLl4JLsle6Bz7XqZDsv/eoXrBtxZtMF2oU6HbsHU3E8Hwa/pY+HH0xLPhpby83Ez/zJ07t+a6cDgsY8eOlU2bNjnyM8rKyswl4eDBg458XwC1xOOSX1VuisJpbRU36TvQfz5z5GNe4LyruX2ftH6MBmbq98C18LJ//36pqqqSLl261LleP9+xY4cjP0O7Kt91112OfC8AyaeNFr/8oPQ/8IHs/yo0AE2pHSyL5o1tckpOp5YardgL+Gm3kY7q6Jqa2iMvPXr0cPWYAD8txo0ePGSCi9foIkZdzAjv0+m9gtwcR3ompfMzGZnzr4yGl06dOpl1JR9//HGd6/Vzp3a65OfnmwuAzCzGrb1AtvuGjdKmfVtPPNR+rmERdE6MwLB2xt8yGl7y8vJk8ODBsm7dOpkwYYK5rrq62nw+Y8aMTP5oABlYjFvQ7hgJs3AQHumZ1Bj9Pp8eKpeCvOYt6mbkJuDTRjqlM2XKFBkyZIip7aJbpQ8dOlSz+2jy5Mly4oknmrUriUW+b7/9ds3Hu3fvlm3btskxxxwjp556aqYPFwisrT8Zm/SJvjoalV3P/Nh8zEgH3O6Z1JTaa2daMoLDyE3Aw8sVV1whn3zyiSk8p0XqzjzzTFm7dm3NIt4PP/zQ7EBK2LNnjxQWFtZ8vnjxYnMZNWqUbNy4MdOHCwSWBpdkOzyqK61fGgcf9UzK1ggOu568LSvPSjpF1NA0Uf1A0rNnTxonAnC0H1FD6FPkPy0dwWHXkx14SwXAKvQjQjZGcOBt7labAoAs9iNqCH2KALsQTQFYK91+RA2hT1FmpTM956V/i8bqzdiyG6k6SU8kP5QZILwAAe4E7UQxMDfRj8gOox8fndYo2PLxyz3x4trYbiVbdiO9m6RBoxZ41GaPXj/2xhBeAB/yWido34nHRSqijd9Hmzxa/OLgRLDUIFKyryStr9P760iNW00yU92t5OXdSKFIxASUWHFx0tv1eu0RZnOzR+896gCyXnxOn6yd7NDs++CybJzIrs2N36/HcJHr1gY2wOi7eh1BSXXKSO+XzgiNW7uVbNiNFAqFzMiKBpT6U0jJRmJsRHgBAlp8zsb5e0/QEZemgova9dqR++a1kUDv+nFpBCXou5VCoZDVIytNsftfB0Czi8/BAT/4u0hevReI8qjIYqqBA5nEMxoANJcGl8ZGVjTINCXga2OA5iC8AAi2VBbfphtIElIZgQn42higOQgvAIIr1cW36dCRFA0kuuYlFayNAdJGeAEQXKkuvk1GA0qyxag6gqIjKU2N5rA2xnrNqZPE4nhnEF4AoKHFt81dq6LXB3iXUVA0Z8u0LcXtvI7wAgScFrSrXw+iqfLigVx8m0nprKNpDssWBTvR7TtTbQZSLWJnY3E7m/DoAQEPLqVXT5RYSXpVUOGwTG+ttmxRsBPF6jLVZqCpInYNsaG4nU0IL0CA6YhLqsFFy41r2XFP0XUluujWqyMeTi7sbQkLFgU3t52AG20G/FDEznY8+gCM3q++IuFGwolnOtHWDiv3ntqy8OKmVBf2toRFi4LTbSfg9TYDyCzCCwBDg0vYhnLiDqyHSHnnUKaxsNcX7QSQfYQXAPaa+aZIQcfALWgFgo7wAsBebu4Qgue1ZAoqU7uV4AzCCwDAl1qy9iVTu5XgjLBD3wcAAM/sWnJqtxK8iZEXAAgCp7eFe3SdUEt3LbFbyQ6EFwAIAqe3THu48B27lvyPaSMA8KtEIbxMFr6DlapjMamORutctOK2LRh5ASygTyrplCNvTrdb+FAmCuFZVPgODXv37JFJq2ifvOJRKxYpE14AC4LLZUs3SVEzG8Eh4CiEh1pVsjWgxIqLJRm9XluGhCwoVkl4ATxOR1yaG1y0+612wQWAUChkRlbqd5HXKaRkIzFeRngBLLL1J2OlIC/1MKLBxYkhYDNt5ZFto145DqC5GprWdervtTH6/W0YWWkK4QWwiAaXbHez1eAy+bnJsu2TbVn9uYBfDVnwUtLr+53QTlbfOCLpBq5sBBubEF4ANDnS4cXgUnj4sERatXb7MICUaPjQadytjUwBv/3RQel/5/NJb9OvPRJsCDCK8AKgcbW2T24s/adEPLKdUo+DJ3LYQn9XNXwk2zWof1KXL91kwktDNPTo12Z75NWreBQANK7WGhMNDAUeCS+mfonWMQFcWF/VnMaNpnheA+HjzzePTBpsdH1MQ9NMQUZ4AZC6mW+KFHT0xiPm0fL0CEZjR6cbNzYWbJpbvyni43UyhBcAqcsrEMlrwyMG3zd21MaMqTRuLMji6F+6IzBDfLxOhvACAMhcs0fLRsiaauyY7caNqSz0DeI6Gf+dEQAgO1JpE+DhBo42NHZsbKFvQ4KwTobwAgBIv9mjNmZMp4Ej040ZXQ+TzjoZP6yFIbwAAJxv9kgDR08YkmQExg9rYQgvgE9pZdz6PUzq054mQNpo9uhpkSbWyfhhLYy9Rw54lOkDlMb8dFPS3R6ZOIbSqydKrKTxHRMA/CfUwDoZP62FIbwADtLQcNnSTc3uAu3YccRiaQWXyKBBEopEMnpMAOxYJ2MD/54Z4AJ9p5Op4KLDwDocnK7er74i4SaCiQYXm+e/AQQL4QXIkK0/GWu6QDuluTsENLiECxrZ9qnl/htbfJlKLQ8AyCLCC5AhGlw8P2yri3qXnSexf25p8C4xDUwnd8/qYQHIrGittXTV5ZXWPdwef2YFkEnx8kMyubJUtvXskdoX5LAuBvCDIbUW7uZXlsnTtdbt2SDs9gEAcE+s6rBsa52f0n0Ljy+UiEeqjgJo/hbqxji5UzKTGHkBYGy8+FmJRDo22rCORb2A/7ZQH/r8S9n/jFiF8AKgJpx4pZ8LgOxtoa7OtW8Sxr4jBgAAgUZ4AQAAViG8AAAAq7DmBVZyun+Qm32IAADpIbzAOl7pHwQAcAfhBdbJZP8gt/sQAbBHrDKW9td4veRArKJawuWVzW5Hki2EF1jN6f5BTvH6Hz6Alhv9+Oi0v6awc6EsH7/cs88PIxetl7KcfPMGTGvCePU4CS+wmhX9gwD4ho6caAAp2VfSrK/Xr9MRGy/VVIokGSXeWvovM8rt1edXbx4VAAAepCMROnKS7pSR3r85IzXZEKo1uvLKbd+Wb973qngd4QUAkFnl0dTvqyMSHp2qqFOl1kMjJ06KWFJtl/AC67Ylsx0ZsMziU1O/b4/hItet9XyAgbsIL2gU25J98q43J97yd8RAOnRkQoPIrtfSe9z0/hVRkbw2PN5oEOEF1m5LZjtyI+Lxuu96Gwov+u62Zw+n/2mAI79bOoKiQSQVGqTTGaFBoGUlvDz44INy7733yt69e+WMM86QJUuWyNChQxu8/+rVq2XevHnywQcfSO/evWXRokVywQUXZONQYdG2ZLYjN6Ii/foTkhNpwb8G0ECAYQTFKvFYTPIry6SsVZ4EOrw89thjMmvWLFm6dKkMGzZMHnjgARk3bpzs3LlTOnfufNT9//d//1euuuoqWbhwoXznO9+RlStXyoQJE6S4uFhOP/30TB8uGsG2ZEvNfFOkfcfkt+mOidVjjnzMGgMg8P45ZrQ8LSJ/69BT4vFxnn08Mr6s+P7775dp06bJ1KlTpV+/fibEFBQUyLJly5Le/5e//KWMHz9e5syZI3379pX58+fLoEGD5Ne//nWmDxXw79oDffeb7OLTHRMAUheKRCQyaFCd6/of+MCMwgQyvJSXl0tRUZGMHTv26x8YDpvPN23alPRr9Pra91c6UtPQ/cvKyuTgwYN1LgC+Fq2KSbQimvTSnPLmAPwlFArJySseldOKi6T7ho1ig4xOG+3fv1+qqqqkS5cuda7Xz3fs2JH0a3RdTLL76/XJ6PTSXXfd5eBR+1dztjyzLdnef+uE0U+eL2V5bDsF0HiACRUUSKi8sk6fozbxuCdbBFi/22ju3LlmTU2Cjrz06MHuifrY8hwsserDad1fy51r2XMAqN3naECvrp7scZTR8NKpUydp1aqVfPzxx3Wu18+7du2a9Gv0+nTun5+fby7I7JZntiXba+1FT0pBh+5Wd7oF4E6fo62l/5JPD5WbDRte2uGZ0fCSl5cngwcPlnXr1pkdQ6q6utp8PmPGjKRfM2LECHP7LbfcUnPdiy++aK6He1uevfRLi/S0zon4tpQ5AGcle54fsuClI//3UKfpjE8b6ZTOlClTZMiQIaa2i26VPnTokNl9pCZPniwnnniiWbuiZs6cKaNGjZL77rtPLrzwQlm1apVs3bpVHnrooUwfamCw5RkA0JRBJx0nm/ZEjxqF6dgmz/UAk/HwcsUVV8gnn3wid9xxh1l0e+aZZ8ratWtrFuV++OGHZgdSwllnnWVqu/zkJz+RH/3oR6ZI3dNPP02NFwAICifaVljQ4NHrHr1+qJTl5puNGzWjLwte8sQITFYW7OoUUUPTRBs3Hr0t6/LLLzcXAEAAOdEmgAaPznTPzssxywY0sOjIi9L/a6Bpk+/enh87el8DAILRyNEpiQaPcCTE6EiLrpdMuHzppjolGbLN+q3SAIAANnJsCA0eMxZgdK1LvxPaydsfHTQX3cWqIzNuILwEpPgcxeYAeB6NHK0Ygel/5/NuHwrhxXYUnwMAZItX1kAz8hKw4nMUmwMANJcu3n37P8clLWiXTYSXgBWfo9gcgMBoyZZrtlo3ugPJbe4fARxD8TkAcGjLNVutPY2t0gAA/3BqyzVbrT2NkReP7QpKF7uIAMDBLddstbYC4SVLwUNr+WhRH90bDwDIILZc+x7hJUUaXPrd4f7e9oawiwgAEBSElyzT6oRHGlo5+33ZRQQACArCSzP2trcEIQMAgJYhvFi2tx0AgKBjqzQAALAK4QUAAFiF8AIAAKxCeAEAAFZhBSoAAOk2dqRxo6sILwAApNvYkcaNrmLaCACAdBs70rjRVYy8AACQamNHGjd6AuEFAIDaaOxoVMdiEopETJFWr2HaCAAAHOXds0dK6cRJEo/HxWsILwAAZFGsMibRiuhRFy+EhFAkIpFBg2o+jxUXSzwWE69h2ggAgCwa/fjopNcXdi6U5eOXuzpNEwqF5OQVj0rVgQNm5MWrGHkBACDDIjkRE04aU7KvxIzKuC0UCkk4EhEvY+QFAIAsBAIdVUkWTvS6hkZjkBzhBQCALAWYAq0jgxYjvAA20IV8DdWdSKbc/aFnAMgUwgtgQ3BZNk5k1+bUv6ZKl7N1zeRRAYBrCC+A1+mISzrBpb5W3l54B+BrDS3Y1QW/XiwW5xbCC2CTH/xdJC+FOfMvDoisPu/IxzzhAdbw8jZqL2GrNGDJzFF1ZSjlS7yCJzjAFjZto/YKRl4Aj9Oqm6XrOklsf57IE99y+3AAOIxt1OkjvAAeF48dPhJcmmFHd5GTIq0dPyYAwdlGXf1VewAvNWkkvAAW6b3hBQm379jk/aIVWvRqlJTliozzyJMNADu9+1WbAO15pK0DvBBgCC+ARbRkd7ig6Xdn4QqRsjz3n2AAXytPo/ZSgo6ueODFP9UGjdqYsX6TxlAKz0GZRngBAKA5Fp+a/tf0GC5y3VrPB5jQVw0aNazotJHXmjSy2wgAgHRGTjSANNeu19Krlu12g8aCAk82aWTkBQCAVOmIiY6cpBtAdIqpOSM1SIrwAgBAugEmr00gH7NqXfPigV1HhBfAItGqmIRTeMdHMSsAmaBrX7yw64jwAlhQpC5h9JPns4sIgKs7j7yw64jwAnhcrPpws79WS45r6XEA9kt3RDXiUDPHxM6jqgMHPLPriPACWGTtRU9KQYfuKd+fTrSA/5s2NsTJZo5m55GHdh0RXgCLtM6JeLaEOIDMNW3UxozpKvmqmaMfnzMILwAAWNi0sSF633RHaWxDeAEAwMO83LTRLVTYBQAAViG8AACA9NQq4eAGwgsAAEjLB5OuqVODKtsILwAA+FSsMibRimidS3NDhxary+/b13xc9s47plCdW1iwCzhNnxic7Bpb7t4TBAC7jU6y66i59V/0/j0f/R/ZOXiIuI3wAjgdXJaNE9m12bnvWaUDpF2d+34AAl0bpqQl9V9cbsiYQHgBnKQjLk4Gl/paeafCJQC7asPEfFT/hfACZMoP/i6S50Bthi8OiKw+z1PvegB4W8jntWEIL0CmaHDJa9Py75PT/MaMAOBH7DYCAABWYeQFyMCa3XhVSCQaE6ls+TSPm9sRAcCLCC+Ag7R+Qum6ThLbnyfyxLd4bAHApmmjAwcOyMSJE6Vdu3Zy7LHHyvXXXy9ffvllo1/z0EMPyejRo83X6GKjzz77LFOHB2REPHb4SHDJgB3dtUhU64x8bwCwScZGXjS4fPTRR/Liiy9KRUWFTJ06VW644QZZuXJlg18TjUZl/Pjx5jJ37txMHRqQFb03vCDh9h1b/H2iFbq9cZSU5YqMY7cRABdpld3TiotqPvZVeHnnnXdk7dq1smXLFhky5EglviVLlsgFF1wgixcvlm7duiX9ultuucX8f+PGjZk4LCCrwpGIhAtavlUxXCFSlscWaQDuC4VCEnLgec2T00abNm0yU0WJ4KLGjh0r4XBYNm/OYAEvAADgexkZedm7d6907ty57g/KyZEOHTqY25xUVlZmLgkHDx509PsDAOA3sXrVdxNtBdLtd2RFeLn99ttl0aJFTU4ZZdPChQvlrrvuyurPBADAZqMdbNjo+fAye/Zsufbaaxu9zymnnCJdu3aVffv21bm+srLS7EDS25ykC3tnzZpVZ+SlR48ejv4MAABsF8lkw0Yvh5fjjz/eXJoyYsQIs825qKhIBg8ebK5bv369VFdXy7Bhw8RJ+fn55gJ4TbQqJmFt1JiB4V0ACHLDxoyseenbt6/Z7jxt2jRZunSp2So9Y8YMufLKK2t2Gu3evVvOPfdc+d3vfidDhw411+l6GL38/e9/N59v375d2rZtKyeddJJZLwPYUKQuYfST57NLCICnhHzSsDFjRepWrFghffr0MQFFt0iPHDnSFKFL0ECzc+dOU9slQYNOYWGhCT3qnHPOMZ+vWbMmU4cJOCpWnbkmijrcq8O+ACxXHhUpP3T0pdabHzQuFK/9VtEHdM1L+/bt5fPPPzeVeoFs+vLTXbLr7PPMx8f/5Y9S0KG7Y9/bpp0AAOrRcPKz5DXOavQYLnLdWh0eyerDF62IyrCVR5Z0bL56s2sjM+m8ftPbCMiQ1jkRXwzPAnCAPhdoONn1WsP30dt0nVxeGx7yJhBeAADINB1N0VGVZIv4dRpp8an8G6SB8AIAQLYCTFOjKhpkGhq5Ydq4BuEFAACvaGgExqX1MIHbbQQAANJYD9OYxHoYGIy8AADgJtbDpI3wAgCADethUINpIwAAYBVGXmAnra3oxfnfcvoQAcjU80uaz3m5/t2hRHiBncFl2TiRXZvFc6p0MNPZzukAYKRbC6aHf3coEV5gn4qoxD/cLPEq7/1B1jmmVvQhApCFyrwBrNhLeIF1tB1X6bpOEtufJ57mw3c7ADy0E6khAajYS3iBdeKxw54PLju6i5wUae32YQDwA3YiHYXwAqv13vCChNt3FK+IVsRk9OOjpCxXZBwjLwCQEYQXWC0ciUi4wDudm8MVImV5TBcB8PAOpVz7dyERXgAA8KvFp6a1CylWeaTcQyQnIiEPBxyK1AEAEKReSbsa7pM0+vHRMmzlMJmydorZHOFVjLwAABCEHUrlyXch6ShLYedCKdlXUnOdfqyjMAUahDyI8AIAgN+ksUNJp4eWj19uwopedPTF6wgvAAAEXCgU8uwoSzKseQEAAFYhvAAAAKswbQT7OjjXOpZoVUzCHjq2xDZDAEDmEF5gXQfneKXWHjjBfDz6yfMpCgcAThWvswThBY3TUQ0PBRcV83DhpATddqjbDwHAquJ11zwpNiC8IKXBl3hVSGTmm55I5vEv/yWy+iLz8dpL10pB2w7iNV6vTgkgwMXrdr2W/Ha93pKpb8ILGqUVFkvXdTrSxfmJcZ57tFq3ili1vQ8AbCle52WEFzQqHjt8JLh40I7uIidFWrt9GADgy+J1XkZ4Qcp6b3hBwu07uv6IRSu0AuQoKcsVGcfUDAAEDuEFKQtHIhIucH+KJlwh7DACgACjSB0AAEhat8qrnaUJLwAA4CjaoHHK2imeDDCEFwAAYERatTZ1qhJK9pXIgcMHJFoR9VSIYc0LAAAwQhUxWf7t/ycHqg7L6NVjakZgVJ8OfWT5+OWeqGPFyAsAADhi8akSWniidPj91VJ4/NcjMGrHgR0ybOUwT0wlMfICAECQ5R5deTe0a7Msn7RbYuEjYxwaWDS8JKaSdDGvmwVCCS9B0pzu0B7q2AwAyIDalXdrVdvVqaFEQHn8O4+btS+JKSS3EV6CorndoWt1cAYABLPybigU8lSzWcJLUOhK8Q83H2mwmIZqE16+kuudX1wAQHARXoLYYLG5KMUPAPAAwktAtLTBYn7hGRLLiUvIA2tgdKEYACC4CC8BlE6DRR2xmfbCNNny+Zsivx+e8WMDAKAp1HkJcIPFVC5leSHZcnC7J6eMtAqklxaQAUBQTHG51gsjL0jZxu9u9FRY8EKVRwAIikhOxFTZ1XovenGz1gvhBWn94rpZlAgAkEVa80Wf8796k6hvFrU9gFbZdRvTRgAA4GharG7Z+CN1wjyG8AIAAOq2CkjQlgEe2GVaH+EFAADUbRXwg7/XnT4qP+SpERjWvAAAgHqtAmqtb/yq15EZkbnmSfECRl4AAEDj00eJKaTop+IFjLwEpVu0B+csAQB2dZqWXw4U6dnD7aMjvASmWzTdoQEAzek0nRiF0ZEXj2DayHaaipsKLvXRHRoA0JJFvIoKu3CE/mLVXmRVWzQm8sS3jnxYeVjCFalVpqUJIgBANMC06STSpb+IHDzygGiTXB2ZcQFrXvxEg0sDv0jxiq8/Hv34KNOzCACAtALMNU+LPPFtcRvTRgERqzzcoq+nCSIAQGq3iHGx1x0jLz6g047xqtCRqSGzMDfJfWKxmo/XXrpWCtp2SOtn0AQRABDJLZDNVx9ZZ+lmo17Ci+W0JXnpuk4S259Xs6alKa1b0WARAJA+bc7ohQa9TBtZLh47fCS4pGhHd5FQpHVGjwkAgExi5MVHem94QcLtOya9LVoRO7JQN1dk3FftzQEAsBHhxWuVcNNV6/uFIxEJFyQfzgtXCDuMAAC+QHjxWiXcdFE5FwAQMBld83LgwAGZOHGitGvXTo499li5/vrr5csvv2z0/t///vfltNNOk0gkIieddJLcfPPN8vnnn4snwoe2BG/u5dB+54NLfVTOBQAEQEZHXjS4fPTRR/Liiy9KRUWFTJ06VW644QZZuXJl0vvv2bPHXBYvXiz9+vWT0tJSufHGG811TzzxhLhKp2d+1i3zlXDTVatyrikgBACAz2UsvLzzzjuydu1a2bJliwwZMsRct2TJErngggtMOOnW7eggcPrpp8sf/vCHms979eold999t0yaNEkqKyslJ8cHs1za3EpLLDsVNBqo6wIAgF9lLA1s2rTJTBUlgosaO3ashMNh2bx5s1x88cUpfR+dMtJpp4aCS1lZmbkkHDz4Vc8Fp+m+9h/tceb7MEICAID3wsvevXulc+fOdX9YTo506NDB3JaK/fv3y/z5881UU0MWLlwod911l2StNXgLC8rVrnTrhGqHvx8AAL4LL7fffrssWrSoySmjltIRlAsvvNCsffnpT3/a4P3mzp0rs2bNqvN1PXr0EKe1OHjE4/LBpGukzIHHBgCAIEs7vMyePVuuvfbaRu9zyimnSNeuXWXfvn11rtd1K7qjSG9rzBdffCHjx4+Xtm3bylNPPSW5ubkN3jc/P99cMk2Dy85Bg8WrIoMGSSjiXp8JAAA8G16OP/54c2nKiBEj5LPPPpOioiIZPPjIi/769eulurpahg0b1uDX6cjJuHHjTCBZs2aNtG7tr1L2+X37Ss9H/8fxdS8aXLTnBAAAfpexNS99+/Y1oyfTpk2TpUuXmq3SM2bMkCuvvLJmp9Hu3bvl3HPPld/97ncydOhQE1zOO+88iUaj8uijj5rPEwtwNTC1atVK3KLh4LTiIke+DyEDAIDmy+je4xUrVpjAogFFdxldeuml8qtf/armdg00O3fuNGFFFRcXm51I6tRTT63zvd5//33p2bOnuEUDR6iB0vsAAMAn4UV3FjVUkE5pGNGFsAmjR4+u8zlSo49ZrLLxxcRN3Q4AgC18UPUt2DS4TH5usmz7ZJvbhwIAgP29jZB5OqKSTnAp7FwokRx2JQEA7MXIi49s/O7GJoOJ3s6CYQCAzQgvPqLBpEDbDwAA4GNMGwEAAKsQXgAAgFUILwAAwCqEFwAAYBXCCwAAsArhBQAAWIXwAgAArEKdF4/1IEoXPYsAAEFDeMkSehABAOAMwkuWRk3S7UGULnoWAQCCgvCSRvgYtnJY1noQpYueRQCAoCC8ZJmOkHRo3YHmiAAANBPhJY2Rjc1Xb3bk+9DVGQCA5iO8pEgDBx2bAQBwH3VeAACAVQgvAADAKoQXAABgFcILAACwCuEFAABYhfACAACsQngBAABWIbwAAACrEF4AAIBVCC8AAMAqhBcAAGAVwgsAALAK4QUAAFjFd12l4/G4+f/BgwfdPhQAAJCixOt24nU8UOHliy++MP/v0aOH24cCAACa8Trevn37Ru8TiqcScSxSXV0te/bskbZt20ooFBIvJUoNVLt27ZJ27dpJkAT13Dlv/r2DIKi/50E+94MZOm+NIxpcunXrJuFwOFgjL3rC3bt3F6/Sf+gg/ZLXFtRz57yDhX/v4OHf3DlNjbgksGAXAABYhfACAACsQnjJkvz8fLnzzjvN/4MmqOfOefPvHQRB/T0P8rnne+C8fbdgFwAA+BsjLwAAwCqEFwAAYBXCCwAAsArhBQAAWIXw0kJ//etf5d/+7d9MRUCt6Pv00083eN8bb7zR3OeBBx6oc/2BAwdk4sSJptDRscceK9dff718+eWXYut5V1RUyG233SYDBgyQNm3amPtMnjzZVD7283krXf9+xx13yAknnCCRSETGjh0r7777rvXnXV9VVZXMmzdPvvGNb5jz7NWrl8yfP79OT5JUHgsb7d69WyZNmiQdO3Y056W/51u3bvX9edd2zz33mN//W265pea6w4cPy/Tp083jcswxx8ill14qH3/8sdhu4cKF8s1vftNUbe/cubNMmDBBdu7cWec+fj33ZB588EHp2bOntG7dWoYNGyavv/66uIHw0kKHDh2SM844w/yDNuapp56S1157zbzo1acvZH/729/kxRdflGeeeca8QN5www1i63lHo1EpLi42L276/yeffNL8sV900UW+Pm/185//XH71q1/J0qVLZfPmzSa8jRs3zjy52Xze9S1atEh+85vfyK9//Wt55513zOd67kuWLEnrsbDNv/71Lzn77LMlNzdXnnvuOXn77bflvvvuk+OOO87X513bli1b5L/+679k4MCBda6/9dZb5U9/+pOsXr1a/vKXv5g3K5dcconYTs9Fg4k+f+vfrL45O++888xzgd/Pvb7HHntMZs2aZbZJ63O7Phfq7/a+ffsk63SrNJyhD+dTTz111PX//Oc/4yeeeGL8rbfeip988snxX/ziFzW3vf322+brtmzZUnPdc889Fw+FQvHdu3dbfd61vf766+Z+paWlvj3v6urqeNeuXeP33ntvzXWfffZZPD8/P/773//eN+etLrzwwvh1111X57pLLrkkPnHixJQfCxvddttt8ZEjRzZ4u1/PO+GLL76I9+7dO/7iiy/GR40aFZ85c2bNOebm5sZXr15dc9933nnH/K5v2rQp7if79u0z5/WXv/wlcOc+dOjQ+PTp02s+r6qqinfr1i2+cOHCrB8LIy9ZaBR5zTXXyJw5c6R///5H3b5p0yYzdTBkyJCa63SYWXs06bs2v/j888/NMLOeq1/P+/3335e9e/ea86jdp0OHVvV8/XTeZ511lqxbt07+7//+z3z+xhtvyCuvvCLnn39+yo+FjdasWWP+7S6//HIzhVBYWCi//e1va27363kn6AjEhRdeWOf8VFFRkRmRqH19nz595KSTTvLFedd/LlMdOnQI1LmXl5ebc619nvq8pZ+7cZ6+a8zoNTqcnpOTIzfffHPS2/WJTp8Ea9P76x+G3uYHOlyua2CuuuqqmsaMfjzvxHF36dKlzvX6eeI2v5z37bffbjrL6pN0q1atzBqYu+++20yJpfpY2Ogf//iHmS7TofMf/ehHZgpF/7bz8vJkypQpvj1vtWrVKjNVoOdcn56bPgaJNyd+Ou/6b0Z1nY9OHZ5++umBOvf9+/ebv/Nkv9s7duzI+vEQXjJIU+ovf/lL8wevow5BpO9Ivvvd75pFjPqkD394/PHHZcWKFbJy5Uozorht2zbzpK5ruvRF3K/0xUtHXn72s5+Zz3Xk5a233jLrW/x83rt27ZKZM2eaNR+6UDOodORJ/711lBHuYtoog15++WWzkEmHD/XdtV5KS0tl9uzZZrW26tq161GLnSorK82OFL3ND8FFz1mf9BKjLn4978Rx199loJ8nbvPLees0qI6+XHnllWa3jU6N6qJF3ZmR6mNhI91B1K9fvzrX9e3bVz788ENfn7e+EdPf20GDBtU8l+nCVF2YrB/ru2+dVvjss898dd61zZgxwyyw37Bhg3Tv3r3mej0/v5+76tSpkxll9crvNuElg/QJ/c033zTvShMXfWeqT/zPP/+8uc+IESPML70+OSSsX7/evMPTeXLbg4tuEX3ppZfMFsLa/Hjeum1Y/4h1LUiCTq3oWhY9Xz+dt+4o0/nu2vSJTc8j1cfCRjpdUH+brK77Ofnkk3193ueee65s3769znOZjkDpNGHiY92BVfu89XHSUGfzeSsdNdbgojtG9W9V/41rGzx4sG/PvTadGtNzrX2e+veun7tynllfIuwzuvq+pKTEXPThvP/++83HiV019dXfbaTGjx8fLywsjG/evDn+yiuvmNX8V111VdzW8y4vL49fdNFF8e7du8e3bdsW/+ijj2ouZWVlvj1vdc8998SPPfbY+B//+Mf4m2++Gf/3f//3+De+8Y14LBaz+rzrmzJlitlB98wzz8Tff//9+JNPPhnv1KlT/Ic//GHNfVJ5LGyju+ZycnLid999d/zdd9+Nr1ixIl5QUBB/9NFHfX3eydTebaRuvPHG+EknnRRfv359fOvWrfERI0aYi+1uuummePv27eMbN26s81wWjUZ9f+71rVq1yuyc++///m+zc/KGG24wv+t79+6NZxvhpYU2bNhgXsTqX/TJPdXw8umnn5oXr2OOOSberl27+NSpU82LpK3nrS9myW7Ti36dX887sVV23rx58S5dupg/8nPPPTe+c+fOOt/DxvOu7+DBg+aFS5+wW7duHT/llFPiP/7xj+uE01QeCxv96U9/ip9++unmnPr06RN/6KGH6tzu1/NuKrxoOPve974XP+6440ygu/jii82LvO0aei575JFHfH/uySxZssT83efl5Zmt06+99lrcDSH9T/bHewAAAJqHNS8AAMAqhBcAAGAVwgsAALAK4QUAAFiF8AIAAKxCeAEAAFYhvAAAAKsQXgAAgFUILwAAwCqEFwAAYBXCCwAAsArhBQAAiE3+Pzs0hq/UYplYAAAAAElFTkSuQmCC",
74
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbylJREFUeJzt3QeYVOXZBuDnTN3e6B3Egg1QEaPYoyIaIxqjsaJGE2OXxIIdGyr2HktEokajEXv5jQYriiDYxQYuwhbasn3q+a/3G3aZhS3Tzpwyz+01sjM75cDszjzzlffVdF3XQURERES25zL7AIiIiIgoMxjsiIiIiByCwY6IiIjIIRjsiIiIiByCwY6IiIjIIRjsiIiIiByCwY6IiIjIIRjsiIiIiBzCgxwUjUaxcuVKFBcXQ9M0sw+HiIiIqEvSS6KhoQEDBw6Ey9X9mFxOBjsJdUOGDDH7MIiIiIgStnz5cgwePLjb6+RksJORurZ/oJKSErMPh4iIiKhL9fX1akCqLb90JyeDXdv0q4Q6BjsiIiKyg0SWj3HzBBEREZFDMNgREREROQSDHREREZFDMNgREREROQSDHREREZFDMNgREREROQSDHREREZFDMNgREREROQSDHREREZFDMNgREREROQSDHREREZFDMNgREREROQSDHREREZFDeMw+ACfTo1GzD4HSoLn4uYeIiOyFwc7AUFe//AezD4PS4Pbno6j/ELMPg4iIKGEckiDqQiTQwlFXIiKyFY7YGTiNVzJkS7MPg1Kg6zoafvnR7MMgIiJKGoOdweEu3NoCPRI2+1AoCTJKF25pguZym30oRERESWGwM5CEupWfvIVQc6PZh0JJBruWtTXw5hWgePBIeAsKzT4kIiKihDDYGUhG6iTUub1+uH1+sw+Hkgh2wfp1CLU2c7SViIhshcEuCyTUefIKzD4MSiLYubw+RMJBsw+FiIgoKdwVS0REROQQDHZEREREaczyWKk0FqdiiYiIiBIUH+KaapYj2LBefV2+5Q6W6FjEYEfUQ007oz+JWeGFgIiIetZYvVwVr4+vflH96Tvq66JBW8BXWASzMdgRdaNx5VJ48o0td8LWZURE1qdqnLY2I1hfBz0akUvw/vTTUL/8e/X9LQ48GrBAsDN9qODdd9/FYYcdhoEDB0LTNDz//PM93uaJJ57AmDFjUFBQgAEDBuDUU0/FmjVrsnK85Hwygub2+rL2eGxdRkRkjxmcdy49Dq+cOgGvnrY3Xj1tn/ZQZyWmj9g1NTWpkCbh7Mgjj+zx+h988AFOOukk3H777SoQrlixAmeccQZOP/10PPfcc1k5ZnK+vPI+0DxeFA/aAt7CYkMeg63LiIjsI9zajLXffbbZ5QV9BmKbo8+Ey5cHKzA92E2aNEmdEjVv3jwMHz4c5557rjo/YsQI/PnPf8ZNN91k4FFSro7cRYKthq2BY+syIiJ7GnvGdPiKStsbEeSVlMPl8cIKTA92ydp9991x6aWX4tVXX1WBsLa2Fs8++ywOOeQQsw+NHETCVri5ESsX/M+wx2DrMiIi+9Djl8y4XIhGQurLgr4DMWzfyZZ5DbddsJswYYJaY3fMMcegtbUV4XBYTcnee++9Xd4mEAioU5v6+vosHS3ZuVtIYb8hGxbIGoOty4iI7GnI7hNRMnik+lo6FXny8mEVpm+eSNbXX3+N8847D1deeSUWLlyI119/HcuWLVPr7LoyY8YMlJaWtp+GDOEOREq8FZyRJ3lBiC+rkuyJiIiyz5NfCF9xqTpZKdTZcsROQpqM2l144YXq/OjRo1FYWIi99toL1113ndolu6lp06Zh6tSpHUbsGO7ICWVVWCqFiMgY+iYfnuUDuB3YLtg1NzfD4+l42G63u9t/dL/fr05EViyrEtpY6zLlUiksckxElDkNVZVorlkBXd+4HCcSaIYdmB7sGhsb8cMPP7SfX7p0KRYvXoyKigoMHTpUjbZJSZPZs2er78t6Oiltcv/992PixImoqqrC+eefj/Hjx6taeES5UFaFpVKIiIwRjUTw33MPRd3Sb7q8jlV2wFoy2C1YsAD77bdf+/m2KdMpU6Zg1qxZKrhVVla2f//kk09GQ0MD7rnnHvz1r39FWVkZ9t9/f5Y7oZwqq8JSKURExgg1N3Yb6oqHbIn8Xv1hVZpul0njDJI1drKJYv369SgpKTHscUJNDah8/xX4CkvUQnmiTUWCAdVE2lNQlHKplJGTTrDMNnsiIrsLNKzHk/v1Ul8f8vA7KB44osP3vcVl8OYXWDa3mD5i5/iFl3oU+oYT2YumuSxbVoWlUoiIjOcv663q1NkJg51B1FRZ9U9AXQ0QbILut9Z2aOqZ7vHBVdo3K+EulZ8vKZUSCQcNOSYiIrInbqUj6ko4yJFWIiKyFY7YGUQWwnv6bwGUfQMUlkDjGjv7kGLB66rMPgoiIqKkMdgZSO1yDIeBYADg7kXbUGsig63yBEIz+2CIiIiSwGBnoGigBYHKLxHWNHhSWEdFJpGN4k1rAV8e8ioGQvPlmX1ERERECWGwM1I0DD0YgFZYAlcey1HYasSutQGQUbskd6uaoa3PbLrYvYKIyP4Y7LJAOgtoHLGzD9kw4fZCj4Tg5D6zm2LfWSLKVXrch2O7l/dlsCPK0T6zm2LfWSLKRY3Vy1Vd0LZ6oqGWJtgZgx2RzfvMSmubdDqbyKdTGfVjezIiyjV6NIrA+rWo/vQdhAKxT8qRQKstesJ2hcGOyKYkiEVam1H16Ttp3U98e7LiwSPZnoyIcoau63jv6lOw7vvPO/2+x4ab5xjsiGwq1XZkm2J7MiLKVeHW5i5DXdHA4XDbsAYtgx2RjaXSjmxTbE9GRATsedU/4C/rpb5uWLFUvSZqmv2qmTLYERERUc5rXleNSCigvpZAZ8dQJxjsiIiIKCfFlzmJRiIItTS2n/cXl6nZDLthsCMiIqKcN+RXE1EyeGT7eQl1nrx82A2DHVF3pKuDFCw2kKaxbhwRkdk8+YXwFZfC7hjsiLqh11WrnrGGPobHB1dpX0Mfg4iIcgODHVEnI2i6O4u/GuGgGhXkyB0RkbH0Tfpq2719WGcY7Ig6oRWWQXd5oJUPgObPN26ad12VMfdNRETdtg5zQvuwzjDYEXVF06CrOkbGjKTJKJ0ebJUWErDnpnoiInvQNxRir/1inirG3iZs8/ZhnWGwI+qE5nJBD7Yg8OMi4x5EpgCa1qo1fHkVA6HZsHUNEZFdRCNhtDbUoajvILi9ee2dJ+zcPqwzDHZEnfF44Snru9l6jIyP2LU2ADJql2ZbMCIi6pqspXv/mtO6bB/mJAx2RF3xeI2dIpUyKm4v9EjIyEchIsp54W56wtq5L2xnGOyIiIgoJ3vC2r0vbGcY7IhsXAiZJVKIiFLvCWv3vrCdYbAjsnEhZBY3JiJKryesnfvCdobBjsjOhZBZ3JiIKK2esHbuC9sZBjsiOxZCZnFjIqKc7gnbFQY7IhsWQmZxYyIi6gyDHZEdCyGzuDEREXWCwc7AYohSNycSDiESCsIV3LgDh+xB1lwYvlMqxULILG5MRLRRT6+hunwYzhEMdgaRUPfvyaPMPgxKQ+mg4djp+LOyEu6SfgQWNyYiUhqrl6s+sHo3H3JDLU3IFQx2RF1Yv2IZoqEg3D6/2YdCRERdjNRJqKv9Yh5CcX1fNxUOtLZ/7fJ44WQMdgbx5BXg6Oe/xY9P3QZfSQW8hcVmHxIlSKbOP7hnutmHQURECZCROgl1Rf2GwN3FeuNwy8bQ53H4mmTTg927776LmTNnYuHChaiqqsKcOXMwefLkbm8TCARwzTXX4PHHH0d1dTUGDBiAK6+8EqeeeiqsQqbvJNy5PV64vT6O+hARERlA1s/JB3LogOZ2d3odzdP55U5kerBramrCmDFjVCg78sgjE7rN0UcfjZqaGjzyyCPYcsstVSCMJrn4nIiIiOwf6t6/5jSs+/5zsw/FMkwPdpMmTVKnRL3++ut455138NNPP6GiokJdNnz4cAOPkIiIiKy6UTGZUFc0cDjceQVwMtODXbJefPFFjBs3DjfffDP++c9/orCwEL/97W9x7bXXIj/fGe1AiIiIKDl7TZ8Ff1mvLjdZNKxYiogqBu/ssu62C3YyUvf+++8jLy9PrcdbvXo1zjzzTKxZswaPPvpol2vy5NSmvr4+i0dMRERERnN5fHB7u1rPrqu17tEcKBFlu2Ana+kkbT/xxBMoLY31ervttttw1FFH4b777ut01G7GjBmYPp27HMmhpG+s1LVL+ebRWF08IiIba6hZhmDT+i6/L+WrcoHtgp3sgB00aFB7qBPbbrutWkD5yy+/YKutttrsNtOmTcPUqVM7jNgNGTIka8dM9qV2Wlm8w4VeV61ai6V8e9l4VL8KCDn/kywRObfjRDQSQailsdvr+4vL1GuuEccgLSKtwHbBbsKECXjmmWfQ2NiIoqIiddl3330Hl8uFwYMHd3obv9+vTkTJykY9u1Q6XGiaC7o7w7++4VDSrc2IiKxiyK8momTwyG6vI6HOk5e59fih2kqE11apr/1bjYOri3IrORXsJKD98MMP7eeXLl2KxYsXqx2vQ4cOVaNtK1aswOzZs9X3jzvuOLVR4pRTTlHTq7LG7sILL1TlUrh5gjJBfvElbEnnCSt3uNAKy6C7PNCLyqF50yi4GYlAD30PRMJq5NvO4c4qn5iJKPs8+YXwFW+czTOajBBWX3cEgks/U+eHzl4JV3lfINeD3YIFC7Dffvu1n2+bMp0yZQpmzZqlatRVVla2f19G6d58802cc845andsr169VF276667zpTjJ+eRkTMZQTN6PUZ8h4uUpnwjYUSDLQj+FHtRSZUEucAv30HiXP2yb+Ev7w27cvvzUdSfyyyIyDhtH3711qb2UKdEwrAC04Pdvvvuq0YJuiLhblOjRo1S4Y7IyHCXzW4hqU75lg4chrFHn57eGj09qtrwRJoaEGltRLjFviPfkUAr9L6DOHJHRIaQqdfQ6hWxmY7gxjZlZVNmQCsogRWYHuyIclUmpnzXr/wZuqbBlU4I1aPIL6tANBRAU3Ulmtathh21rK2BN68AxYNHwltQaPbhEJHDRCMRVF19KELLv9nse0XjD4WnILbu32wMdkQ2nPKNn8bNBJfbi/ySMniLSuHKK7Tl1Eiwfp1qBK5bZDqEiJwl2tLYaajzDNgSnr7W6YDFYEeUQ1O+3XF7PPDkFcBlw3Y7EuxkBFSqyhMRGW3ATe/A23eE+tpVVGapNmUMdkRERERJcBX3hrf3QFgRgx1RjhdRViVOQiFo3WxiIiLKpkTLLnW3+TJXMdgR2Vym1tqV9OmP3XY5JCP3RUSUqsbq5WrNrB6N9HjdUEtTVo7JThjsiGzIiCLK9auqEQkG4M63xs4uIso9bRuhar+YpzZD9SQcaG3/2uXxGnx09sBgR5TjRZTDwQA+vPeajBwXEVG6ZKROQl1RvyGqxmZ3wi0bw58njZ7ZTsJgZyAp/AqZ/287kb2kUfTXTjtquUaFiKxEXpPU2mEd0Hrovap5zO/NajUMdkYu/KxbAW+kGZ6QD+4A3zztRne5EfVmYVrS4gGSiCiboe79a07Duu8/N/tQbIvBjqgLWjQCd2B9dgKkr9jwxyEisrpwa3NKoa5o4PCM15LTN92Za5PZDQY7g6helWWDEHIXQPMWQ/Nbo4ccJcYValTBLhvU48gLBkfuiIja7TV9FvxlvXoMXw0rlqri5On0zN5UeNVyRBrXqZ6wbSKt9tiBy2BnIE1zqR86PRIEwiGzD4eSENX8gEeTdgwGPooOd6DewPsnIrIv2Tjh8ed3ex15j5W1xtFI5t5j9WhUhbqWb+dBj9uZGw1u3IGrWXgHLoOdkYs/m9YBayuht+Qjkm+ddiOUIG8B3BWDpZGqMfcvo3QS+F0cqSMi2lSotQnu5p52uuoZqQ6wKT0cRrShDp7eg6D5Y8cQDW4MeS6vdXfgMtgZRA80o+rsMej+swZZWkkfRMb9JqPD+x3oOrRIC+D2Av1LAQt/AiQiyram1SsRqF+b0HW9eQXQMjTDous6Vt11GoLL7LmBg8GOqCv1q2SxpHGBS5XBCUpPMCDB9jlERE4Wv2GhYsT2KOo/JKHbefKL4C0ozMwxBJq7DXWevsOh+a07C8dgZxB50gfctRA/PTgN3tIKeArLzT4kSpQErbcejn3t9sVG1IwKdhEXkKVNGkREdlIybGuUDds68Q2LBujz11lwF/dqD53hmqWIBjO7USPTGOwMIk+6SxK9DA27vZZeaEkd2WNDOxGR899HjQpsidIjkY09a9Usi2bpUCcY7IgsIcXuJBZ/gSEisrPw6pWIbrLOT5N6eYZWTEiPdY+MKIe4gw1AdONW+kSxuDERkXHr/HzDtoevd8d1flp+Edz5mVnPZwQGOyKzaBp0zQ0NqddfYnFjIiLjeAdtDd+gjuv8zJ4e7gmDHZGJou48qYYM3VcCeH1J3JLFjYmIjKdZPshtisGOyGwy2hYNA+EkRt1Y3JiIiDrBYEdkJs0NhIOIrvk5uduxuDEREXWCwY7ITNKuLL9U9tRborhxJNiKcKAFdqN6OwYDqmI8EWVnY4Eh98/f4bQx2BGZTfWidVuiuPE7V0yBnRUNHI6tDzvF8DefVNltrQ5RvIaqSjTXroQuS0cMEm7d2I+VUsNgR5TjXF4vSvoNRH3NSthd48plWL/0G+SV94YVuf35CbdIIrKSaCSCN889VP1+ZYsri0tM9PgPgzYfNWSwI8pxUkV97KFHI9JcD/9OE+GS4ps2Ewm04n8X/V59HQ62INzSBKsep953EEfuyHZCzY1ZDXXFQ7ZEfq/+WXms8KrliAY3LkGJtDTCzhjsiLoTCRnfYsztMb1FjTy+2+uFx58Hlz8fdtZYVYmWNTWwmpa1NfDmFaB48MiMNSsnMsMhD7+D4oEjDH0Mb3EZvPkFWRmpiwZboAdbgUhsaYseNx1sxw9hDHZE3XnrYeMfo3wA9F8dZXq4cwp/USnc/jxYibx5BOvXIdTaDD1i3PokomQksxY1flODv6w3CvoOhFPowVa0fDsPrrxiKVvXYfQutgbaXhjsiDYlPQDLBwDrqrLzePI48mbPkiUZ4c7Lh8dio47yBury+hAJB80+FCKlsXq5+rDR3uC+ByGLLm/IiEhEjdJpJb3VjIUW2Fgs3uW11ofERDDYEW1CRs5kBE2FLSNJqZJsjAgSEXUyglz7xTw1ipyIsExVmrCpIZs0nx8uf4HtS64w2BF1Qk2LGvziZe+XDiKy87SqjNRJqCvqNwRuX8+jUuGWjQHQk8D1yTwMdkRERDafVo2kWFhcQp23oKjnK3INsG0w2BEREdmU6roSaImV0kmiYLl0mHF5fLbc9UndY7Ajoo1kika3ZteG7tjxmIkyRUKdrJfzFBQndTuPzw/Nhrs+yeLB7t1338XMmTOxcOFCVFVVYc6cOZg8eXJCt/3ggw+wzz77YIcddsDixYsNP1Yip9PrqgEbrp/Rg4EOb3JWw162uSkbre3i18v5S3vDk5f4jnCttBfcPr+hx0c5GOyampowZswYnHrqqTjyyCMTvl1dXR1OOukk/PrXv0ZNjfWKkRLZhaa5oEuJF4do60Bh1V622/z2VLMPgyxYTiQdMq0qJKR5EuwcI4EwEmxtv21P5LpkD6a/mk+aNEmdknXGGWfguOOOg9vtxvPPP2/IsRFZtsOFfEqXcikZGgHSCsuguzzQi8qh2bBukzs/irIhI1G3/EdYvZdtRMpLlJSZfShksXIiaT9mOJRwGRIJdR/PPB91P31l+HFRDga7VDz66KP46aef8Pjjj+O6667r8fqBQECd2tTX1yObouEwwkEWJrUbWVTs9mTpVySFenZqHEAKag7YAVqaAU/V7gu1IvjTZ7AlXceO+/waUddE+HfcHy6LTS+FW5sx9+JjzD4MyqJky4mkS0JdotOqMvqWaqiTUWe3DftJ9zidHQqqDhRRlzvWXszGbBfsvv/+e1xyySV477334EnwTXfGjBmYPn06sk7T4PJ4EA6HEc3SpzbKnEgohPzScuPCXSY6XNSvhrtlLTQ9/d6jroICRDz2fMFWmydaG+COhODxei3X7zZ+rVVsTVRm1l5xR6P1JVxOJA1JT6vGrUPd7+ZnEmrBJz+zDSuWqu4pdm5/qG/yuyfnV911GoLLPodT2CrYRSIRNf0qIW3rrbdO+HbTpk3D1KlTO4zYDRkyBEaSHxZpRF5UWgLdXwJXvrG/2JT5ULdu5XJDFz+n1eHCgK4VmkuD5vXZs16VBDu3NzY9bXF1P3+L1nW1GbkvT34RSodtlZH7IntKd1pVQl0iLfjktVBGBKM2+B3rSnjV8o59YGVGLdDcZajz9B0OzW+/D7u2CnYNDQ1YsGABFi1ahLPPPltdFo1G1Q+2jN793//9H/bff//Nbuf3+9XJDC63F5rPZ7mpIepZNBI2fBdjqh0u4o8q4iuB5k/ng4MOdyC7yxNyTfzIWs1nH6q+sZngLypFQZ+B8BakP2JLBoyihYJqdExzG1dSRO4/1VBXNnL7rEwTW4EejapQp6ZZIxs3tOhxo5x9/jYb7qJydd1wzVJEg/YcnbRVsCspKcEXX3zR4bL77rsPb7/9Np599lmMGDECVnohLx44HFpZGbSicrjyS80+JEpCXfUK2EY0DITT+BQt4VVu77LfC5gdffb3zC0LkfVOWxz0h4zdH2Uu1L1/zWlY9312p/cSnVZtI6HOjsElVXqwFS3fzoMrrxjY8NfWQxvX37v8hXD58lWw07x+aCF7jk6aHuwaGxvxww8/tJ9funSpqklXUVGBoUOHqmnUFStWYPbs2XC5XKpmXby+ffsiLy9vs8utEu7kl0bKSXAtjH1ko/ZUJkXXVkJzp9HXVtehRVrUVCb6lxreIzcXyRuojI7U/ZjZXYjcZWtNslkm26FOfr58xWU5FdSSFolAb22GJpvONkw/R+M2SqilKA5gerCTqdX99tuv/XzbWrgpU6Zg1qxZqmhxZWWliUdIZHFuX3phTEbs9GBs3Z7NQq1dyJvtbn+7Q73hZ0K4tQXvTONInVU/6MUv4dhr+iz4y3rBaLk2+pYOzeeHq23tnAP/zUwPdvvuu2+365gk3HXn6quvViciu4qEw8m/eURCcMcHuzRH7BBxyaLC1O+DetS6bhVCzY0ZKVgbaU2t4Ttlp8iwBO/4wJXI5gQzyHEm/nfTEQ2xbJcdmB7siKy+gSIcNO4TnbyotjY2wONLcgogEoJLj33YlDqJbk6fdiglYr3pdF2FupbVVXDnp7/LLhxXriJbBXBzjfwMBdavRfWn7yCUYBmRNvEBKNGiwelK9me+qXYFmqork/559OYVQHNQpxon4rND1AlZF+nx+hANh6CnUo4kQYHmJrV2tKiit6p5mCg9FML6SGy/gzsshTXd6Y3YhULQopG29cS2JAE51FiH0Iql0Cw4QiJv9vImusWBx8Cbn94u1mBjPRbfd4X6Ohstq3L1Q8J7V5+S9lo5V7If2lLQsrY26dHgtp/HvjvsltSIopTY4S5sa2OwI+qE2+tFr6FboKCsvH33VMbpQNO6NSpEyuMlddMN60KisoohFEBEfZHqcejQwwFEAy3whUK2bAouBYrDwRYEmhrgammy7LSyv7gM/pLypBq1d8bYIjzWY8YIbKilKe1QJxsaXB6fwcef+miwr6gUFVuNSernkRsBrY/BjqgLErYCTY2GPoZnQ4iSEbtkyBb9NRu+Lu49AFqSwbDjnemINqxCfVMDvFLo1650ec58GL7fEfD3HgArkvp16Ya6XJPqOrd0xa+TG3vGdBWCUnm+G1b8BKuOBvPn0ZkY7Ig67RHrRSSd2nBJkMdK+lOwy6WmYWWgzi0dI9LZ2aVuGlVr9aTYqZ6t/riZJMVHNzxfnvwC+IpZNzLX17mlS1p0tdE8npQ6LmSzS0OmRoPJ/mz4Ck5kPJmCzdb0T6pTG3nu2PK4ludvS/sYWmS9XmEZmspHAI3rYTvyDxGNqFFWLux2jkytc0vXiP1/h/zyPrAyjr6lL9raFBsZluUpQfvuAOYrIJEd15J4fPAO2AKhqsxM86jRv6Y69Bm5NVwFZbZcYxdZsxzuaDTtjQl2I+urAg2ZD+O+ohLT66KZUei3s+4eeWW9OQqcA0IrfuxQpFjLK5ApFdiN/Y6YiNQbbvmR5wPh9D9V6sEAVj16mRr0Khs0HO5i44upZpqMroa8UFXlc83LJ+1myP2WbbEdJj/9menhLt11bumuXdO1DT2dyZH0uJkZ/9bj4CmqaD+v5RfBbcMPigx2RDal3my8GdjBuqFAuNydaoNn5ZHKbshx58puURlNk+BV99PXhj2G3HfDimUoGWxeD+4OyyFcrqyuWYs9poa84jI1zUnO5xs8Cp6KjRuv7PpayGBHRGTDUC+jaRK8ohkYtd10ardtFDDQsA7BpuR2bGf6WNoM2X0iSgaPzPoxcO1aLtFsG+biMdgZWQE/2CJtAWI9OLP9SZPS5/I4so8gOSfcGTGaFr9e7+UTx8MqPPmFXOdGlAAGO6OEWhC642BwAN++9JKBiI49muGOcoq3oAilw0dh/bJvYRWFA4bCW1hi9mEQ2QKDHVEXtPqVsRFXN/uwUu5wud3Y/5bn8MuHr1mmD21Br36qThtRV3osT6XrsZk02RATbEXUFWvDKF87DYOdUbz58J7/OppeuwdaYTlcBZxCsI1ICO55fzf7KIhMUzZ8axT2HWRon+RkcJ0bdSe8ajmisvSpG7quY9VdpyG4zNzyOdnAYGfg+hfNlx9bpyUjPhz1ISIbYaN3sstInYQ6NfIW6brtnPTC7i7UefoOh+ZPrteuVTHYERERkW1JqGv5dh5cecUbWiR2cp1QoP3rvhc+AdeGNZsSDMM1SxENBh1Tr5DBjoiIiOwrElHFybWS3nD5O5+yj8atpZNQ55IZtQ3BTvP6oYWcU7mCwY6IiIhsT/P54epqOtUho3GJsH8lPiIiIiJSGOyIiIiIHILBjoiIiMghuMaOqDvZaAXH1mVERJQhDHZE3chGoWK2LiMiokxhsMsCPRzqsNWaLE7XoRX3h6uhOisPx9ZlRESUKQx2RnJ5oPnyVLDTW5vMPhpKQnjkgYi2NsJT1geax2fMg7B1GRERZRiDnYGk6KF/ix0Bd74KeGQfejCA1h8XQdfc0DiSRkRENsFgZxCpZh2q/gnR+rWArxBa0G/2IVESpK9gpGk9PHnsl0lERPbBcidEXYmEoOtRs4+CiIgoYRyxM4jmcsHbfwtE6ioBfxG0DX3pyA50BFf8YPZBEBERJY3BzuBwJye0/Um2mUYnIiKyIwY7IjsXQmZxYyIiisNgR2QBqZY9YXFjIqLkRFuboEcjsTO6Dj0YhJMw2BGZxeVRwUwVKE4RixsTESUntOJHaN6O9Um1vALA7YxI5Iy/BZEdaVpstE2CWbJY3JiIKKW10/6tx8FTVNHh+1p+Edz5hWndt1XW0jPYEZlJplA52kZElDJdplNDQejBVkRd7s6vE9fW0zd4FDwVAzp8P9VQJqFOX/tz7EzFMEuEO9OD3bvvvouZM2di4cKFqKqqwpw5czB58uQur//cc8/h/vvvx+LFixEIBLD99tvj6quvxsSJE7N63ERERGR+qFt112kILvs8iVtpGQtg+voq6KHAhnu1BtOjZVNTE8aMGYN777034SB44IEH4tVXX1VhcL/99sNhhx2GRYsWGX6sREREZB16oDmpUOfpOxyavyC9x5RROnWKQG9tQLRyEaK/fAFErLEJw/QRu0mTJqlTou64444O52+44Qa88MILeOmll7DTTjsZcISUy/RwEFHNZXy9Q0/Hhbxm0UOtiAZbYDfqRTYUUJ/eiSg39fnrLLiLe3X5GhGuWYpoMAgtjSoC0boqILxxWhd6BAi1AEW9U1sv7cRgl65oNIqGhgZUVHRcCBlPpmzl1Ka+vj5LR0e2Jes0vHlAOAQ9smFbvEEigRZ4yvtaItzV3jIFdiafxksOPNXswyAiE2jePLi66PIkwU7z+qGFUqwZ2rZJItwam3qVQKdGDFvVB0pNtaDULTEda/tgd8stt6CxsRFHH310l9eZMWMGpk+fntXjIntzeX3IG7GjClxGrpzQgwG0/rgo9qIDk3h88PYdjFDtL7C7cO0yNTWD4jKzD4WIHEgPBdTUK3yF6q1Bzkdeu0l9z7313kBesdmHaO9g9+STT6rAJlOxffvKG3Dnpk2bhqlTp3YYsRsyZEiWjpLsHO6ijXWGPkY00IJI03p48lLbZp8JMi1RfvAUoLUB2sgJaa8/MUO0tRm1Nx5j9mEQkdPpG6ZeC8oBjx+RN++E1dg22D311FM47bTT8Mwzz+CAAw7o9rp+v1+diBJe8+b1t+90Mpwawje3P61ac+LxweXLg9bFVIaVsb8vEWWVxxfbWbtueex82aDY8h0LsGWw+9e//oVTTz1VhbtDDz3U7MMhB/KU98tCWNARXPGDwY+Ri3TLBj0r1LgisoOEf4ezvGFKl5p54SAQCkBzb6yZ59n/7LQ2ZTgq2Mn6uB9+2PjmtnTpUlWjTjZDDB06VE2jrlixArNnz26ffp0yZQruvPNO7LbbbqiurlaX5+fno7S01LS/BzmP0W/CVg0fdheu+Rl6oAlWJAu7PX24DISoO+FVyxPenR+VNbVZDHXh/1wKvfpbdT5+W50O67yemx7sFixYoGrRtWlbCyfhbdasWapocWVlZfv3H3zwQYTDYZx11lnq1Kbt+kSU2yE8GmqBq8WawS4SbIW71yCO3BF184FXQp3qFJFARQI9EBcADS5NhVBLe6jroGII0FKvltRYYczO9GC37777dlt7atOwNnfu3CwcFRHZVXhVJSJ1NbAUHeqYpNG4p//IlHtSEuUCCXUt386DS3aY9pCU4tdCa120EzOC+6iboRWUQV+3AmheB81XAGimRyrFGkdBRJQhrsJStQnESuSTfLRxHfTWZiBijSKmRJYVkY4OzdBKesPl734zVzSuB6zmzWItUI9fbbKD2wP4C+De7gC4LFJRgMGOyI4dLiIhZO+zqb3IG0FXRUrNouoU+nyxRddElBDN5+85LJm0YUGXNXXxk40S8iyCwY7Ijh0uIhurp0tY0NxeY46PiIg2t64KemsjYMEPawx2RDbscKGHA4h89qTaXi9fp9WOTNa4yvQg+6wSESVWySAaAoIbNmnllUBzm98Ssg2DHZENO1yoYBcMQdNc8C54LCPHoRf0ArbaKyP3RURkd/pmJak2fvh1bb033L1ipYsk1EmfWqtgsCOyY4cL+XRYMRT62spY4+kMrDPRmtdAj1hvWoGIKNuidVVAeOPGDKH6UG8gQc6VVwIrYrAjsmWHCx3RCX9E4LtPEO0zGO50dmOFg3B/9GDqtycichBdXpPDrbEP3dIbtu3yUFywM7pmXhoY7IhMlkqxWrXLUkbpZKu9bJxIZ/ME19YREXUgoS5auQjwFbYvf46G4kbwslgzL1kMdkRERETxZKQu1AIUlLevn9NcXkuWN9kUgx0RERFRZzw+aBvqYlqhXVgiGOyIiIjI9qKtTdCjXdQD1XXowdzYHMZgR0RERLYXWvFjj23FpF+zWpvsYM7+21lFONih8wjZhMudXuFfIiIyVHxVAf/W4+Apquj2+lp+Edz5hXAyBjsjuTyArwAISuPv3BgCdpRAE/SygQx3RERZJLU59VAQerAV0R52n8p12vgGj4KnYkDGqxDYDYOdkdw+uLb4lbQJMPtIKFnygrJ0PtDVeg0LkV6x0XRqKkkdu0weEBFRGqFu1V2nIbjs8xRureVEcOsJg52Bw8P62p/NPgxKkR5sht68Dpq/CJYln2RlG344BD2SRgCNa2Itn5LtsvOLiJxHujukEuo8fYdDS6dQu4Mw2BF1JRKCrkctG3Skx2zeiB3hKe+b1kb8aKgF0c//pQoed7mjjDJIT7HbyOY4OkFO1uevs+Au7tXtdeR3KVyzFNFgMCOtFTtMB8uH3lAAett0cDiF9o8mYLAziHrBrRhm9mFQSnTo1d/CDiTcRRvr0rqPaCiASDC0sUWOnpnQkVU2OuZw9VJoGVq87fLlw9Mn1oicyGlUP9YNNeS67cLj9UMLhTIa6sL/ubT9fcBuH3cZ7AzET9P2lKnRFKN/tuTFTPUyzBAZnUTTasBjw5eFuAXUln2+NmzCiQZbkKlXhkiwFe5eg/haQ5RJoZbuP9yXD44tg7EoG76CE5HwlPfLSAjVQy22+0Rqx9E7T3l/NToaql2W/p3pQKSuRtXk8vQf6fjyDURmcR91M1yF5RunZ9cuV1UuMjntm2kMdkQ2lomRGj1+fZ6vGLqVN4x0Qdes/1ImI6y+vsMyso5RRlejjeugt0opJe66N1I6H544kuoAHn97r1j1oVFG3qOZm/Y1QlKvhsuXL8eQIVzPQeRU0dofoTXUwG704MYpaT0cAizan1utBcrA/ah1RT5fbHE3GSa8armaOk8V10CS5YPdsGHDUFFRgTFjxmDs2LHtp2AwiLvuuguPPfaYcUdKRMbz+oEeFitb08aRET3QhKj8PSxIPvlbeQqHOoZnCXWqAG6K5YTUGsiKgUAWnnOODlJKwW7p0qVYtGgRFi9erP7897//jZUrV6rvlZSUJHNXOUEtRidbPm85+9zJNIPHmqGoW9GNTftqb5kCq/IN2x69/nQHw51NSKhr+XYeXHnFyVUUilsDqQdastK9Rlpl+QZtZfjjkANH7OQ0efLk9svmzZuHKVOm4JprrjHi+GxLBYOGWrMPg1Ihz13zOiBk7Z2WFMfjg7fvYIRqf4GVBX/+CnqoFZotR0VzUCSi1jFqJb3h8ucnvylpbTVavvkQ2SAh0l0+AC5pcp/obTjK50hprzjefffdceedd+KKK67AH/7wh8wcFZEV6BFJ6GYfBSVARsDKD54CtDZAGznBchXoZeSn5obfm30YlCLN54cryZ8p34CRiFYMhC6vI0aSmms1lSqASseGnuq+pTvKZ3g5KL7mZjfYyVo6n2/zIeWtttoKX331VfpH4yBS7FUvlo4AZDsReeH6weyjoCSp6U2PDy5fnuVGxHJ0Yt/etSUzEDCSHeVLlV5UilDNz2hd8rGho3xqM0nz+pTXHCYiGkh9s0rmfsZ05EywKyoqwnbbbYeddtpJbZqQPwcOHIi7774bBxxwgHFHaVPtlfzJVnSNb8NEViFhItK4ztAw0ZV0dsSqmmdZWs7hKukFr78wNsuQ6Chf7XJEG+rQ+t3HcHl7DqCqdVftUoRWL09qVDBZ0q+6jeb2IhuidVVAeONzla3nzRLB7u2338Znn32mTk888QSmTZuG1tbYP8DBBx+MK6+8EjvuuKM6jRo1yqhjthVVjsDooXjKKF3qgoWDsZISZh8MUQ6T30EJdbKBQdXsM+MYIiG4kgwYEupW//18hCqdN5PlKumNitNuUSPjRogPVZrXl52RunBrrIvPhvfqTYNd+2Y63YHBbs8991SnNtFoFEuWLFG7ZOU0f/58PPTQQ6itrUXEhE9XVgx1es03XIRvN1JAds3Pqr2WbvFClES5soFB6sFp/uy3cZJQJ/UHkyHBwImhTkTrV2P1bSfDSfRQANHKRYCvUO1+1sNxrRrXr4TeWr/xvA1qR6a1ecLlcmHbbbdVp2OPPbb98poa+xU4NYSkfwl1bo90azf7aCiZYOd2xf7kQl4iS5BQ587LbleUtulUPckpWVX7boN+lz4DzaDRrXRE61Yh2tqU8OYO6Ziy/tmZiKyrRjZ4h2yLaCQMvbWxhwPToQeDGXivbgEKylWtyQ7PdyQEBJs6Xj+vBJrb+NHEVBnSh6dfv35G3K19ubxZqWNEmaFaPrW1qAoHkn5RT5rLzZ8PIovJ2HSqxwfNcrUhdbXkJNKwNuEd5DIdWbjfiUCwFXk77pX0KGYyImurEF5bjfCKH5LaCKIGUdJ9rnz5HZbguLc/GFpxRYerSahrbzNmQdZvsEhkBpfssPQC0p4q0MMnxnQFmqCXDWS4yxEymhPNwLogmT6S8EHGyMR0qmfASITXrLBkQWoZ5ZJQV7T3MXDJxouerh+NIlj5FQLff4LImirV0s7IY3PlFSJvm90S3qghpVvc+T3/PZLmz4crz14NGBjsiDrj8sLVaxi0rfeElsCLXsrkTX7p/Ni0L+WETNaz8/QdjpIDT83Y/VHnkp1OVZs+aisRrl8DvaXJsmvuXUVlcBeVJ1yWJVreD0HpptHabHifYldhKXwjxiR8bCy2vBGDHVFX3F7oTeugGbj5RQ82Q29eB82f3bVDlF0ybSPtxKTzRCaFa5dBDzQDxWUZvV/qSEJdMiU+VLDzeNSoU6IjYmaQXafJ1NqTYsaq961UDrDYsZGFgt27776LmTNnYuHChaiqqsKcOXM6tCzrzNy5czF16lRVFHnIkCG4/PLLcfLJztqlQybXH3T7oEeytPspElLrV6w3WUOZIlNx0iM2U/Wxoq3NqL3xGOSC2AaGYGwK2+XO3uPGbYBIh4Q6d1EpnMKQ6U5yVrBramrCmDFjcOqpp+LII4/s8fpLly7FoYceijPOOEPV0nvrrbdw2mmnYcCAAZg4cWJWjpmcTyuqAEJ5QMUQaLIF3hA69OpvDbpvsmK4y1RHDFM6MZgU6lbddZpqlUVENgl2kyZNUqdEPfDAAxgxYgRuvfVWdV5Krbz//vu4/fbbGewo8yN3Lpdhazdy5c2Z7MkKP596a5PpoU6m0K28A5LIcsEuWfPmzdusfZkEuvPPP9+0YyJyClkQHc3QFFRWye7QUABa2Pi1P7nAzDZeXfUN7fPXWXAX98r6MUios+KuViLHBLvq6urN6uTJ+fr6erS0tCA/f/OpjkAgoE5t5LpE1IlQCFG9AbYj2w6l5VRrI1wS8Cy6WN0YemZH16SPaMNatHz5DvRWcxqytx9K3M5LV16xoT1Kuy0tk3RZGavug6VcYLtgl4oZM2Zg+vTpZh8GkeV5+w+zdEX1rsjmk+gaDaHGdbEC0zkk+Mu3iNbVZuz+JMTU3nkqQj9/CSvJRt/QTUXqahFtaUy4O0O8tLshEOVKsOvfv/9mLcvkfElJSaejdWLatGlqF238iJ3spiWiWP0nWU8o4Ugae1uvSn7P5Nh1KSgtLYjaGnY7WPy6z8B3CxDMYOiRHahWC3VmrHOTkToJdeG1VQl3Z+isTpwZgZRym+2C3e67745XX321w2Vvvvmmurwrfr9fnYgsKxyELps1TGpH5vZ51EiNp9cgWy4UlxGVSO1S5CLvoJEZ7UUaX+aj7yVPW6LPqctfYMo6N/m5SqY7w6ZYi8169M2WLThv2tz0YNfY2IgffvihQzmTxYsXo6KiAkOHDlWjbStWrMDs2bPV96XMyT333IOLLrpIlUh5++238e9//xuvvPKKiX8LohRpbsCbD0jNvGjY1HZkqhyHgbuAjaRHnD9K1xVNwn0m67vF3VdkXZWhPUETpfvy4ek92LTHd1otulwVrasCwjbcHGa3YLdgwQLst99+7efbpkynTJmCWbNmqaLFlZWV7d+XUicS4i644ALceeedGDx4MB5++GGWOiFbkjdN19CdoJUNkGSV3I3Zjowy3KJsU9HmJmjeEMwWWVcLV3FFlkeTnTeSk8vUSF13oc7tjZW4cgDTg92+++7b7Y4jCXed3WbRokUGHxlRjFFrttS6MOk4ISMiTWuTvz3bkeUso1qUbdqHtmj/E+DOM/PnS0ew8mu0LvkYoaqlhjae7/TRuQHCcXTZNb/JB2ktWAitoBxOYXqwI7K0xlWAx5hRAvWyEmiEHtWhFaQ4zcN2ZDkp0y3KNh3ZCNcsRTQYVKHO7ClId2kfaFlqPN8ZboBwVqiLVi4Car7bfHQu0ATkO2O6ncGOqJM3Td3tAbJQ61Yr6SfvpEBR3ySnAdiOLNdlskXZpsFORpG1kPlTsNluPN8ZboBwED0ChFoAGZ3bdFo/vzQja5WtgMGOqDP+4tjGhqI+sc0NRpAVCI21G1uXJRHsrNDuyar0YACR1kZYkUvW8WRwM4IxPwfWW1vGxvOUUR5fhw9FajlYOLBxBDy8saGBHTHYEXVFRkS05AJXMnQwnGWU7Ob0ehFeswLa+jWwIplK9A7eGprU3EtTdP1q6BFjRtW4toxyhS6dVl66Fnrt93AKBjui7kSCho1fqE0ZsktLc3ONXJqkRIs7rxC+AVvAPWpPuHxFlgx1rUsXI1y9DHbAtWWUE8KBrkNd+eDNp2xtgMGOqDOyYyoSMHYdmwz/t64HPH7oRX1sWRjYSjylveDO88E9fEe48kpgNeHVy5Hv3x2IZLA8jdcHTy9j6rtxbRnlGu/x98Rej3Ud+trl6oO9GYWx08VgR9QJze2Fnl8eC19GkfsONcXWc6TQi5I2p6bOLVpk2dt3WMbXxFnx70lkWx5/7AO2zKbIRoqoNTYQJYvBjqibcGcktWBXk19Bc3b7UfYxiBGR0RjsiGxYCLmtuDEREVE8BjsiOxZCllDXvA7IdIFaWUgM+1FrYqR4rZFT50RENsBgR2TnQsiyNi+DYSb0xNmwtfLBcI87yuyjICIyDYMdkR0LIUdkGvaHzC0Y7rc19JrvYHvrfomNYjqkNRARUbIY7IisUAg5Gk6q2rku7ZXCwVj7J/kz2JLWIbgP+isQjWSkcK4ZpGJ8+MlzzD4MIiLTMdgR2bFeXjQCrKsEWuuhB5uhpVkuRWtrgl020Jb9EtUOYyIiYrAjsmW9PAl23jy4KgZB22oPaP40e2kGWxFdOj92v0REZFsMdkQ2rJenSwCTtXkSDJvWQUtzd6yM+unN66D5rdeKi4iIEsdgR2TTDgtw+6BHMtisPRJStfHs10CHiHJdz11ddOQKBjsim9KKKoBQHlAxBJovnalY3dieuEREBorWVQHhDNf0tDEGOyK7j9yl2Rs10/1LiYiyRb1+JRPq3N7Y66aDMdgRERGRremhALSyAbFKA13QgoXQCsrhdAx2REREZOtQF61cBNR81/NonJR1cngBcwY7IgeQTQ/p3Dad2xMRmUrqeIZaABmN8+Z1X+/SkwdNXvPaKgkkURjeLhjsiOyucZV6sUqZhLrmdbFWXEREduXxQfPldxnqIi9dC732ezids1cQEjmUJutI3J7Mf+plBwcicqJwoNtQJ/2ypW+2E3DEjsiu/MWxIsVFfQBv559SExKRadgfMnlkRESW5T3+ns1CXFTXY4Xa5Yz8L5zBGqFZxmBHZGeaBi0aTmudiB6R2wdV2QAWJyYix/P4ocWtxYuur4a27hdg02lc+cCs2S8m2e+IiShGpmMjgfSLC0t7sjU/A02roUdDmTo6IiLL02WNsawv9uXDNXgs4Ns4kieF313+AtgNgx2RjXvM6vnl6a+Lk2DndsX+5Bo7IspRWr+R0GSJS9v5NAq/m4nBjsjm4S5dugQ6G043EBFlfGmLy55hLp79/wZEREREpPBjOhE5i+xus2j/WyeMBhCRtTHYEZGj6LU/Idq0BlakFmP3Hm72YRCRgzHYEZEzCjZvEF3xOTSPD5Yk5ROK+9pypx0R2QODHRE5S8UwwGuxCvKy2bhuRayfpR42+2iIyMEY7IjIUWQ0LL74qFVqZekyihhknUAiMpZlVvLee++9GD58OPLy8rDbbrth/vz53V7/jjvuwDbbbIP8/HwMGTIEF1xwAVpb2cSciIiIcpclgt3TTz+NqVOn4qqrrsKnn36KMWPGYOLEiaitre30+k8++SQuueQSdf1vvvkGjzzyiLqPSy+9NOvHTkRERGQVlgh2t912G04//XSccsop2G677fDAAw+goKAA//jHPzq9/ocffogJEybguOOOU6N8Bx10EI499tgeR/mIiIiInMz0YBcMBrFw4UIccMAB7Ze5XC51ft68eZ3eZo899lC3aQtyP/30E1599VUccsghWTtuIiIiIqsxffPE6tWrEYlE0K9fvw6Xy/lvv+28ubmM1Mnt9txzT+i6jnA4jDPOOKPLqdhAIKBOberr6zP8tyAiIiIzSA7Qw0EgFIDucnd+pfDGDOB0pge7VMydOxc33HAD7rvvPrXR4ocffsB5552Ha6+9FldcccVm158xYwamT59uyrESERGRMdTgzn8uhV4dGwiKmH1AFmB6sOvduzfcbjdqamo6XC7n+/fv3+ltJLydeOKJOO2009T5HXfcEU1NTfjTn/6Eyy67TE3lxps2bZranBE/Yic7aYmIiMjGQi3toS4RWr+tAY/F6lw6Ldj5fD7ssssueOuttzB58mR1WTQaVefPPvvsTm/T3Ny8WXiTcNiW3jfl9/vViYiIiJzJfdTNcBWWd38lj79DpxonMj3YCRlNmzJlCsaNG4fx48erGnUyAie7ZMVJJ52EQYMGqSlVcdhhh6mdtDvttFP7VKyM4snlbQGPiIiIcoiENq+1ipPnbLA75phjsGrVKlx55ZWorq7G2LFj8frrr7dvqKisrOwwQnf55ZerxC1/rlixAn369FGh7vrrrzfxb0FERESZoEejiV7T4COxH0sEOyHTrl1NvcpmiXgej0cVJ5YTEREROUe0rgoIJ9ZJSg+x45Rlgx0RWUAogGigCXajh3KnlAGR40fqwq2x32k9klSw07SeS/NG5frRSMcBPymV4iAMdkQEuDTA4wXWVwPNa2E7cS/MejjEdTZENiahLlq5CPAVAj3sc9Dj69N1VcNug6i8vq37BfDlYzPefEBzRiRyxt+CiFKmPuV6C+HqNQwYOBpaZy96Fief2ts+g+uBRugSUq1YQLWTXftEtAkZqQu1AAXlPX9Iixut17r5vdf1KCCjdb58uAaPBXwdK2VovkK4/AVwAgY7IoJWVAH484D+28Aln5JtRg9unD6OPHuRdYuUlg+Ge9xRZh8FkT14fD1/0EyhdInWbyQ0f3HHyzYpoWZnDHZEtHHkzuWy5Quc7i2ANmAU9KrEC5WaQqaBZNQgv9TsIyEyeLdqyo9g8P1DhUE7vs4lisGOiDafsrAdHe4jroP+w4dAxTDLTanIVHH4yXPMPgyirO1WJfMw2BHRRo2rAI8NNx7oUWgtdepPeK1XpLSzjjhETt6tmpZgAHB7E9rlSptjsCPKcVLsW3d7gDDsT95wGKKITN+tmi7N7etxlyt1jsGOiABZSKy51dovXV5QbTmaEFR/OrsLJJFNdqumSx7DY7/XIitgsCOi2M6yaBCo+Q62JAVH1/wMNK2GHg3B0qT0SYYWoDt5ATjZfLcqmYbBjoigub3Q88vtO40pwc7tiv1p8b+DXrcCuox6ZOK+PHlwlQ3IyH0RkTMw2BFRe7izK10CnYWrxss6xnbBAHRvc2buOBSAXtKPI3dE1M66r4RERA4UXb8CWtPq9O5EBiXlPrz50CqGQrNYeRciMg+DHRFRFmn+Emjeju2MUqo12LI+tpBdd8J2ZjJDcms9rb3EgTZisCMiyiLNl5f+jkI9Cl12DAYtvlGELIvFhp2LwY6IiCiHpFxsOEuFg1VB73AgsSsner0cwmBHRESUY1ItNmx04WAJdeGXroVe+33St40GmqHJRqpO71hCYBC5gMGOiIgo16RabNjowsHhQEqhDqUDgPUrYzU5u+PNz/gO+rb+2lZpgcZgR0RElpapgs6pcHwpmSSKDbdNkeohA9fmxU2teo+/B/D4ezwmfe1yIBKEe8hOgK/762u+QrgyuIs8KiOEdSvU4+u9RsBlgTZoDHbdiEQiCIVCaQ11q+ULmg5tQ6LPZT6PBldPn6aInE7eGNO8C/VmJtNKFi/GnKlF/rrsADa68Xx3QaD3cOT6Dtd0pkhT5vH3PJoo760yghgNQes3Epq0R8xSUFdB983rgXU/xy447CagsDfMxmDXxZNVXV2Nurq6dO8IeiT26UHTWJLAhSiGV/jgkw4BREaRtUOBJliJWqS+QeiJszN3x+WD4R53FJxKwoqEOrUWLEPdOpImU3fFfTM6ymOJ8CsbIbIxRZoird/WPY7WbX4jLasjrLrsKm4LdaKr9X1ZxmDXibZQ17dvXxQUFHSsGp/0ziN5MXL1PO/vcFFdx8rqGlTVBzC0zJfyvylRl1wa4PEC66uB5rWwFPlkXz4YWPdLZu9X7k+mxfJL4fi1YCUDAW8Wm8LLoJZMscljR0MpTQdnI2SkGn7VaFOgBZrcPpGp1SSnSDMyWmf19wk97mdi9FGAvwRWwGDXyfRrW6jr1atXWvelXghCUfntzvlgJ/r27oWVK1ciHAW85i9DIAdRi5a9hXD1GgYMHG3JBuWuwWMR/fkToGJY2qM/8kYcfvIc5BSvDy5/YdYeTo+rFajX/Ai9h7Vbpk7jJhl+JdRF3pgJrPrJuClSh9JlJi7UvPmoZ//t4bLI6w6D3Sba1tTJSF061KchRDesgXH+OphEeD2e2I7zcBCeZPbXm8Ul9ZpscJykaEUVgD8P6L8NXFLCwVJ0RKu/je0m9Kb/phh7fSGjPyzo8jw1rkb0l8WWnsZtX3MJPaHF+1o4gEiKoS6lKVKH0OXf+fWrgfWdjLy7rROnrHMkFpP+G7oO1GV42sXmtGAEaG0AlswBQmmuX8yG0kHQdzqW4c5uI3cul+V2Mpq5q5NS5yrtj2hBWfJrp+KncQ1u+aY2NfznUujV36rzya7ySnpa1Q5TpAZRI3WdhbrCPkAPmzayicHOQk4562+oW1+POY8/aPahkFi/Qq2tgRTkJKKc5EphdFWmcaNuL/RAI7TWxg5LsTIu2Nwe6lIafcsrydmglpZ9pqqafoq/GK48BjvbOvnkk/HYY4+1n6+oqMCuu+6Km2++GaNHj467pgaUDQaCLYmvsZMXEE8AKOoLR2oNAHmNwK4nAR4Lv5BEQsAH95l9FJSBgqFWodZrWeyYyDhqDds7DwB1KxF98/asPa77qJvhKtwQNhKRw6NvaSsoh6t0IKyIwS4FBx98MB599NH2HbSXX345fvOb36CysrL9OvLLousbAl3bqUcbruPUXzTZii7/uTzQLFzyhKuXbK5xFeCx2MJuCXXN62I7WCm19WNSF9QCxV8TIs9z3crsPmZp/9iaviS6QjDUORODXQr8fj/69++vvpY/L7nkEuy1115YtWoV+vTpoy7/4osvcN5552HevHlqI8aRRxyO22behKKiovbdtxdecikenTUbbrcbp548pcOC6Nn/fAJTL7wYK37+UT1emyN+dzSKi4sxe9Yjmx3XsmU/Y4utt8VTT/wT99x3PxYs/BQ7bL8dHn/sUayvX48zzz4P3y75DnvtuQce+8fD7cf6yYIFuOyKq7Fo8Wdq88jYMaNx2y03YeeddlLfl+Oafu31ePSx2aipqUWvXhX43ZFH4K7bb1Xfv++Bv+OOu+7B8uW/oLS0FHtN2APPPP2koc8BUTz1QUoWL8tyJilNYbGykWq0LhyEHglB48aHrK0fswLPn/4FTdbpGUXXEV39M7B2GbSGWugtia9fls0hso6QnIXBLk2NjY14/PHHseWWW7aXR2lqasLEiROx+69+hfkfvIPaVatx+l/OwjnnTcWjj8TWz916+514bPbjeOTB+7HtqFG49Y47MeeFF7H/vvuo7//+qCNx3tS/4cWXXlFfi9raWrzy2ut449WXuj2mq6+5DrffejOGDhmCP/7pDBx/0skqDN5x2y0oyM/HMcefiCunX4v777lLXb+hoREnnXC8CmryQirHcuhvj8B3X3+hbvef555Xwe1fjz+G7bfbDtU11fjs8y/UbRcsXIjzLvgbZj/6CPbY/VdYu3Yt3vvgQ0P/zYk6lVcCRMNAwxpYjpSjWPMz0LQaeqAJ0TRHSqJmFevNtlBLyuvHLKF8MFz9toTb4DqDUbcHkcba2GaNYBLdkmTHb34ZtCTqA1qlHyp1jcEuBS+//HL7yJuEuAEDBqjLXBt24j355JNobW1Va/EKfTIN68Ldd9yG3x5xFG684Vr069cPd959Dy656G848ojJ6jYP3Hs3/u/N/7Y/Rn5+Po79w9GYNXt2e7B7/MmnMHToEOy7z97dHt9fp56HiQcdqL4+9+yzcNyJU/DfN17FhD12V5fJ6KCEyjb777dvh9s/eP+9KO8zAO+8+x5+c+ghqFy+HP379cMBv94fXq9XHcP4XXdV162sXI7CwkL85tBJKgQOGzYUO+00NiP/zkTJ0GSxekGFNdtsya5KKZ4srxEyRZduod24ThYdvnawpNePmSi+f2k2pjtVrbzivonvwJXjq/kxVsZlbWWsXl+COMpnfQx2Kdhvv/1w//33q6/XrVuH++67D5MmTcL8+fMxbNgwfPPNNxgzZowKPNhQyFBCVTQaxZLvvkdeXh6qqqqx2/hYOBIejwfjdt65w3Ts6aeegvF77IUVK1Zg0KBBKoxNOfGEHl8oRu+4Q/vX/frFNmLsuMP2HS6rXbWq/XxNTQ0uv2q6CnK1tavUNHFzc7MKdOL3vztSBdGR22ynAuMhB0/EYb85VB3zgQf8GsOGDsXIbbbHwQcdqL5/xOTfpl0H0DIiIePX3LFeXkbDnSXJ77XsnMtUAeVgs1TJjN21bPZxbIkW3Z5FceP6l2ZLsrXyolL3UdbkpTLKV1CW0m5hyg4GuxRIYJOp1zYPP/ywWlv20EMP4brrrsvY48jI15jRO2L240/ioAN/ja++/hovv/Bcj7fzysjABm2BQUba4i+TkNnm5D+ejjVr1uKOW2eqkCZr+vbYez8EN/yyDxkyGN9++Rn++9bbePOtt3HWuefjltvuwNy3/k+N0i2c/yHmvvMu/u/Nt3DVNddi+nXXY/6H76GszMB1JdmSjd2xrJeXEepDURbfSJOi69Dyi2Mjdf23guZNr4CyJvUgrdZ71AAJtbqi7I/yWaQnKnWOwS4D5A1ZpmFbWmLrXrbddlvMmjVLTdOqqVjJBx/OU9fZZuutVAgcMKA/Pp7/Cfbea0/1/XA4jIWLFmHnsR2nMf946sm48657sWLlSjUVKiEr0z748CPce9cdOGTSweq8bIJYvXp1h+vI1LCM0snprDP+jG13HIsvvvxSbbCQkTs5NjlddcWlahr37f/NbZ9mth2XV4UtVccuG1gvLzOh7tMngfos70RMkpZfDvTdMu3K/VIfbeMZPcOja3pKvUeNEOumYPHRWBtLZpRP9aRta6sWCraPGJtOtTMKGnPX+iZ/Swuu8ugMg10KAoGAKnPSNhV7zz33qE0Uhx12mLrs+OOPx1VXXaVq3l112cVYtXoNzr3grzjx+OPU+rq2tW83zbwVW205EqO22Qa33XkX6urWb/ZYx/3hGFx48aV4+JFH1U5WI8gxPP7kvzBul51R31CPiy65TAW5NrNm/1NNz+62665qilWuK9+X0b2XX3kVPy1dhr33nIDy8nK8+vrrajRwm623hq13WO50rPGjP6yXlznyXFk81Ckt64Dqb2IfHtIRbN74V1/xJdC6+WtHevcfgB5shiYfcNJdD5iOuPWDWtxMRDalVH/QJgEgaZo7Nn1rxd81OS4tc5FGb1oLPdjUcdQ6bI/1rJYJdvfeey9mzpypApOsT7v77rsxfvz4Lq9fV1eHyy67DM8995zaiSlr2+644w4ccsghhh/r66+/rjZMCJmKHDVqFJ555hnsu29sE4KEnzfeeEOVOxk/YZ8O5U7a/PWC81BVXY2T//gnNZJ3yskn4YjDf4v16zu+QMvo3u+OmKx2w04+PBYcM+3hv9+PP595NnbZbQ8MGTwY1187HRdeMq39+2WlpSqE/vXCS1TAk/V6L855Vu0ClunWOc+/oMqhyIaRrbbcEk/+8zFsv/12sDM1LWrwCJqeibV8XJ+3uQlnAlYb3QkFgXmxdbn4uvtd7YnQIhunzyLPXmRMGZCyQfAcPh0ur3l9QaVunZmTfnrjGrWLOaXWEQaNIplF2vRp+aVwDd3J9Cn6zmi+woz15NWloLiEutU/dgxz8etZLVxTUdMt0E366aefxkknnYQHHngAu+22mwpoEpSWLFmCvn0378IQDAYxYcIE9b1LL71UbSz4+eefVciQUNiT+vp6FZgkRJWUlHT4noSTpUuXYsSIEWqTQzrU9Ihsnki080QXDph4CLbbbtv2unF21doawLKfKzG8zIM8L7fM65Eg8O6d6d2JjKhwfV7Hf8u9z4NmsWltPRIBFjwGNGemFIuMiod/XAy9pQlGSrqPaKaFAwg9cXbsWKY8lNXNE+rNfe0vQEMtkOpml7wSeMb8xj6bPmyzqWZzmewPrctzv64SqFkCFFYALt/GsP7RA7GvfzsTLtmFnyXd5RZLjtjddtttOP3003HKKaeo8xLwXnnlFfzjH/9QxX83JZfLKN2HH37Yvilg+PDhcBqZ5pVNCXKSNXDkMJlYy8f1efYgwXvkvkAkAPikVFJ6QVyLBOCWdoXSk3To3mokJWMiQURei80utIUqK1BjENlsyyZDHvJ4vny4dzwU8Ccf7uQDhpNCXaYDlC245DmMfbjRbfL52fRgJ6NvCxcuxLRpG6f+ZGrygAMOUF0bOvPiiy9i9913x1lnnYUXXnhBdVA47rjjcPHFF6suDk6x8/jdsW5dHW684Tpss41916yRAWv5uD6va7KZwPyJiI60DeEu3Ap4ZC1QmsFO1+FyeaDrEWh6FFoG14Oqf7nywcC6X2AZFcOgr6/OfrvFtulUfz5cUgCbcoeuA7LkQZbJuDb83BlUWshxwU52X8q6rbZNBW3k/Lffdl5x/KeffsLbb7+tNim8+uqr+OGHH3DmmWeqdliyaaGzzQ5yih/StIOl39u44joZupbPYrHFWhpWWW+NnZC6ZnnlwPBd0+9lG2qB9uUc9ebj3nEitNLYmt+MkNA4eCyiP3+iAlWm1i2ldig69HUrVJ9dbUNN0KzLK7Hc1D4ZS5dQ98ksoM5CH27sFOxSXV8i6+sefPBBNUK3yy67qCK+svmis2A3Y8YMTJ8+3ZRjJbJNEWU7b8SIH6GTxc4WXNyt5BVB8xVDS6LSf2faJiTV85VXnNHRJFlDpfnzYsfoNbkosEyFSg9gf0HK06HpcuJ0KvVA1ux2F+oKelt6+Yvpwa53794qnEn3g3hyvn//ztuWyI5UWVsXP+0qteNkR61M7fp8Hf/BZZp36tSpHUbshgwZkvG/C5EpMjUl65RCycN2UV0erEiT8JxmqMsqs+uVxdco43QomWH8aUBe4cYPkDIjID2pLfw6aXqwkxAmI25vvfUWJk+e3D4iJ+fPPrvzhbuyI1b6scr12vqzfvfddyrwbRrqhHRSkBORYxhRRNkpGzHcPrh86XV2yHlWq1eW4RplRAlze9un4tUUrSzzsOqMwAaW+E2R0bQpU6Zg3LhxqnadlDuRrg1tu2SlFIqUNJEpVfGXv/xFFQWWOnHnnHMOvv/+e9xwww0499xzTf6bENmwiDI3YpDF65VlskYZUVLCAeihtjW7euIt2HI92B1zzDFYtWoVrrzySjWdOnbsWFUEuG1DRWVlZfvInJBpVCkAfMEFF2D06NEq9EnIk12xRLkiU0WUuRHD/lLqjtANrbQftJKOG9rMlHMlNsha3WKCcS38hNR2lFFti7JEsBMy7drV1OvcuXM3u0zKnXz00UdZODIiIgurr4kVaM40Tx5cJZ2vcyZyND3ug5IseSks3/x3w8IbaiwT7IjIQTtss80m9aUyRrrZxK+NbKzN/GN4/Ijml1n6DYzIcCUyet3xA44W//tnQQx21O7e+x/ALbfdgerqGowZvSPuuuNWjN91V7MPi7KJa+3sJ78c8Es3i0zRY63PrFw2hiiLNIsHuU3Z62jJME//+1n89cJLcOXll2Lhxx9i9OgdcfChh6O21oCRALLmDlsnsHh9KUN4pNZc5k6x9UP8zE9kV/ztJeX2O+/CaX88BadMOUmdf+Deu/Hqa6/jH7Nm45KL/mb24ZFddtiaxSb1pYiIjMZgR7F+vZ8u6hDgVL/e/ffHRx99bOqxkb122JrFLvWlDFsXmcnNE6pHZqhjNw8isg0GO6PfbGSdiszPZ3sUQdrgJPiYXfXrlbZt3y5ZYtABElFGzH/YuGntkXsac99EZBgGOyPJp+iXLjLnsQ+/NbZWhoicR0ZXy4YAdcuNe4zm1bHXMKJcqwWpw9YY7KjLfr2ycaL/JqN4RGSRdZG7TgGqvgaK+wHeDE6jS2/WD+/P3P0RWZzetBZ6sGnjUg6ZabMxBjujP1UfdrNpU7FJ9evdeSe89b+5mHz4bzf26/3f/3DWX84w8CCJKGVqXaSnQy/LjC0hIcqhkTpdQt3qHzcGuvi6mC7rdpjoCoOdgdQaN1U6wIRgl6QLzjsXJ//xdIzbeWeM33Uc7rj7HjQ1NeOUKSeafWhE1C09s2GMuY5yjR6JhbrCCsDli41at5FNWTbDYEfKMUcfhVWrV+Gqa65VBYrHjhmN115+frMNFURkMVJMOJN15+Lf1Ihyicunajnq1h6H6RGDHbU7+8y/qBMRWb8Svu7Ji80IqOmjcObuPH4aKhzsuKjcJHar/E82o0uJn3CsdJBLs32LQgY7IiIbcpX0V71cM167L9QCfDkn9nXTKliBLuWbZJqMKMN0CXWfzALqfoFTMNgREdmUy5uX8fuMxo+OhcPQw60wnYygFJRx5I4yLxLsOtTZtEUhgx0REXWutcHk0g860Fqvppz1oj7QDAiyRO3GnwbkFdq+RSGDHRERdU7KqfgKzHt8eYMNNcfCZS62i6OM0zddMxq/C3xD6SC7tyhksCMios7J2jaPeVNR6g1W7fjN4OYQyln6poWIN90FHg5AD0l5Ex3Q7fszx2BHREREuVeIWMhu2DYtdUCwceN5VYeWBYqJiIiIrF+IeNMRuz7DAW/hxvOePEM2KBmNwY6IiGzBjJp63Inr3ELEokMx4uIB0KSEkM2fewY7IiKyvsZVagQl21hDzyGhX++kELHYpBixXcNcPAY7IiKybL9tXXbmyjKoaMic9eysoWeLTRGqHl2OFSLuCoMd4d333sctt96OhYsWoaqqGs898xQmH/5bsw+LiAjIK4nVE2tYY2oNPaSwO5hhMEsjdZEgdAng3ZUnCXdTiNjGxYg7w2BHaGpqwujRO+KUk0/C744+1uzDISJqp7m90AsqYtNoZtXQa6hOaRqY07jZoUKd7HaVXazooqBw/JTrr/4E+PI33NjexYg7w2BHmHTwRHUiIrJquDODLmEu0pj6NDCncY3fKKPH7Xb1F3U96hYf7Hz5qhBx7HHsXYy4Mwx2BlI/MMEWQH6ps/1BwJuv1qcQEVG2p4HZCs3oNXOdcnm7LKjdYferrsfen2Nn4DQMdkYKtSAwY4IpD+2/bJ65rYCIiHJ1Gpit0IxfMxcvGgJcnsSnUhtWxUbp2h/Uvl0mOsNgR0RElMFpYLZCy8KauU15vN0HOz0unHcWuP2F0FzmTPlnGoOdkbz58E/7wLSpWCIiIlsViU50zdymtMLEQ/iwXQB/ccebdzONazcMdgZSa9xk540KdlzvRkQ2I4VcU1nrlGnypmvj19BsdMzIxgYNWfum+q0aPb0sU6siwbClRkijPfysRuI2T7h9cPniWoc5DIMdobGxET/88GP7+aXLfsbixZ+hoqICQ4cOMfXYiMhE8x+GJZQOgr7TsfYMd1nqmGF0aRUJpyrUyRSpjKYZTcKwy5VYqPv0SaB+pfHHZBMMdoQFCz/F/gce3H7+rxderP6ccuIJePSRB008MiLKOpn6KhsC1C2HZaxfERvFsUkBWVM6ZmSjtErbFKkESJfBz4XLldjUqvxcJBPqCpxTiLgrDHaEfffZG9Fgs9mHQURWCSW7TgGqvgaK+wFeE98EJax8cB9sKWsdM1LvkJFyCHT5oHllY4PFTDiz427XeA4sRNwVBjsiIupI3vhkxMntbS/kagY7VxjLWseMNDpkqFFFOcaErgzr6+bnVXdgIeKuMNgRERHZuGNGyh0yIm5okVoDj4zMwGBHRERkZ6lM+wYbVVFfvXwI4HIbUwiYTGGZBnb33nsvhg8fjry8POy2226YP39+Qrd76qmn1JqQyZMnG36MRERElhwZlClV6TaU6EmuLwFN1p2tr07sJMGxp0LAZDpLjNg9/fTTmDp1Kh544AEV6u644w5MnDgRS5YsQd++fbu83bJly/C3v/0Ne+21V1aPl4iIyN7Tvj7oas1ZkovnkikEnG0desDacZGgg4LdbbfdhtNPPx2nnHKKOi8B75VXXsE//vEPXHLJJZ3eJhKJ4Pjjj8f06dPx3nvvoa6uLstHTUREWS2WbMbj2rw4cncsG9BStWkP2E05rCesZYNdMBjEwoULMW3atPbLXC4XDjjgAMybN6/L211zzTVqNO+Pf/yjCnbdCQQC6tSmvr4+Q0dPRERZYVbZEzsXR7aptk4SCQkHu+8BuykH9YS1bLBbvXq1Gn3r169fh8vl/Lffftvpbd5//3088sgjWLx4cUKPMWPGDDWyR0Q9NN42ujSDUeS4c+TTeE6RN+DSQbECxWaxWXFku0urk0QnPWA35aSesJYNdslqaGjAiSeeiIceegi9e/dO6DYyGihr+OJH7IYMYassog6hrnkt4LZg0dGE6EAkrIq0Qktwhx/Zo1jyTscmPnpjVHHkVKeBHTyNa5hkO0nEd5TwFTm6B6xtgp2EM7fbjZqamg6Xy/n+/ftvdv0ff/xRbZo47LDD2i+LRmMNlj0ej9pwMXLkyA638fv96kREXZDK9aFWoGxgbJTEjkoHqFDn9E/juUYFIxNGy/RMTANzGte4ThI52FHCNsHO5/Nhl112wVtvvdVeskSCmpw/++yzN7v+qFGj8MUXX3S47PLLL1cjeXfeeSdH4lIw46aZmPP8C/h2yXfIz8/HHr/aDTfecB222WZrsw+NsjX1IaNdQk1TGN+w3DDSCN3IXpmUOzIxDcxp3PQk0PkklzpK2CbYCZkmnTJlCsaNG4fx48ercidNTU3tu2RPOukkDBo0SK2Vkzp3O+ywQ4fbl5WVqT83vZwS8+577+HMv/wZu+6yC8LhMC678ipMPPQwfPXZpygs5LB2TpFek9582BVDHVliGtjOPW4ztakhVfJvR/YPdscccwxWrVqFK6+8EtXV1Rg7dixef/319g0VlZWVaqcsGeO1l1/scP7Rhx9Ev0HDsPDTRdh7rz1NOy4yB8MRUXrTwDbdgmTcpgbKvWAnZNq1s6lXMXfu3G5vO2vWLFj1F0FvbZJtOFmf+9f8BSmv61i/PlYOpqK8PMNHRUSUY7JVf8/ojRqpbmpIlUyD23W9r8ksE+ycSA80Y9kJg0x57OFPVkPLS34aVdY3XvC3CzFhj92xww7bG3JsRGQT0SB0K8yMuVz2LaabrSnZbG7USGRTQ7q4ozhlDHbUwVnnno8vv/oa7/3vv2YfChGZRUrGSOmYprWwBD0KvWywfcKdGfX3srlRI4FNDWQeBjuDp0OHP77CtKnYZJ193gV45dXX8M5bb2Lw4MGGHBcR2WCNpa8Qeu+R1thpKGFl1U8ynQDYpERhVuvvZaLeXqKPQ7bAYGfwL7eaDjUh2CW7FvCc86fi+RdexP/efAMjRgw3+5CIyERaYQVQEKs2YCppKFJXCTvKVv29jNTbI0dhsCM1/fqvp/6N5//zbxQXF6mdyaK0tFTVtSOi3GOF3dE6YsXnyULTvtzUYHkMdoQH/v6Q+nO/AyZ2uPwfD/8dJ590oklHRURElmu7xk0NlsdgR4gGm80+BCIislnbNbImBjsiIiKyFD0cjPWB7fmacuUsHJF9MNgRERGRZehSZqdlDeBKYhRSyvNImR5isCOyM11KECT0qba7O+EnXiKyUOsyeV2TUNdni8Q3anjy4PLmGX14tsBgR2TnUNeyDnD707wjeSEN8xMvWZtZXTDs3PXC7koGQvPm22YXt1Uw2BHZlQQy+VTbb+v0F043rlKhTvNwATZZjNldMOzW9cJhGNiSx2BHZNfp1Ja1QCgAtKyH5klzCiLd2xM5sQuGDbteEDHYEdlxOlWCoIS6TE6fun38dEyWY1oXjPiuF6lOAztwGjfx3aopPwLX/KaJwY7IyI0JiYwIpDqd2jZ9KpXgM1AvlKGOrMqMn03V9SLdaWCHTeOmtFs1VVzzmzIGOyIjNyb0JNAIuNxAa2PyL/5t06caQxmR5aaBHTaNm/Ju1VRxl2vKGOyIOiMvYm4/tP6jDKvoruvRjaNuqX6i5/QpkfWmgeOncXN8t2qq+LqWOgY7wv1/fxAP/P1hLPv5Z3V+++22xRWXTcOkgzv2js05ug7d5YEmUwIG0PS4UbeivilNp/LFj8hYqfyOqWncbJdpyfJ6Pr72WBeDHWHwoEGYcf012GrLLdVw+2P/fByTf3c0Pp0/D9tvvx1yUqAhNk0qI2rZ2DHK6VQiZ8l2mRaHreej1DHYZYWMy8OyDjv0kA7nr7/majzw4MP46OP5avQuoyNgcoqEoEvTaitPw4Zbs/d4nE4lcpSsl2lpX88XUbMMCUtqgxh3q9oFg52BdOgIt7aoT1LZ5skrgJZCeIpEInjmP3PQ1NSE3XfbNcPHLvcloSlg6aDboRNDcX/A4KK9DHVEzpO1Mi3x6/ma1wBagm/rEjhDTcnvcOVuVctjsDNQJNCKJ349wJTHPv6ddfDmFyR8/S+++AJ7TJiA1tZWFBUV4bn//Afbjd45swcVkTUgPmh9h0PLM3i3aaY2NXg4mkZEqcnKa4cG6LJcRAKXfGhGEqNqvmKgfEhsZ36iuFvV8hjsjN4ebhYZrUtixG6bUaOwaNEirF+/Hs8++yxOPuUUzJ07F9ttt12Gj0l+6nyxFyGL6rCpgYjI4lwl/RHNL0t+2jeFNoL8oGt9DHYGhjqPz4fj56425fHlsRFN/JObz+PCllsMV1/vstMYLPjkE9x55x34+/33Ze6g5HikplPTGiDEBb5ERJnCUTRqw2BnIFnj5s0vhB1Fo1EEAzKsn8O4qYGIiGyGwc7AUJfU7iQTTZs2DZMmTcLQoUPR0NCAJ598EnPfeQevv/46kMm/g9yXywUU9gLyrP/pkqGOiIjsxh7Jw6ZS2ZVqhlWrVmHKlCmoqqpCaWkpRo8ejTfeeAMHHnigAf8emgpMDE1ERESZx2BHeOSRR8w+BCIiIsoADpsQEREROQSDHREREZFDMNgREREROQSDHREREZFDMNgREREROQSDnRXbgTkU/02JiIiMxWC3Ca831uqqubnZ7ENxnGAwqP50u5NoOE1ERET2q2N37733YubMmaiursaYMWNw9913Y/z48Z1e96GHHsLs2bPx5ZdfqvO77LILbrjhhi6vnwwJHWVlZaitrVXnCwoKbFNo2OotyqQQsvx7ejyW+bEjIiJyFEu8wz799NOYOnUqHnjgAey222644447MHHiRCxZsgR9+/bd7Ppz587Fscceiz322AN5eXm46aabcNBBB+Grr77CoEGD0j6e/v37qz/bwh1lhsvlUm3LGJSJiIiMoekWWPgkYW7XXXfFPffc0z66M2TIEJxzzjm45JJLerx9JBJBeXm5uv1JJ53U4/Xr6+tV66z169ejpKSk2/sNhUJJ/m2oKz6fT4U7IiIiSlyiucUSI3ay7mrhwoWqEX0befM/4IADMG/evITuQ9bDSQCrqKjo9PuBQECd4v+BEp2W5XowIiIisgvTh09Wr16tRsb69evX4XI5L+vtEnHxxRdj4MCBKgx2ZsaMGSrptp1kNJCIiIjIaUwPdum68cYb8dRTT2HOnDlqvV1nZDRQhi/bTsuXL8/6cRIREREZzfSp2N69e6vpzpqamg6Xy/m2TQxdueWWW1Sw++9//4vRo0d3eT2/369ORERERE7mscKCeilX8tZbb2Hy5Mntmyfk/Nlnn93l7W6++WZcf/31eOONNzBu3LikHrNtv0iia+2IiIiIzNKWVxLa76pbwFNPPaX7/X591qxZ+tdff63/6U9/0svKyvTq6mr1/RNPPFG/5JJL2q9/44036j6fT3/22Wf1qqqq9lNDQ0NCj7d8+XL5l+GJJ5544oknnnjS7XKS/NIT00fsxDHHHKOK11555ZVqw8TYsWPx+uuvt2+oqKys7FAm4/7771e7aY866qgO93PVVVfh6quv7vHxZKOFrLMrLi52TE01SfOyKUT+Xj1thSb74fPrbHx+nY3Pr7PVZ+H5lZG6hoYGlV9sUceOslvjhuyHz6+z8fl1Nj6/zlZvsefX9rtiiYiIiCiGwY6IiIjIIRjsHELKucgaQ5Z1cSY+v87G59fZ+Pw6m99izy/X2BERERE5BEfsiIiIiByCwY6IiIjIIRjsiIiIiByCwc5GIpEIrrjiCowYMQL5+fkYOXIkrr322g4tRuRrKfQ8YMAAdZ0DDjgA33//vanHTYlbsWIFTjjhBPTq1Us9fzvuuCMWLFjQ/n0+v84hfa6lQPr555/ffllrayvOOuss9fwXFRXhd7/73WZ9tMmaZsyYgV133VUVvu/bt69qkblkyZIO1+Hz6zz33nsvhg8fjry8POy2226YP3++2YfEYGcnN910k+q6cc899+Cbb75R56Vn7t13391+HTl/11134YEHHsDHH3+MwsJCTJw4Ub2gkLWtW7cOEyZMgNfrxWuvvYavv/4at956K8rLy9uvw+fXGT755BP8/e9/x+jRoztcfsEFF+Cll17CM888g3feeQcrV67EkUceadpxUuLk+ZLQ9tFHH+HNN99EKBTCQQcdhKampvbr8Pl1lqeffhpTp05VO2I//fRTjBkzRr0e19bWmntgKTd4paw79NBD9VNPPbXDZUceeaR+/PHHq6+j0ajev39/febMme3fr6urU314//Wvf2X9eCk5F198sb7nnnt2+X0+v84gPa232mor/c0339T32Wcf/bzzzmt/Lr1er/7MM8+0X/ebb75R/SHnzZtn4hFTKmpra9Vz984776jzfH6dZ/z48fpZZ53Vfj4SiegDBw7UZ8yYYepxccTORvbYYw+89dZb+O6779T5zz77DO+//z4mTZqkzi9dulT12pXpuTbS5kSGh+fNm2facVNiXnzxRYwbNw6///3v1VTOTjvthIceeqj9+3x+nUFGdQ499NAOz6NYuHChGuWJv3zUqFEYOnQon18bkvZSoqKiQv3J59dZgsGgek7jn0/paS/nzX4+PaY+OiXlkksuUT3p5MXA7XarNXfXX389jj/+ePV9edMX/fr163A7Od/2PbKun376SU21y9D+pZdeqqbrzj33XPh8PkyZMoXPrwM89dRTaspGnttNyXMoz3VZWVmHy/n82k80GlVrJ2VpxQ477KAu4/PrLKtXr1bvwZ29Hn/77bcwE4Odjfz73//GE088gSeffBLbb789Fi9erF48Bg4cqN74yf5vBjJid8MNN6jzMmL35ZdfqvV0fH7tb/ny5TjvvPPU+itZaE3OHpWV312ZUSHKNk7F2siFF16oRu3+8Ic/qN2SJ554olqMK7uxRP/+/dWfm+6ykvNt3yPrkp2u2223XYfLtt12W1RWVqqv+fzam0zbyKLqnXfeGR6PR51kAb1shpGv5ZO+TO/U1dV1uB2fX3s5++yz8fLLL+N///sfBg8e3H65PId8fp2jd+/eaubMiq/HDHY20tzcrObw48kPloz0CCmDIj9Qsg6vjUzdyu7J3XffPevHS8mRaZtNyyPIesphw4apr/n82tuvf/1rfPHFF2qkve0kI7SylKLta9kRHf/8ys+DBHs+v9YnpYgk1M2ZMwdvv/22+n2Nt8suu/D5dRCfz6ee0/jnU96L5bzpz6epWzcoKVOmTNEHDRqkv/zyy/rSpUv15557Tu/du7d+0UUXtV/nxhtv1MvKyvQXXnhB//zzz/XDDz9cHzFihN7S0mLqsVPP5s+fr3s8Hv3666/Xv//+e/2JJ57QCwoK9Mcff7z9Onx+nSV+V6w444wz9KFDh+pvv/22vmDBAn333XdXJ7K+v/zlL3ppaak+d+5cvaqqqv3U3Nzcfh0+v87y1FNPqaoEs2bN0r/++mv9T3/6k3p9rq6uNvW4GOxspL6+Xr0JyAtDXl6evsUWW+iXXXaZHggEOpTEuOKKK/R+/fqpH7hf//rX+pIlS0w9bkrcSy+9pO+www7quRs1apT+4IMPdvg+n19nBzsJ6GeeeaZeXl6uQv0RRxyhwgFZn4yTdHZ69NFH26/D59d57r77bvWe7PP5VPmTjz76yOxD0jX5n7ljhkRERESUCVxjR0REROQQDHZEREREDsFgR0REROQQDHZEREREDsFgR0REROQQDHZEREREDsFgR0REROQQDHZEREREDsFgR0SOc/LJJ2Py5MmmPf6JJ56IG264AWZ74IEHcNhhh5l9GESURew8QUS2omlat9+/6qqrcMEFF6im7GVlZci2zz77DPvvvz9+/vlnFBUVwUzBYFA1o3/qqaew1157mXosRJQdDHZEZCvV1dXtXz/99NO48sorsWTJkvbLJEyZGahOO+00eDweNVpmBRdeeCGWLVuGZ555xuxDIaIs4FQsEdlK//7920+lpaVqBC/+Mgl1m07F7rvvvjjnnHNw/vnno7y8HP369cNDDz2EpqYmnHLKKSguLsaWW26J1157rcNjffnll5g0aZK6T7mNTLGuXr26y2OLRCJ49tlnN5v+HD58OK677jqcdNJJ6r6GDRuGF198EatWrcLhhx+uLhs9ejQWLFigri/HVVJSou4r3vPPP4/CwkI0NDSo8xdffDG23nprFBQUYIsttsAVV1yBUCjU4TZyLPJYLS0tafyrE5FdMNgRUU547LHH0Lt3b8yfP1+FvL/85S/4/e9/jz322AOffvopDjroIBXcmpub1fXr6urUlOpOO+2kAtfrr7+OmpoaHH300V0+xueff47169dj3Lhxm33v9ttvx4QJE7Bo0SIceuih6rEk6J1wwgnq8UeOHKnOyySKhLc//OEPePTRRzvch5w/6qijVBAV8uesWbPw9ddf484771RhVR4nnhxLOBzGxx9/nKF/SSKyNJmKJSKyo0cffVQvLS3d7PIpU6bohx9+ePv5ffbZR99zzz3bz4fDYb2wsFA/8cQT2y+rqqqSZSn6vHnz1Plrr71WP+iggzrc7/Lly9V1lixZ0unxzJkzR3e73Xo0Gu1w+bBhw/QTTjhhs8e64oor2i+Tx5XL5Hvi448/Vve1cuVKdb6mpkb3eDz63Llzu/z3mDlzpr7LLrtsdnl5ebk+a9asLm9HRM7BETsiygky1dnG7XajV69e2HHHHdsvk6lWUVtb274J4n//+1/7mj05jRo1Sn3vxx9/7PQxZLrT7/d3usEj/vHbHqu7xx8/fjy23357NdIoHn/8cTWFu/fee3dYYyijgG1T0JdffjkqKys3e+z8/Pz2kUgicjYGOyLKCV6vt8N5CV/xl7WFsWg0qv5sbGxU69MWL17c4fT99993CFfxZKpXApTsRu3u8dseq7vHb9uIIVOtbdOwsh6w7Xrz5s3D8ccfj0MOOQQvv/yymuK97LLLOn3stWvXok+fPgn+SxGRnXnMPgAiIivaeeed8Z///EdtfJBdrokYO3as+lPWvLV9nQ5Zf3fRRRfhrrvuUvc5ZcqU9u99+OGHagRPwlwbKbGyKRldbG1tVWsFicj5OGJHRNSJs846S410HXvssfjkk09UQHrjjTfUqJnsfu2MjIpJIHz//fczcgyyg/fII49UJUtkc8fgwYPbv7fVVlupaVepUSfHJuFvzpw5m93He++9p3bMyuYMInI+Bjsiok4MHDgQH3zwgQpxEqpkPZyUS5Gixy5X1y+dMn36xBNPZOw4/vjHP6rp1VNPPbXD5b/97W9VIeazzz5bjQ7KCJ6UO9nUv/71L5x++ukZOx4isjYWKCYiyiDZQLHNNtuojQ2777572vf3z3/+UwW4lStXwufzJXXbr776SpVs+e6771TNPyJyPq6xIyLKINmBOnv27G4LGSdCNmFUVVXhxhtvxJ///OekQ52Q28uxMNQR5Q6O2BERWdDVV1+N66+/Xu3AfeGFF0zvO0tE9sBgR0REROQQ3DxBRERE5BAMdkREREQOwWBHRERE5BAMdkREREQOwWBHRERE5BAMdkREREQOwWBHRERE5BAMdkREREQOwWBHREREBGf4f/s7WSeSsgwxAAAAAElFTkSuQmCC",
317
75
  "text/plain": [
318
76
  "<Figure size 640x480 with 1 Axes>"
319
77
  ]
@@ -323,21 +81,74 @@
323
81
  }
324
82
  ],
325
83
  "source": [
326
- "for s in states:\n",
327
- " estimates = [\n",
328
- " log_summary[f\"birthRatei{i}_{s}_median\"].median()\n",
329
- " - log_summary[f\"deathRatei{i}_{s}_median\"].median()\n",
330
- " for i in range(n_time_bins)\n",
331
- " ]\n",
332
- " plt.step(change_times, estimates[:-1], label=rf\"$d_{{{s}}}$\")\n",
333
- " plt.legend()\n",
334
- "plt.gca().invert_xaxis() # This reverses the x-axis"
84
+ "import matplotlib.pyplot as plt\n",
85
+ "import numpy as np\n",
86
+ "import polars as pl\n",
87
+ "from numpy.typing import NDArray\n",
88
+ "\n",
89
+ "colors: dict[str, NDArray[np.floating]] = {\n",
90
+ " \"birth\": plt.cm.Blues(np.linspace(0.4, 0.9, 4)), # pyright: ignore\n",
91
+ " \"death\": plt.cm.Oranges(np.linspace(0.4, 0.9, 4)), # pyright: ignore\n",
92
+ " \"diversification\": plt.cm.Greens(np.linspace(0.4, 0.9, 4)), # pyright: ignore\n",
93
+ "}\n",
94
+ "\n",
95
+ "for rate in [\"birth\", \"death\", \"diversification\"]:\n",
96
+ " for state in range(4):\n",
97
+ " if rate == \"diversification\":\n",
98
+ " estimates = log_summary.select(\n",
99
+ " [\n",
100
+ " pl.col(f\"birthRateSPi{i}_{state}_median\")\n",
101
+ " - pl.col(f\"deathRateSPi{i}_{state}_median\")\n",
102
+ " for i in range(len(change_times) + 1)\n",
103
+ " ]\n",
104
+ " ).to_numpy()\n",
105
+ " else:\n",
106
+ " estimates = log_summary.select(\n",
107
+ " [\n",
108
+ " pl.col(f\"{rate}RateSPi{i}_{state}_median\")\n",
109
+ " for i in range(len(change_times) + 1)\n",
110
+ " ]\n",
111
+ " ).to_numpy()\n",
112
+ "\n",
113
+ " median = np.median(estimates, axis=0)\n",
114
+ " lower = np.percentile(estimates, 2.5, axis=0)\n",
115
+ " upper = np.percentile(estimates, 97.5, axis=0)\n",
116
+ "\n",
117
+ " color = colors[rate][state]\n",
118
+ "\n",
119
+ " plt.fill_between( # pyright: ignore\n",
120
+ " time_bins,\n",
121
+ " [lower[0], *lower],\n",
122
+ " [upper[0], *upper],\n",
123
+ " step=\"pre\",\n",
124
+ " alpha=0.25,\n",
125
+ " color=color,\n",
126
+ " )\n",
127
+ "\n",
128
+ " for estimate in estimates:\n",
129
+ " plt.step( # pyright: ignore\n",
130
+ " time_bins, [estimate[0], *estimate], color=color, alpha=0.15\n",
131
+ " )\n",
132
+ "\n",
133
+ " plt.step( # pyright: ignore\n",
134
+ " time_bins, [median[0], *median], color=color, label=state\n",
135
+ " )\n",
136
+ "\n",
137
+ " ax = plt.gca()\n",
138
+ " ax.invert_xaxis()\n",
139
+ " plt.legend(title=\"Body mass\") # pyright: ignore\n",
140
+ " plt.xlabel(\"Time (mya)\") # pyright: ignore\n",
141
+ " plt.ylabel( # pyright: ignore\n",
142
+ " r\"$\\lambda$\" if rate == \"birth\" else r\"$\\mu$\" if rate == \"death\" else r\"$d$\"\n",
143
+ " )\n",
144
+ " plt.tight_layout()\n",
145
+ " plt.show()"
335
146
  ]
336
147
  }
337
148
  ],
338
149
  "metadata": {
339
150
  "kernelspec": {
340
- "display_name": "env",
151
+ "display_name": "bella-companion-py3.10",
341
152
  "language": "python",
342
153
  "name": "python3"
343
154
  },
@@ -351,7 +162,7 @@
351
162
  "name": "python",
352
163
  "nbconvert_exporter": "python",
353
164
  "pygments_lexer": "ipython3",
354
- "version": "3.11.6"
165
+ "version": "3.10.14"
355
166
  }
356
167
  },
357
168
  "nbformat": 4,