bella-companion 0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of bella-companion might be problematic. Click here for more details.
- bella_companion/__init__.py +0 -0
- bella_companion/cli.py +24 -0
- bella_companion/fbd_empirical/data/body_mass.csv +1378 -0
- bella_companion/fbd_empirical/data/change_times.csv +22 -0
- bella_companion/fbd_empirical/data/sampling_change_times.csv +6 -0
- bella_companion/fbd_empirical/data/trees.nwk +100 -0
- bella_companion/fbd_empirical/figure.py +37 -0
- bella_companion/fbd_empirical/notbooks.ipynb +359 -0
- bella_companion/fbd_empirical/params.json +11 -0
- bella_companion/fbd_empirical/run_beast.py +54 -0
- bella_companion/fbd_empirical/summarize_logs.py +50 -0
- bella_companion/simulations/__init__.py +0 -0
- bella_companion/simulations/features.py +7 -0
- bella_companion/simulations/figures/__init__.py +0 -0
- bella_companion/simulations/figures/epi_explainations.py +101 -0
- bella_companion/simulations/figures/epi_predictions.py +58 -0
- bella_companion/simulations/figures/fbd_explainations.py +99 -0
- bella_companion/simulations/figures/fbd_predictions.py +66 -0
- bella_companion/simulations/figures/scenarios.py +87 -0
- bella_companion/simulations/figures/utils.py +250 -0
- bella_companion/simulations/generate_data.py +25 -0
- bella_companion/simulations/run_beast.py +92 -0
- bella_companion/simulations/scenarios/__init__.py +20 -0
- bella_companion/simulations/scenarios/common.py +29 -0
- bella_companion/simulations/scenarios/epi_multitype.py +68 -0
- bella_companion/simulations/scenarios/epi_skyline.py +65 -0
- bella_companion/simulations/scenarios/fbd_2traits.py +101 -0
- bella_companion/simulations/scenarios/fbd_no_traits.py +71 -0
- bella_companion/simulations/scenarios/scenario.py +26 -0
- bella_companion/simulations/summarize_logs.py +39 -0
- bella_companion/utils.py +164 -0
- bella_companion-0.0.0.dist-info/METADATA +13 -0
- bella_companion-0.0.0.dist-info/RECORD +34 -0
- bella_companion-0.0.0.dist-info/WHEEL +4 -0
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
import json
|
|
2
|
+
import os
|
|
3
|
+
from pathlib import Path
|
|
4
|
+
|
|
5
|
+
import polars as pl
|
|
6
|
+
|
|
7
|
+
import src.config as cfg
|
|
8
|
+
from src.utils import set_plt_rcparams
|
|
9
|
+
|
|
10
|
+
THIS_DIR = Path(__file__).parent
|
|
11
|
+
|
|
12
|
+
if __name__ == "__main__":
|
|
13
|
+
with open(os.path.join(THIS_DIR, "params", "MLP.json"), "r") as f:
|
|
14
|
+
params = json.load(f)
|
|
15
|
+
states = params["types"].split(",")
|
|
16
|
+
change_times = (
|
|
17
|
+
pl.read_csv(
|
|
18
|
+
os.path.join(THIS_DIR, "data", "change_times.csv"), has_header=False
|
|
19
|
+
)
|
|
20
|
+
.to_series()
|
|
21
|
+
.to_list()
|
|
22
|
+
)
|
|
23
|
+
n_time_bins = len(change_times) + 1
|
|
24
|
+
|
|
25
|
+
set_plt_rcparams()
|
|
26
|
+
|
|
27
|
+
log_summary = pl.read_csv(
|
|
28
|
+
os.path.join(cfg.BEAST_LOGS_SUMMARIES_DIR, "fbd-empirical", "MLP.csv")
|
|
29
|
+
)
|
|
30
|
+
for s in states:
|
|
31
|
+
estimates: list[float] = [
|
|
32
|
+
log_summary[f"birthRatei{i}_{s}_median"].median()
|
|
33
|
+
for i in range(n_time_bins)
|
|
34
|
+
]
|
|
35
|
+
plt.step(change_times, estimates[:-1], label=rf"$\lambda_{{{s}}}$")
|
|
36
|
+
plt.legend()
|
|
37
|
+
plt.gca().invert_xaxis() # This reverses the x-axis
|
|
@@ -0,0 +1,359 @@
|
|
|
1
|
+
{
|
|
2
|
+
"cells": [
|
|
3
|
+
{
|
|
4
|
+
"cell_type": "code",
|
|
5
|
+
"execution_count": null,
|
|
6
|
+
"id": "e79ae6e5",
|
|
7
|
+
"metadata": {},
|
|
8
|
+
"outputs": [],
|
|
9
|
+
"source": [
|
|
10
|
+
"import json\n",
|
|
11
|
+
"import os\n",
|
|
12
|
+
"\n",
|
|
13
|
+
"import polars as pl\n",
|
|
14
|
+
"\n",
|
|
15
|
+
"log_summary = pl.read_csv(\n",
|
|
16
|
+
" os.path.join(\"../../logs_summaries\", \"fbd-empirical\", \"MLP.csv\")\n",
|
|
17
|
+
")\n",
|
|
18
|
+
"\n",
|
|
19
|
+
"with open(os.path.join(\"params\", \"MLP.json\"), \"r\") as f:\n",
|
|
20
|
+
" params = json.load(f)\n",
|
|
21
|
+
"states = params[\"types\"].split(\",\")\n",
|
|
22
|
+
"change_times = (\n",
|
|
23
|
+
" pl.read_csv(os.path.join(\"data\", \"change_times.csv\"), has_header=False)\n",
|
|
24
|
+
" .to_series()\n",
|
|
25
|
+
" .to_list()\n",
|
|
26
|
+
")"
|
|
27
|
+
]
|
|
28
|
+
},
|
|
29
|
+
{
|
|
30
|
+
"cell_type": "code",
|
|
31
|
+
"execution_count": 34,
|
|
32
|
+
"id": "c3827211",
|
|
33
|
+
"metadata": {},
|
|
34
|
+
"outputs": [],
|
|
35
|
+
"source": [
|
|
36
|
+
"from phylogenie import load_newick\n",
|
|
37
|
+
"\n",
|
|
38
|
+
"trees = load_newick(\"data/trees.nwk\")"
|
|
39
|
+
]
|
|
40
|
+
},
|
|
41
|
+
{
|
|
42
|
+
"cell_type": "code",
|
|
43
|
+
"execution_count": 36,
|
|
44
|
+
"id": "982d2c52",
|
|
45
|
+
"metadata": {},
|
|
46
|
+
"outputs": [
|
|
47
|
+
{
|
|
48
|
+
"data": {
|
|
49
|
+
"text/plain": [
|
|
50
|
+
"[0.0117,\n",
|
|
51
|
+
" 0.126,\n",
|
|
52
|
+
" 0.781,\n",
|
|
53
|
+
" 1.8,\n",
|
|
54
|
+
" 2.58,\n",
|
|
55
|
+
" 3.6,\n",
|
|
56
|
+
" 5.333,\n",
|
|
57
|
+
" 7.246,\n",
|
|
58
|
+
" 11.63,\n",
|
|
59
|
+
" 13.82,\n",
|
|
60
|
+
" 15.97,\n",
|
|
61
|
+
" 20.44,\n",
|
|
62
|
+
" 23.03,\n",
|
|
63
|
+
" 28.1,\n",
|
|
64
|
+
" 33.9,\n",
|
|
65
|
+
" 37.8,\n",
|
|
66
|
+
" 41.2,\n",
|
|
67
|
+
" 47.8,\n",
|
|
68
|
+
" 56.0,\n",
|
|
69
|
+
" 59.2,\n",
|
|
70
|
+
" 61.6,\n",
|
|
71
|
+
" 66.0,\n",
|
|
72
|
+
" 72.1,\n",
|
|
73
|
+
" 83.6,\n",
|
|
74
|
+
" 86.3,\n",
|
|
75
|
+
" 89.8,\n",
|
|
76
|
+
" 93.9,\n",
|
|
77
|
+
" 100.5,\n",
|
|
78
|
+
" 113.0,\n",
|
|
79
|
+
" 125.0,\n",
|
|
80
|
+
" 129.4,\n",
|
|
81
|
+
" 132.9,\n",
|
|
82
|
+
" 139.8,\n",
|
|
83
|
+
" 145.0]"
|
|
84
|
+
]
|
|
85
|
+
},
|
|
86
|
+
"execution_count": 36,
|
|
87
|
+
"metadata": {},
|
|
88
|
+
"output_type": "execute_result"
|
|
89
|
+
}
|
|
90
|
+
],
|
|
91
|
+
"source": [
|
|
92
|
+
"change_times"
|
|
93
|
+
]
|
|
94
|
+
},
|
|
95
|
+
{
|
|
96
|
+
"cell_type": "code",
|
|
97
|
+
"execution_count": 41,
|
|
98
|
+
"id": "17b57fd9",
|
|
99
|
+
"metadata": {},
|
|
100
|
+
"outputs": [
|
|
101
|
+
{
|
|
102
|
+
"data": {
|
|
103
|
+
"text/plain": [
|
|
104
|
+
"67.52300000000002"
|
|
105
|
+
]
|
|
106
|
+
},
|
|
107
|
+
"execution_count": 41,
|
|
108
|
+
"metadata": {},
|
|
109
|
+
"output_type": "execute_result"
|
|
110
|
+
}
|
|
111
|
+
],
|
|
112
|
+
"source": [
|
|
113
|
+
"min([max(tip.get_time() for tip in tree.get_leaves()) for tree in trees])"
|
|
114
|
+
]
|
|
115
|
+
},
|
|
116
|
+
{
|
|
117
|
+
"cell_type": "code",
|
|
118
|
+
"execution_count": 32,
|
|
119
|
+
"id": "2b51dd84",
|
|
120
|
+
"metadata": {},
|
|
121
|
+
"outputs": [
|
|
122
|
+
{
|
|
123
|
+
"data": {
|
|
124
|
+
"text/html": [
|
|
125
|
+
"<div><style>\n",
|
|
126
|
+
".dataframe > thead > tr,\n",
|
|
127
|
+
".dataframe > tbody > tr {\n",
|
|
128
|
+
" text-align: right;\n",
|
|
129
|
+
" white-space: pre-wrap;\n",
|
|
130
|
+
"}\n",
|
|
131
|
+
"</style>\n",
|
|
132
|
+
"<small>shape: (100, 1_122)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>id</th><th>n_samples</th><th>birthRatei0_0_median</th><th>birthRatei0_0_ess</th><th>birthRatei0_0_lower</th><th>birthRatei0_0_upper</th><th>birthRatei0_1_median</th><th>birthRatei0_1_ess</th><th>birthRatei0_1_lower</th><th>birthRatei0_1_upper</th><th>birthRatei0_2_median</th><th>birthRatei0_2_ess</th><th>birthRatei0_2_lower</th><th>birthRatei0_2_upper</th><th>birthRatei0_3_median</th><th>birthRatei0_3_ess</th><th>birthRatei0_3_lower</th><th>birthRatei0_3_upper</th><th>birthRatei1_0_median</th><th>birthRatei1_0_ess</th><th>birthRatei1_0_lower</th><th>birthRatei1_0_upper</th><th>birthRatei1_1_median</th><th>birthRatei1_1_ess</th><th>birthRatei1_1_lower</th><th>birthRatei1_1_upper</th><th>birthRatei1_2_median</th><th>birthRatei1_2_ess</th><th>birthRatei1_2_lower</th><th>birthRatei1_2_upper</th><th>birthRatei1_3_median</th><th>birthRatei1_3_ess</th><th>birthRatei1_3_lower</th><th>birthRatei1_3_upper</th><th>birthRatei2_0_median</th><th>birthRatei2_0_ess</th><th>birthRatei2_0_lower</th><th>…</th><th>deathRatei32_2_upper</th><th>deathRatei32_3_median</th><th>deathRatei32_3_ess</th><th>deathRatei32_3_lower</th><th>deathRatei32_3_upper</th><th>deathRatei33_0_median</th><th>deathRatei33_0_ess</th><th>deathRatei33_0_lower</th><th>deathRatei33_0_upper</th><th>deathRatei33_1_median</th><th>deathRatei33_1_ess</th><th>deathRatei33_1_lower</th><th>deathRatei33_1_upper</th><th>deathRatei33_2_median</th><th>deathRatei33_2_ess</th><th>deathRatei33_2_lower</th><th>deathRatei33_2_upper</th><th>deathRatei33_3_median</th><th>deathRatei33_3_ess</th><th>deathRatei33_3_lower</th><th>deathRatei33_3_upper</th><th>deathRatei34_0_median</th><th>deathRatei34_0_ess</th><th>deathRatei34_0_lower</th><th>deathRatei34_0_upper</th><th>deathRatei34_1_median</th><th>deathRatei34_1_ess</th><th>deathRatei34_1_lower</th><th>deathRatei34_1_upper</th><th>deathRatei34_2_median</th><th>deathRatei34_2_ess</th><th>deathRatei34_2_lower</th><th>deathRatei34_2_upper</th><th>deathRatei34_3_median</th><th>deathRatei34_3_ess</th><th>deathRatei34_3_lower</th><th>deathRatei34_3_upper</th></tr><tr><td>i64</td><td>i64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>…</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td><td>f64</td></tr></thead><tbody><tr><td>62</td><td>2876</td><td>0.693985</td><td>19.826997</td><td>0.421693</td><td>1.015667</td><td>0.853004</td><td>16.684122</td><td>0.533527</td><td>1.156743</td><td>0.9444</td><td>28.777145</td><td>0.656214</td><td>1.217372</td><td>1.001155</td><td>33.922025</td><td>0.723881</td><td>1.270293</td><td>0.688578</td><td>19.781814</td><td>0.425238</td><td>1.006446</td><td>0.851725</td><td>16.544671</td><td>0.542898</td><td>1.152573</td><td>0.944202</td><td>28.619794</td><td>0.660257</td><td>1.208472</td><td>1.001432</td><td>32.893602</td><td>0.756131</td><td>1.294114</td><td>0.680438</td><td>19.765233</td><td>0.428773</td><td>…</td><td>1.259936</td><td>1.148662</td><td>8.568807</td><td>0.949298</td><td>1.345605</td><td>0.478394</td><td>32.374448</td><td>0.367512</td><td>0.604625</td><td>0.942854</td><td>3.237146</td><td>0.805392</td><td>1.068139</td><td>1.119762</td><td>11.436921</td><td>0.963062</td><td>1.262639</td><td>1.151141</td><td>8.235175</td><td>0.950386</td><td>1.347846</td><td>0.478573</td><td>32.303999</td><td>0.367646</td><td>0.604854</td><td>0.943123</td><td>3.233036</td><td>0.805528</td><td>1.068406</td><td>1.120033</td><td>11.367764</td><td>0.963163</td><td>1.262921</td><td>1.151385</td><td>8.20127</td><td>0.950624</td><td>1.348079</td></tr><tr><td>85</td><td>2668</td><td>0.490425</td><td>130.489644</td><td>0.31023</td><td>0.749664</td><td>0.595885</td><td>89.252381</td><td>0.358524</td><td>0.872832</td><td>0.745538</td><td>149.040222</td><td>0.46275</td><td>1.011871</td><td>0.875619</td><td>235.05898</td><td>0.601443</td><td>1.142838</td><td>0.489382</td><td>130.650625</td><td>0.310153</td><td>0.737776</td><td>0.596843</td><td>88.359182</td><td>0.35512</td><td>0.855681</td><td>0.750362</td><td>152.261796</td><td>0.469996</td><td>1.007025</td><td>0.879743</td><td>234.431705</td><td>0.613787</td><td>1.141387</td><td>0.48787</td><td>131.068826</td><td>0.320551</td><td>…</td><td>1.262938</td><td>1.186046</td><td>87.92688</td><td>1.004321</td><td>1.335282</td><td>0.516892</td><td>132.30799</td><td>0.4173</td><td>0.61924</td><td>0.929992</td><td>15.11291</td><td>0.818195</td><td>1.048126</td><td>1.13912</td><td>42.950472</td><td>1.006059</td><td>1.266975</td><td>1.18934</td><td>88.331253</td><td>1.006122</td><td>1.336662</td><td>0.517174</td><td>131.796658</td><td>0.418967</td><td>0.621008</td><td>0.930367</td><td>15.00642</td><td>0.818435</td><td>1.048648</td><td>1.139445</td><td>42.709596</td><td>1.007028</td><td>1.267958</td><td>1.189636</td><td>88.36797</td><td>1.006502</td><td>1.336853</td></tr><tr><td>87</td><td>2674</td><td>0.564769</td><td>135.210069</td><td>0.34646</td><td>0.852436</td><td>0.688836</td><td>48.781184</td><td>0.438499</td><td>0.950486</td><td>0.776685</td><td>17.16335</td><td>0.532577</td><td>1.032804</td><td>0.833511</td><td>21.885751</td><td>0.602177</td><td>1.097495</td><td>0.561176</td><td>135.840153</td><td>0.349551</td><td>0.840921</td><td>0.687809</td><td>46.673257</td><td>0.44248</td><td>0.942664</td><td>0.777776</td><td>16.925151</td><td>0.537058</td><td>1.025449</td><td>0.83363</td><td>22.414582</td><td>0.602246</td><td>1.087687</td><td>0.556036</td><td>137.078111</td><td>0.361445</td><td>…</td><td>1.192288</td><td>1.069168</td><td>7.1455</td><td>0.874858</td><td>1.262046</td><td>0.479415</td><td>14.862635</td><td>0.359431</td><td>0.598006</td><td>0.887083</td><td>8.330413</td><td>0.724854</td><td>1.003692</td><td>1.053696</td><td>5.812196</td><td>0.882208</td><td>1.195994</td><td>1.072841</td><td>6.943537</td><td>0.878173</td><td>1.268179</td><td>0.479612</td><td>14.77382</td><td>0.359578</td><td>0.598234</td><td>0.887461</td><td>8.306868</td><td>0.72504</td><td>1.0041</td><td>1.054034</td><td>5.799542</td><td>0.882393</td><td>1.196487</td><td>1.07319</td><td>6.92437</td><td>0.881097</td><td>1.271151</td></tr><tr><td>33</td><td>2751</td><td>0.534697</td><td>102.937531</td><td>0.356077</td><td>0.809452</td><td>0.618932</td><td>127.761794</td><td>0.40958</td><td>0.865534</td><td>0.736746</td><td>70.601018</td><td>0.467096</td><td>0.993424</td><td>0.852961</td><td>95.758783</td><td>0.573644</td><td>1.112825</td><td>0.533273</td><td>105.374688</td><td>0.349778</td><td>0.790423</td><td>0.620133</td><td>127.94122</td><td>0.410832</td><td>0.853519</td><td>0.740206</td><td>69.817061</td><td>0.480405</td><td>0.993788</td><td>0.85682</td><td>96.750855</td><td>0.59056</td><td>1.114747</td><td>0.532421</td><td>109.460875</td><td>0.359312</td><td>…</td><td>1.303744</td><td>1.256283</td><td>18.042069</td><td>1.013824</td><td>1.446505</td><td>0.585534</td><td>48.658862</td><td>0.458126</td><td>0.700928</td><td>0.941809</td><td>96.564143</td><td>0.825276</td><td>1.058757</td><td>1.159708</td><td>27.723495</td><td>1.000806</td><td>1.304243</td><td>1.260711</td><td>17.843174</td><td>1.024461</td><td>1.458629</td><td>0.58595</td><td>48.447042</td><td>0.458274</td><td>0.701241</td><td>0.942247</td><td>96.36097</td><td>0.825662</td><td>1.059235</td><td>1.160111</td><td>27.671828</td><td>1.001188</td><td>1.304674</td><td>1.261206</td><td>17.823456</td><td>1.024634</td><td>1.459071</td></tr><tr><td>48</td><td>2815</td><td>0.436121</td><td>92.940512</td><td>0.260961</td><td>0.620777</td><td>0.500988</td><td>72.642316</td><td>0.289215</td><td>0.735402</td><td>0.601485</td><td>81.25929</td><td>0.326528</td><td>0.842131</td><td>0.707924</td><td>121.794697</td><td>0.412851</td><td>0.953777</td><td>0.438183</td><td>93.008648</td><td>0.269966</td><td>0.620567</td><td>0.504182</td><td>72.184421</td><td>0.293175</td><td>0.732408</td><td>0.606975</td><td>82.213414</td><td>0.334544</td><td>0.840791</td><td>0.71341</td><td>124.754178</td><td>0.450663</td><td>0.978285</td><td>0.43931</td><td>93.30228</td><td>0.271298</td><td>…</td><td>1.148198</td><td>1.088797</td><td>58.848135</td><td>0.901738</td><td>1.250732</td><td>0.550377</td><td>119.069258</td><td>0.446257</td><td>0.659052</td><td>0.840426</td><td>12.044359</td><td>0.73925</td><td>0.941142</td><td>1.007859</td><td>11.81039</td><td>0.878273</td><td>1.152024</td><td>1.091153</td><td>58.75621</td><td>0.906041</td><td>1.25563</td><td>0.550538</td><td>118.757945</td><td>0.444753</td><td>0.657713</td><td>0.840692</td><td>11.972781</td><td>0.739512</td><td>0.941462</td><td>1.008202</td><td>11.769669</td><td>0.87845</td><td>1.152315</td><td>1.091431</td><td>58.757302</td><td>0.906301</td><td>1.255821</td></tr><tr><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td></tr><tr><td>56</td><td>2740</td><td>0.595993</td><td>12.202018</td><td>0.37213</td><td>0.882339</td><td>0.752628</td><td>30.576532</td><td>0.46217</td><td>1.035905</td><td>0.899757</td><td>142.214998</td><td>0.601703</td><td>1.206184</td><td>1.001618</td><td>81.901812</td><td>0.718908</td><td>1.326703</td><td>0.593968</td><td>12.42533</td><td>0.374921</td><td>0.871815</td><td>0.7533</td><td>31.688419</td><td>0.469965</td><td>1.032509</td><td>0.901941</td><td>142.516538</td><td>0.588648</td><td>1.180157</td><td>1.0036</td><td>78.441656</td><td>0.733732</td><td>1.32983</td><td>0.591007</td><td>12.687353</td><td>0.381081</td><td>…</td><td>1.324113</td><td>1.292516</td><td>46.22215</td><td>1.095933</td><td>1.475254</td><td>0.563305</td><td>34.267685</td><td>0.445142</td><td>0.679184</td><td>0.971328</td><td>8.18824</td><td>0.853968</td><td>1.084773</td><td>1.187075</td><td>80.426577</td><td>1.046923</td><td>1.32752</td><td>1.294849</td><td>45.600741</td><td>1.099307</td><td>1.478067</td><td>0.563451</td><td>34.139309</td><td>0.445162</td><td>0.679404</td><td>0.971583</td><td>8.154893</td><td>0.854081</td><td>1.084947</td><td>1.187373</td><td>80.118548</td><td>1.047138</td><td>1.327874</td><td>1.295098</td><td>45.542932</td><td>1.099635</td><td>1.478354</td></tr><tr><td>88</td><td>2641</td><td>0.470702</td><td>10.542007</td><td>0.277331</td><td>0.729796</td><td>0.630631</td><td>5.899181</td><td>0.329448</td><td>0.94537</td><td>0.831339</td><td>6.657945</td><td>0.448771</td><td>1.144482</td><td>0.993672</td><td>15.855671</td><td>0.633517</td><td>1.326254</td><td>0.470821</td><td>10.641254</td><td>0.258603</td><td>0.698697</td><td>0.632783</td><td>5.881861</td><td>0.323211</td><td>0.927088</td><td>0.837629</td><td>6.700819</td><td>0.464789</td><td>1.146632</td><td>0.999964</td><td>16.483229</td><td>0.657607</td><td>1.331421</td><td>0.470587</td><td>10.788543</td><td>0.263278</td><td>…</td><td>1.390742</td><td>1.352342</td><td>53.634694</td><td>1.172382</td><td>1.536423</td><td>0.534672</td><td>103.715659</td><td>0.430745</td><td>0.639321</td><td>0.981434</td><td>17.498531</td><td>0.869782</td><td>1.089161</td><td>1.245095</td><td>45.434702</td><td>1.098812</td><td>1.393209</td><td>1.354951</td><td>53.516234</td><td>1.175528</td><td>1.539724</td><td>0.534915</td><td>103.209122</td><td>0.430938</td><td>0.639589</td><td>0.981798</td><td>17.322943</td><td>0.87009</td><td>1.089489</td><td>1.245332</td><td>45.396994</td><td>1.099053</td><td>1.393598</td><td>1.355223</td><td>53.503717</td><td>1.17583</td><td>1.539876</td></tr><tr><td>12</td><td>3005</td><td>0.418971</td><td>4.946417</td><td>0.236039</td><td>0.724696</td><td>0.532466</td><td>6.299282</td><td>0.293499</td><td>0.829479</td><td>0.672498</td><td>20.089662</td><td>0.396499</td><td>0.931568</td><td>0.777163</td><td>75.368265</td><td>0.512923</td><td>1.036294</td><td>0.418217</td><td>4.925229</td><td>0.249858</td><td>0.725312</td><td>0.534497</td><td>6.264856</td><td>0.29926</td><td>0.824589</td><td>0.67508</td><td>20.658169</td><td>0.413097</td><td>0.934496</td><td>0.779493</td><td>78.503269</td><td>0.514725</td><td>1.026762</td><td>0.417758</td><td>4.906633</td><td>0.254933</td><td>…</td><td>1.101374</td><td>1.002687</td><td>34.880281</td><td>0.816247</td><td>1.191438</td><td>0.413562</td><td>103.974143</td><td>0.315816</td><td>0.511001</td><td>0.772218</td><td>2.268147</td><td>0.626116</td><td>0.889198</td><td>0.962785</td><td>3.522184</td><td>0.815193</td><td>1.107084</td><td>1.005614</td><td>33.996523</td><td>0.816794</td><td>1.192828</td><td>0.413713</td><td>104.256872</td><td>0.315906</td><td>0.511283</td><td>0.772515</td><td>2.266541</td><td>0.626221</td><td>0.889595</td><td>0.963081</td><td>3.514639</td><td>0.814705</td><td>1.106831</td><td>1.00596</td><td>33.904835</td><td>0.816837</td><td>1.193056</td></tr><tr><td>2</td><td>2764</td><td>0.415988</td><td>27.807942</td><td>0.235356</td><td>0.636994</td><td>0.455794</td><td>24.348993</td><td>0.215494</td><td>0.728394</td><td>0.515485</td><td>23.602885</td><td>0.245284</td><td>0.928573</td><td>0.60314</td><td>26.031743</td><td>0.272872</td><td>1.066282</td><td>0.417945</td><td>27.1361</td><td>0.237465</td><td>0.633476</td><td>0.459598</td><td>23.766705</td><td>0.219193</td><td>0.727203</td><td>0.523215</td><td>23.237175</td><td>0.253147</td><td>0.930025</td><td>0.616427</td><td>25.824943</td><td>0.285935</td><td>1.079787</td><td>0.420296</td><td>26.24093</td><td>0.237915</td><td>…</td><td>1.030563</td><td>0.927049</td><td>79.339674</td><td>0.776666</td><td>1.087707</td><td>0.397652</td><td>262.004477</td><td>0.310488</td><td>0.482611</td><td>0.773378</td><td>28.607023</td><td>0.649355</td><td>0.874705</td><td>0.913543</td><td>74.816953</td><td>0.77743</td><td>1.030551</td><td>0.927163</td><td>79.413028</td><td>0.776692</td><td>1.087745</td><td>0.397654</td><td>262.009776</td><td>0.310487</td><td>0.482618</td><td>0.773382</td><td>28.600279</td><td>0.649342</td><td>0.874704</td><td>0.913542</td><td>74.806779</td><td>0.777436</td><td>1.03055</td><td>0.927183</td><td>79.420179</td><td>0.776688</td><td>1.087758</td></tr><tr><td>36</td><td>2875</td><td>0.486941</td><td>9.449881</td><td>0.25109</td><td>0.715372</td><td>0.581879</td><td>3.528417</td><td>0.297731</td><td>0.865008</td><td>0.712698</td><td>3.527537</td><td>0.387696</td><td>1.009476</td><td>0.834264</td><td>4.921266</td><td>0.527455</td><td>1.141686</td><td>0.485197</td><td>9.644045</td><td>0.25462</td><td>0.705194</td><td>0.583601</td><td>3.522249</td><td>0.299615</td><td>0.856099</td><td>0.71645</td><td>3.550901</td><td>0.403005</td><td>1.011802</td><td>0.839317</td><td>5.039669</td><td>0.545721</td><td>1.144529</td><td>0.482739</td><td>9.954218</td><td>0.262472</td><td>…</td><td>1.243009</td><td>1.216931</td><td>26.895806</td><td>1.013291</td><td>1.40475</td><td>0.505712</td><td>74.173283</td><td>0.394102</td><td>0.629561</td><td>0.888143</td><td>5.903413</td><td>0.772737</td><td>1.006653</td><td>1.106381</td><td>19.195935</td><td>0.972943</td><td>1.24644</td><td>1.22093</td><td>26.834034</td><td>1.016913</td><td>1.408144</td><td>0.506001</td><td>74.242481</td><td>0.394348</td><td>0.629881</td><td>0.888558</td><td>5.894977</td><td>0.772974</td><td>1.007052</td><td>1.106786</td><td>19.119009</td><td>0.973149</td><td>1.246792</td><td>1.221205</td><td>26.821876</td><td>1.017002</td><td>1.408461</td></tr></tbody></table></div>"
|
|
133
|
+
],
|
|
134
|
+
"text/plain": [
|
|
135
|
+
"shape: (100, 1_122)\n",
|
|
136
|
+
"┌─────┬───────────┬────────────┬────────────┬───┬────────────┬────────────┬────────────┬───────────┐\n",
|
|
137
|
+
"│ id ┆ n_samples ┆ birthRatei ┆ birthRatei ┆ … ┆ deathRatei ┆ deathRatei ┆ deathRatei ┆ deathRate │\n",
|
|
138
|
+
"│ --- ┆ --- ┆ 0_0_median ┆ 0_0_ess ┆ ┆ 34_3_media ┆ 34_3_ess ┆ 34_3_lower ┆ i34_3_upp │\n",
|
|
139
|
+
"│ i64 ┆ i64 ┆ --- ┆ --- ┆ ┆ n ┆ --- ┆ --- ┆ er │\n",
|
|
140
|
+
"│ ┆ ┆ f64 ┆ f64 ┆ ┆ --- ┆ f64 ┆ f64 ┆ --- │\n",
|
|
141
|
+
"│ ┆ ┆ ┆ ┆ ┆ f64 ┆ ┆ ┆ f64 │\n",
|
|
142
|
+
"╞═════╪═══════════╪════════════╪════════════╪═══╪════════════╪════════════╪════════════╪═══════════╡\n",
|
|
143
|
+
"│ 62 ┆ 2876 ┆ 0.693985 ┆ 19.826997 ┆ … ┆ 1.151385 ┆ 8.20127 ┆ 0.950624 ┆ 1.348079 │\n",
|
|
144
|
+
"│ 85 ┆ 2668 ┆ 0.490425 ┆ 130.489644 ┆ … ┆ 1.189636 ┆ 88.36797 ┆ 1.006502 ┆ 1.336853 │\n",
|
|
145
|
+
"│ 87 ┆ 2674 ┆ 0.564769 ┆ 135.210069 ┆ … ┆ 1.07319 ┆ 6.92437 ┆ 0.881097 ┆ 1.271151 │\n",
|
|
146
|
+
"│ 33 ┆ 2751 ┆ 0.534697 ┆ 102.937531 ┆ … ┆ 1.261206 ┆ 17.823456 ┆ 1.024634 ┆ 1.459071 │\n",
|
|
147
|
+
"│ 48 ┆ 2815 ┆ 0.436121 ┆ 92.940512 ┆ … ┆ 1.091431 ┆ 58.757302 ┆ 0.906301 ┆ 1.255821 │\n",
|
|
148
|
+
"│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │\n",
|
|
149
|
+
"│ 56 ┆ 2740 ┆ 0.595993 ┆ 12.202018 ┆ … ┆ 1.295098 ┆ 45.542932 ┆ 1.099635 ┆ 1.478354 │\n",
|
|
150
|
+
"│ 88 ┆ 2641 ┆ 0.470702 ┆ 10.542007 ┆ … ┆ 1.355223 ┆ 53.503717 ┆ 1.17583 ┆ 1.539876 │\n",
|
|
151
|
+
"│ 12 ┆ 3005 ┆ 0.418971 ┆ 4.946417 ┆ … ┆ 1.00596 ┆ 33.904835 ┆ 0.816837 ┆ 1.193056 │\n",
|
|
152
|
+
"│ 2 ┆ 2764 ┆ 0.415988 ┆ 27.807942 ┆ … ┆ 0.927183 ┆ 79.420179 ┆ 0.776688 ┆ 1.087758 │\n",
|
|
153
|
+
"│ 36 ┆ 2875 ┆ 0.486941 ┆ 9.449881 ┆ … ┆ 1.221205 ┆ 26.821876 ┆ 1.017002 ┆ 1.408461 │\n",
|
|
154
|
+
"└─────┴───────────┴────────────┴────────────┴───┴────────────┴────────────┴────────────┴───────────┘"
|
|
155
|
+
]
|
|
156
|
+
},
|
|
157
|
+
"execution_count": 32,
|
|
158
|
+
"metadata": {},
|
|
159
|
+
"output_type": "execute_result"
|
|
160
|
+
}
|
|
161
|
+
],
|
|
162
|
+
"source": [
|
|
163
|
+
"log_summary"
|
|
164
|
+
]
|
|
165
|
+
},
|
|
166
|
+
{
|
|
167
|
+
"cell_type": "code",
|
|
168
|
+
"execution_count": 6,
|
|
169
|
+
"id": "dc577d10",
|
|
170
|
+
"metadata": {},
|
|
171
|
+
"outputs": [],
|
|
172
|
+
"source": [
|
|
173
|
+
"import matplotlib.pyplot as plt"
|
|
174
|
+
]
|
|
175
|
+
},
|
|
176
|
+
{
|
|
177
|
+
"cell_type": "code",
|
|
178
|
+
"execution_count": 28,
|
|
179
|
+
"id": "449dc222",
|
|
180
|
+
"metadata": {},
|
|
181
|
+
"outputs": [
|
|
182
|
+
{
|
|
183
|
+
"data": {
|
|
184
|
+
"text/plain": [
|
|
185
|
+
"[0.7826991010292472,\n",
|
|
186
|
+
" 0.7879111447566347,\n",
|
|
187
|
+
" 0.794489478861548,\n",
|
|
188
|
+
" 0.7967554017240761,\n",
|
|
189
|
+
" 0.8007872408824712,\n",
|
|
190
|
+
" 0.8084909423295531,\n",
|
|
191
|
+
" 0.8211630216254208,\n",
|
|
192
|
+
" 0.8255987626717776,\n",
|
|
193
|
+
" 0.8297580720254483,\n",
|
|
194
|
+
" 0.8326075629383715,\n",
|
|
195
|
+
" 0.8347247455590027,\n",
|
|
196
|
+
" 0.8429055146685471,\n",
|
|
197
|
+
" 0.8457501186136401,\n",
|
|
198
|
+
" 0.8476184171603736,\n",
|
|
199
|
+
" 0.8480032143571185,\n",
|
|
200
|
+
" 0.8501932591754192,\n",
|
|
201
|
+
" 0.8552802107849583,\n",
|
|
202
|
+
" 0.8578485148484045,\n",
|
|
203
|
+
" 0.8600435392096155,\n",
|
|
204
|
+
" 0.8621790002757891,\n",
|
|
205
|
+
" 0.8681628522023002,\n",
|
|
206
|
+
" 0.8721299457372755,\n",
|
|
207
|
+
" 0.8740792325524811,\n",
|
|
208
|
+
" 0.8767065345154602,\n",
|
|
209
|
+
" 0.8780390709794985,\n",
|
|
210
|
+
" 0.878994583671072,\n",
|
|
211
|
+
" 0.8690130540974841,\n",
|
|
212
|
+
" 0.8704965694136284,\n",
|
|
213
|
+
" 0.8717182405800625,\n",
|
|
214
|
+
" 0.8715811034846244,\n",
|
|
215
|
+
" 0.8723789234064153,\n",
|
|
216
|
+
" 0.8711320310281596,\n",
|
|
217
|
+
" 0.8714738870323686,\n",
|
|
218
|
+
" 0.8715165362987789,\n",
|
|
219
|
+
" 0.8715362407029129]"
|
|
220
|
+
]
|
|
221
|
+
},
|
|
222
|
+
"execution_count": 28,
|
|
223
|
+
"metadata": {},
|
|
224
|
+
"output_type": "execute_result"
|
|
225
|
+
}
|
|
226
|
+
],
|
|
227
|
+
"source": [
|
|
228
|
+
"estimates"
|
|
229
|
+
]
|
|
230
|
+
},
|
|
231
|
+
{
|
|
232
|
+
"cell_type": "code",
|
|
233
|
+
"execution_count": 29,
|
|
234
|
+
"id": "b27d7d8d",
|
|
235
|
+
"metadata": {},
|
|
236
|
+
"outputs": [
|
|
237
|
+
{
|
|
238
|
+
"data": {
|
|
239
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAALYxJREFUeJzt3Qt0VOW5//Fnck+QBBG5o9CWCmhUCoeI+l+HVk6RBVqwy6qIUEREjwiVnqOgXE61iq2Fg0XOwXaVVqsg0qNtxYoXkFYrQgUvIJfC0gIGuRVIJAnktv/reXViEibJXPPuy/ez1kBmMpPsd89kz2+e97JDjuM4AgAAYEmarV8MAACgCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArMoQD6itrZX9+/dL27ZtJRQK2d4cAAAQBV1X9bPPPpOuXbtKWlqat8OIBpEePXrY3gwAABCHffv2Sffu3b0dRrQiEm5Mfn6+7c0BAABRKC0tNcWE8Pu4p8NIuGtGgwhhBAAAb2lpiAUDWAEAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFjliXPTAPj8VNxORUXUuyKUm9vi+SAAwA0II4BHgsieMTdKxbvvRv2Y7L59pedTv9UzVEX8PmEFgFsQRgAP0IpILEFEndq+XXYOGBh3WGlthCMguAgjgMf0/uubkpab2/QdHEf+MfYmE0YSCSutLfcb35Bzn36KriUggAgjgMdoEEnLy2v2Pr2e+7+mx5dEGVZaW8XmzVJz9GjzQStKVFkAbyGMAD6kA1dDzQSWZsNKK6utqJBdl11uvg7/nyiqLIC3EEYCNsMC8fPTp+2Wwkpr71cND1oZsV1l8dNzDHhJYMOIL97EXVpu96tkD/jkje+L/RAKmbEiyfh7TLTKQkUFsCO4YaSiQnZ+Y4DtzYCHJHvAJ298ya/UJFpl0cfpscEtVSMgKAIbRvzEbVM0fSdFFahYuhL0Ez9SV2WpX1Fpal9TyQJSJ7BhRA8s523eJH7AQTL1kjngMxUDNpG8KktTzwmVLCB1ghtGXDSAD8F6vSTSlaCP08cjuaJ5TujCAVInsGEE8OKATapgrf+c1K9kAUgNwghgAZU59+E5AewhjABAlKIZSEz1CogdYQQAohRNdw0DXYHYEUYAIIkDjpN5jp2WtovVYuEXIUeXInW50tJSKSgokJKSEsnPz7e9OQACJpoVm1t7oCsVGHhBtO/fVEYAIAmDW1Nxjp3WrMBQaYFNVEYAwEPnvEpVBYZKC1KByggA+HB6cKoqMLFUWqiiINmojABAgCsw8VRaqKIgWlRGAMCnbJ+egKXxkWwMYAWAAIvl9AQsjY9UIYwAQMDFU2mJZjXaup/PmihoAWEEABCzWMaZMMYELSGMAABSOpOntValbQkVGvdiNg0AICUzedw2xiS7b1/p+dRvtV8q4vcJK8nHbBoAgNXxJa29Km1LTm3fLjsHDGzy+3Qn2UM3DQDA+kydlHIc+cfYm0wYaQ5Tlu0hjAAAPL0qbTR6Pfd/TYai+t1JscwSCqN7J3GEEQCA70UbiuIZ40L3TuLSkvAzAADwrPDYlniFu3cQPyojAIBAi3dsi9tmC3kZYQQAEHhuGdsSVHTTAAAAq6iMAACQoEizcJhlEz3CCAAACYo0doRZNtGjmwYAgBTMwgmfk6e2vPy0iy6rjy9xbhoAAJJ4rp5oZtkEpWpSWloqBQUFUlJSIvn5+U3ej24aAACSOAsnmnPyxHsm41Buri8DDJURAABa6ezGia5Nkuuxikq0lRHGjAAAkGQaFtLy8k67pLdvz2qvEdBNAwBAK2G118gIIwAAeGi111ofrmlCGAEAwEN2+XBNE8aMAADggzVNHA+fOZjKCAAAHh1rUltvdk7j7hsvdd0QRgAA8MFYk12Num+81HVDNw0AAD7svqnwUNcNlREAAHzUfVOb4MJqNhBGAAAI8FRhN6CbBgAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWMbUXAACfqv1i/RG3Lw1PGAEAwKd2fbH4mduXhqebBgAAny8RX+HypeGpjAAA4NMl4ms9sjR8XJWRxYsXS8+ePSUnJ0eKiopk48aNzd5/4cKFct5550lubq706NFD7rrrLjl58mS82wwAAFoIJGl5eZKWmyteEHMYWbFihUyfPl3mzp0rmzdvlosuukiGDRsmhw4dinj/ZcuWyYwZM8z9t2/fLr/61a/Mz7j33nuTsf0AAMDjYg4jCxYskEmTJsmECROkX79+smTJEsnLy5OlS5dGvP9bb70ll112mYwZM8ZUU7797W/LDTfc0GI1BQAAJI922dSWl4vjOOLpMSOVlZWyadMmmTlzZt1taWlpMnToUFm/fn3Ex1x66aXy1FNPmfAxaNAg+eijj+RPf/qT3HTTTYlvPcyLqqLavYOSYpWb4e7pZ7aft6DsHwDBmlkTUxg5cuSI1NTUSKdOnRrcrtd37NgR8TFaEdHHXX755eYAXF1dLbfddluz3TSnTp0yl7DS0tJYNjMwdH+Oe2mcvHf4PfGLPu37yBNXPiFulKwgkMjz1r9jf7N/3HQQAeD+mTUVmzefNrMmlJcngZlNs27dOnnooYfkf/7nf8xg1927d8u0adPkgQcekNmzZ0d8zLx58+RHP/pRqjfN8/STtZ+CiNpxdIcULSsSPwelRJ63dw+9ax6fl+megwgA782sqXXZYmgxhZEOHTpIenq6HDx4sMHter1z584RH6OBQ7tkbrnlFnO9sLBQysrK5NZbb5X77rvPdPM0pt1AOki2fmVEZ+Ekkx+6N+pv/7rvrTOf3L1s/OrxJowEKShF+7zpcz3k2SF1X0eDLh0ASsNG4yqI27psYgojWVlZMmDAAFmzZo2MGjXK3FZbW2uuT5kyJeJjysvLTwscGmhUU4NosrOzzSWV9IDu1k/g8dA3Hq9/Wn525LOuDYipCEra5dI+p33MB4FwKInm59OlA6ClLpuao0clvX3sxyKr3TRasRg/frwMHDjQDEjVNUS00qGza9S4ceOkW7dupqtFXXXVVWYGTv/+/eu6abRaoreHQwkSo286Xq+KKP1DcGugSkVQiqVyoffV51m7aaKl9z168miTrw0qJ0CwhJrostH/bVdIYg4j1113nRw+fFjmzJkjBw4ckIsvvlhWr15dN6h17969DSohs2bNMo3T/4uLi+Xss882QeTBBx8Um/RAvGHMBvED3lT8H5T092uVI5pAVL9Lp7kqitsGC/M6Blqvy6ZxlcT2oNaQ48YJx43omJGCggIpKSmR/Px825sDuJr+SWu3UixVFDegWwlo/WOFdtGEKyTnbd5kVm218f7NuWkAn4mmiuLGwcLMFAIsLBnvkuXiCSNAALuV3DRYuH63EoBgIowAAWR7DExTkhWQGH8CeAthBIBrJKtCwvgTwFsIIwCsimfacqLTmpvbFtuLPwFBRBgBYFUs05aTNa05nunOBBUgdQgjAHwzhiXRKktzS/7T9QOkDmEEgG8kUmVpabozU4+B1CGMAPCVeKssTU13jvUkhXTnALEjjABAlCEmmnEodOfAS0K5uWbl1fDXtjQ8nS4AIOI4lGiFu3MAz6zCmpdnLp46ay8ABEm041Bi7c5JFN1B8BPCCAAkeRxKayxvT3cQ/IQwAgAuXbwtFQu7NYVKC2wKOXoOYZeL9hTEAGCTHk5T3UWTqhMLUmmBzfdvKiMA4KETEKaqAsM6KrCJMAIAAV0+P5WVFiAWhBEA8JhUVWCiDTiML0GyEUYAAEa0FRLGlyDZWPQMAAIs1kXdFAu7IdmojABAgMUyBoXxJUgVwggABFxrzAICmkM3DQAAsIrKCAAgZrFMLWb2DVpCGAEAxCyWtUmYfYOWEEYAACld/TVZ59GhwuJfnJsGAJCS8+8ke/ZNn/Z9zMyfeBFmWh/npgEAWJ15k+zz6Ow4ukOKlhXF/Xi6i9yLbhoAgOvPozN+9XgTRhLRUncRlRN76KYBAPiqeyje7iIqJ8lHNw0AwDcSWZgt2u6ieAfaUlFJHJURAECgKyuJDrSlotI0KiMAAERRWUl0oG34xIEsqR8/BrACAAIt3oG2nDgweQgjAIDA42SBdnGiPAAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFbNpAABIUKRpwazMGj3CCAAACYq0gmuf9n3M+iWREFQaIowAABCHllZu1bMMFy0rivg9lpBviDACAECSV24dv3q8CSNNYQn5hggjAAAkeeXWZ0c+GzGksIR8ZIQRAACSjOXlY0MYAQDAglhPzOfnga+EEQAAXDIDpyVNzdDxekghjAAA4JIZOC1paoZOpJDipYASchzHEZcrLS2VgoICKSkpkfz8fNubAwBA3PRtN54umvEtzNBx4/ThaN+/qYwAAOCBwa3PNjFDp6mQ4qXpw4QRAAB8NI24oroirvEoNhFGAADwsFCclRY34ay9AADAKsIIAACwijACAACsIowAAACrCCMAAMAqZtMAAOBTFV9M+XX7aqyEEQAAfGrIF+uNuGE11ubQTQMAgA/PfxNpNVa3ojICAICPhEIhUwXR8OGV1VgJIwAA+EzIY6uy0k0DAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwHthZPHixdKzZ0/JycmRoqIi2bhxY5P3HTJkiJnv3PgyYsSIRLYbAAAENYysWLFCpk+fLnPnzpXNmzfLRRddJMOGDZNDhw5FvP9zzz0nn376ad1l69atkp6eLtdee20yth8AAAQtjCxYsEAmTZokEyZMkH79+smSJUskLy9Pli5dGvH+7du3l86dO9ddXn31VXN/wggAAIg5jFRWVsqmTZtk6NChX6aZtDRzff369VH9jF/96ldy/fXXS5s2bXgGAABAbOemOXLkiNTU1EinTp0a3K7Xd+zY0eLjdWyJdtNoIGnOqVOnzCWstLSUpwoAAJ9q1dk0GkIKCwtl0KBBzd5v3rx5UlBQUHfp0aNHq20jAABwcRjp0KGDGXx68ODBBrfrdR0P0pyysjJ55plnZOLEiS3+npkzZ0pJSUndZd++fbFsJgAA8GsYycrKkgEDBsiaNWvqbqutrTXXBw8e3OxjV65cabpexo4d2+Lvyc7Olvz8/AYXAAAQv4rqCimvKhfHccTTY0aUTusdP368DBw40HS3LFy40FQ9dHaNGjdunHTr1s10tTTuohk1apScddZZydt6AAAQlSHPDjH/9+/YX5648gmz5pdnw8h1110nhw8fljlz5siBAwfk4osvltWrV9cNat27d6+ZYVPfzp075c0335RXXnkleVsOAACalZuRa8LHu4ferbtNv9YqSV5mnrhFyHFjvaYRnU2jA1l1/AhdNgAARE/f5jV86CVcHdkwZkOrhJFo379jrowAAADvCIVCpwUPDSbhyokbumsIIwAABMwQl40f4ay9AAAEaPxIfTp+5OjJo9Zn2DBmBACAAI8fSWWFJNoxI1RGAAAI2PiR9jntG1RJwjNsbCGMAAAQwFDyxJVPyLrvrRM3IIwAABDQQJKbkStuQBgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWcmwYAgIDKzcg1Z/ANf20LYQQAgIAKRTijrw100wAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArMqw++uBgHIckapy21vhLpl5IqGQ7a0AYAFhBGjt8KA/69dXihzYwr6vr8clIjevJpAAAUQYAaIJD0uHiezbwL5KpX1vi5QdEcnKS/xnUWUBPIUwEkR0EcSmsjw1QaRzocgEKgFm//7sa5/vk/D/tvYtIQawIrhhJKhvyHQRJOY/difnk7vije/L/aBdNFoZSRbtApvXLfbH0VUEWBHcMKJB5KGutrcCXqJvVG06MKYh2bR6oWNFkvHhINGwrYFItyOrTeLbAiBqwQ0jQUcXQeyoZKQ2kCQrAEx+I/ZgU7+rCECrywj0G8u9+yWweGOFXyUabDSYRMLfDJAywQ0jyfwkBsA/mqqQMJ4ESBlWYAWA8CDaaMaTAEi64FZGACCaQbSMJwFSjjACANF23TY1nqQ+xpYAMSOMAEC0oplxw9gSIGaEEQBI5qJsyVzWvqXt4sSC8AnCCAAkY1G2VCxr3xwqMPARwggAJGM8SSqWtW8Oq8XCRwgjAOC2Ze2jrcBEM6A2WnT7wCLCCAB4dTHFZHYH0e0Di1j0DAD8tkBbPFjUDRZRGQGAIHcHsagbXIAwAgBek6ruoGjHoDC+BElGGAEAxDYGhfElSDLGjABAkMUzBoXxJUgyKiMAEGSxjEFhfAlShDACAEEXzxiUWNY4YYwJWkAYAQCkdo0TxpigBYQRAEB04l3yPlknD6TC4luEEQBAatY4SfbJA6mw+BZhBACQmvElyT55YKIVFiorrkUYAQC4e7XYZFVYqKy4FmEEAODu1WKTVWFpqbJC5cQawggAwN8VlmgrK1ROrCGMAAD8XWGJtrISXlk2Fef9QbMIIwCAYFdWWFnWOsIIAMD/UnWmYyQFJ8oDAABWURkBACCec+6EMQsnYYQRAADC4lnHhFk4CaObBgAQbOHZNvEKz8JB3KiMAACCLd51TJiFY7cysnjxYunZs6fk5ORIUVGRbNy4sdn7Hz9+XO644w7p0qWLZGdny9e//nX505/+FO82AwCQmtk2MV0SPAsx4q+MrFixQqZPny5LliwxQWThwoUybNgw2blzp3Ts2PG0+1dWVsq//du/me/97ne/k27dusmePXukXbt2sf5qAADgQzGHkQULFsikSZNkwoQJ5rqGkhdffFGWLl0qM2bMOO3+evvRo0flrbfekszMTHObVlUAAABi7qbRKsemTZtk6NChdbelpaWZ6+vXr4/4mD/+8Y8yePBg003TqVMnueCCC+Shhx6SmpqaJn/PqVOnpLS0tMEFAAD4U0xh5MiRIyZEaKioT68fOHAg4mM++ugj0z2jj9NxIrNnz5b58+fLj3/84yZ/z7x586SgoKDu0qNHj1g2EwCA1qWDWSvLGl4ch2fBLbNpamtrzXiRX/ziF5Keni4DBgyQ4uJieeSRR2Tu3LkRHzNz5kwzLiVMKyMEEgCAp9YnYf2R1ISRDh06mEBx8ODBBrfr9c6dO0d8jM6g0bEi+riwvn37mkqKdvtkZWWd9hidcaMXAABcq6WzAXMW4NSEEQ0OWtlYs2aNjBo1qq7yodenTJkS8TGXXXaZLFu2zNxPx5eov//97yakRAoiAAB4en2S+uuPNLW8PEvIJ9ZNo90n48ePl4EDB8qgQYPM1N6ysrK62TXjxo0z03d13Ie6/fbb5bHHHpNp06bJnXfeKbt27TIDWKdOnRrrrwYAwFtnA25qeXm6cBILI9ddd50cPnxY5syZY7paLr74Ylm9enXdoNa9e/fWVUCUjvV4+eWX5a677pILL7zQBBUNJvfcc0+svxoAAO933yi6cBoIOY77h/vqAFadVVNSUiL5+fm2NwcAgObpW2uk5eXrd+H8x+7YV3HNzPu8GuMR0b5/c24aAABau/tGcYbgOpy1FwCA1sIZgiOiMgIAgJfOEFxZ7vnum8YIIwAAuK0LJ2ALrNFNAwCA17t39r0de7XFRaiMAADghwXWPIwwAgBAELp3XIwwAgCAH1SWe3ZQK2EEAAA/+NnXPDuolQGsAAD4cWDrPu8MaqUyAsCcVbuysjKQeyIzM1PS09NtbwaQvIGtHhzUShgBAk5DyMcff2wCSVC1a9dOOnfuLCEPlLMBPw5sJYwAAabnyfz0009NZUDPsF3/jNtBaX95ebkcOnTIXO/SpYvtTQICiTACBFh1dbV5M+7atavk5cV49lCfyM3NNf9rIOnYsSNdNoAFwfoYBKCBmpoa839WVlag90w4iFVVVdneFCC5dPxIZZmWAcXNqIwACPxYCcaKwLd+9jVPTPOlMgIAgN+n++5z9zRfKiMAAPh1um+lN6b5UhkB4FkzZsyQ7OxsGTNmjO1NAdw53TfLGwPTCSMAPGvmzJkyf/58Wb58uezevdv25gCIE2EEgGcVFBTIxIkTzfooW7Zssb05AOJEGAHg+bVSdGru1q1bbW8K4G6V7p3mywBWAA1WJK2o+nztkdaWm5ke1xTbWbNmyYkTJwgjQEvCA1k7F4pM+GKar868ccF0X8IIgDoaRPrNednKHtl2/zDJy4rtkLRp0yZZsmSJjBgx4rQwsmrVKvnhD39ozrlzzz33yC233JLkLQY8NM1339tf3nZgi8i8bg2DiQ52tRhKCCMAPElDxuTJk2XKlClSVFQkY8eONSuo6ll4tetm+vTp8vrrr5txJQMGDJDRo0fLWWedZXuzAXvTfB1H5NdXfh5GGgcTy4uiEUYANOgq0QqFrd8di0WLFsmRI0fk/vvvl71795ogsmPHDiksLJSNGzfK+eefL926ff7pb/jw4fLKK6/IDTfckKKtBzxyVt/Jb0QOJuFF0Syd/ZcwAqCOjtmItavEhuLiYpk9e7aZ0tumTRvp3bu3WW9Eu2o0jOzfv78uiCj9Wh8DBF6oUTApO+KKRdGYTQPAc6ZOnWqqHTpWRGVkZEjfvn0ZxArEHEzcsSia+z8CAUCjgalr166V7du3N9gvWhEJD2Lt2rVrg0qIfj1o0CD2I+BShBEAnjJy5Eg5duzYabc/+eSTdV9r8NBgoiFEB7C+9NJLplsHgDsRRgD4jnbb6DLx3/zmN82sm7vvvpuZNEBTU3/v3f/l15YQRgD40tVXX20uAKIc0GoRA1gBAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEgGfNmDFDsrOzZcyYMbY3BUACCCMAPGvmzJnmhHjLly+X3bt3294cAHEijADwrIKCApk4caKkpaXJli1bbG8OgDgRRgB4WnV1teTl5cnWrVttbwqAOBFGAHjarFmz5MSJE4QRwMMybG8AABdxHJGqcju/OzNPJBSK6SGbNm2SJUuWyIgRI04LI6NHj5Z169bJFVdcIb/73e+SvLEAkokwAuBLGkQe6mpnj9y7XySrTdR3r62tlcmTJ8uUKVOkqKhIxo4dK1VVVZKZmWm+P23aNLn55pvliSeeSOFGA0gGumkAeNKiRYvkyJEjcv/990thYaEJIjt27Kj7/pAhQ6Rt27ZWtxFAdKiMAGjYVaIVClu/O0rFxcUye/ZsM6W3TZs20rt3b7PeiHbVaDAB4C2EEQBf0jEbMXSV2DJ16lQZPny4GSuiMjIypG/fvgxiBTyKMALAU1atWiVr166V7du3N7hdKyJM7wW8iTACwFNGjhwpx44dO+32J5980sr2AEgcYQSALw0dOlTef/99KSsrk+7du8vKlStl8ODBtjcLQASEEQC+9Nprr9neBABRYmovAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjADxrxowZkp2dLWPGjLG9KQASQBgB4FkzZ86U+fPny/Lly2X37t22NwdAnAgjADyroKBAJk6cKGlpabJlyxbbmwOgNcPI4sWLpWfPnpKTkyNFRUWycePGJu/7m9/8RkKhUIOLPg4AkqG6ulry8vJk69at7FDAozJifcCKFStk+vTpsmTJEhNEFi5cKMOGDZOdO3dKx44dIz4mPz/ffD9MAwkA93EcRyqqK6z87tyM3LiODbNmzZITJ04QRoAghZEFCxbIpEmTZMKECea6hpIXX3xRli5dagaTRaIHmM6dOye+tQBSSoNI0bIiK3t5w5gNkpeZF9NjNm3aZI5BI0aMaBBG9u3bJzfddJMcOnRIMjIyZPbs2XLttdemYKsBtHo3TWVlpfnjHzp06Jc/IC3NXF+/fn2Tj9NPLeeee6706NFDvvOd78iHH37Y7O85deqUlJaWNrgAQH21tbUyefJkmTJliowbN0527dolVVVV5nsaQLRqu23bNnnllVfkBz/4gZSVlbEDAT9URo4cOSI1NTXSqVOnBrfr9R07dkR8zHnnnWeqJhdeeKGUlJTIz372M7n00ktNIOnevXvEx8ybN09+9KMfxbJpAJLUVaIVClu/OxaLFi0yx6T7779f9u7da4KIHocKCwulS5cu5qK0KtuhQwc5evSotGnTJkVbD6BVu2liNXjwYHMJ0yDSt29fefzxx+WBBx5ocrqejksJ08qIVlUApJZ2qcbaVWJDcXGx6XrRKb0aMHr37m3WG9GuGg0j9Wk1Vz9EcQwBfBJG9NNFenq6HDx4sMHtej3aMSGZmZnSv3//ZtcE0IOKXgAgkqlTp8rw4cPNWJFwt4x+yGk8o0arIdqF88tf/pIdCfhlzEhWVpYMGDBA1qxZ06DfVq/Xr340Rz+h6HoA4RIqAMRi1apVsnbtWnn00Ucb3K4VkfphRMeejRo1ygys14osAB9102j3yfjx42XgwIEyaNAgM0hMB4aFZ9fop5Bu3bqZcR9K+3MvueQS+drXvibHjx+XRx55RPbs2SO33HJL8lsDwPdGjhwpx44dO+32J598ssEU5e9///vyrW99y8yqAeCzMHLdddfJ4cOHZc6cOXLgwAG5+OKLZfXq1XWDWnUgmc6wCdODhk4F1vueeeaZprLy1ltvSb9+/ZLbEgD4wl//+lezJpIOnP/9739vbvvtb3972ngSAO4QcvQjhMvpAFZd9lln4+gCagCS4+TJk/Lxxx9Lr169Ar0yMvsBsPv+zblpAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBIBn6Rl5s7OzZcyYMbY3BUBrnijPL/SUPBVVNbY3A43kZqZLKBRivyAqM2fOlO7du8udd95pzhCuZwcH4D2BDSMaRPrNedn2ZqCRfl3yZeVtg8WNeSSZQckNYVjb43V6Aq6JEyfKtGnTZMuWLYEJI6l4/fj9g0Aq/+b8vu9aQ2DDCNxp26elcv7cl30dlPQ82dcuWW/aars9T03oL7WOIzW1n19sSgtJXAf06upqycvLk61bt8ro0aPFptYImal6/Qw898wvXt/ufFNNZN+m+m/O7fvOCwIbRjTJbrt/mO3NgMveoL0alOJtz1WL3pT/+mZHqT70mYQyTln/m/zK2WfE/Lj77rtPTpw4IVu2bK0LVPEGm4rKaqlNqxa/voab886eY/LPskrJy3Jfxczt+zaefRdPNcVpJpB5vToTcrR1LldaWmrKsSUlJZKfn297c5Aibui6aM0Doa0uqfrt6dY23YSRjl27Sygj6/NvnjwpVuTkaIKI6SHbPnhPxo0eJpf8vyFSvG+vPL9mvbm9qvwzmTxmtKma6OXOO6fKLZMmNflzTp48Ke9s2SH3vnZQij9z32swla+f8soaGfjj1yQIkv03l8i+i3VbnBaOQ26tzkT7/k0YAQLYRx9uz6mTJ2X/J3ulZ89ekpOTI7Xl5bJ74EAr21T1wlqR3Nyo719bWys3jrxCBlxymRT2HyD3Tpssb+8slszMTKmpqZHKylOSm5sn5eVl8t2hl8ryF1+Xdme2j/iznOpKObT/E/mv1w8lHEZaK2Qm6/WjrwV9k9NP926X6L5N9t+c2/bdO7OGNlmdsXW8iTaMBLabBoiF/hHnZWX4rj1ptRmSFgpJetrnl5D2b1jSt0u+pOXlRX3/n//8USkrPSaPzX9Y9u7dK3dXVUl66aeS27mXVOjBN/fzn1V1qtJ8rIymCPzVs8+QV/7jkoSChNfK5bqt+gbvxqqk2/dtPPsu0Uprv0aBrH51prkqjVsrJ2H+OboCSFgoN1fO27zJ2u+O9kBZXFwsc+fMkeXLl0t+2zOkz3lfN+uNbN/2oVx/YaHo0JHjx4/Lt745RHbt2iU/+elP5fILvtJsN01GeY48flNfyc0O3mHRb2Hb7fvuxamXxx3+chsFMr2uQaOl6kxL41psBz1efQDq6MEoFEN1wpapU6fK8OHDZcSIEeZ6RkaG9O3b18yo0Takh0TOan+mvP/++3Lw4EG55ppr5HvXXiudOnWK+PO0KqQVIrd+aoS/JDP8hVqoznilcsIKrAA8ZdWqVbJ27Vp59NFHG9xeWFhowkhjGkAuuugieeONN1pxK4HWDzd5ES5ntckyQaMlWjmx2VVHZQSAp4wcOVKOHTu9JP3kk0/Wfa3VEF17pG3btmbg3F/+8he5/fbbW3lLAftCMVRObCKMAPCdPXv2yK233moGrepFl4vXygkQRKFmuoXqr7llc1VmwggA3xk0aJC89957tjcDcL2QSwYvM2YEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEQ1Xlb/ExPugfAHvvzeQBYo2e41al9hw8flrPPPjtwy6FrCKusrDTtT0tLk6ysLNubBAQSYQQIsPT0dOnevbt88skn8o9//EOCSldrPeecc0wgAdD6CCNAwJ1xxhnSu3dvqaqqkqAGMj3RXtCqQoCbEEYAmDdkvQCADdQkAQCAVYQRAABgFWEEAABYleGlNRBKS0ttbwoAAIhS+H27pbWMPBFGPvvsM/N/jx49bG8KAACI4328oKCgye+HHA8svairI+7fv1/atm3rqul3mvg0IO3bt0/y8/MlKGg3z3dQ8FrntR4EpSl8L9OIoUGka9euza7j44nKiDZAF2ZyK33yghRGwmh3sAT1+Q5y22l3sOSn6HXeXEUkjAGsAADAKsIIAACwijCSgOzsbJk7d675P0hoN893UPBa57UeBNkueC/zxABWAADgX1RGAACAVYQRAABgFWEEAABYRRgBAABWEUYa+ctf/iJXXXWVWS1OV3v9/e9/3+TOu+2228x9Fi5c2OD2o0ePyo033mgWj2nXrp1MnDhRTpw4IV5td1VVldxzzz1SWFgobdq0MfcZN26cWRXX6+2O5jnXMd5z5syRLl26SG5urgwdOlR27drli7bXV1NTI7Nnz5ZevXqZdn71q1+VBx54oME5JaLZF15UXFwsY8eOlbPOOsu0S1/r77zzju/bXd/DDz9sXv8/+MEP6m47efKk3HHHHWa/nHHGGfLd735XDh48KF42b948+Zd/+RezonfHjh1l1KhRsnPnzgb38WO7m7N48WLp2bOn5OTkSFFRkWzcuFFaG2GkkbKyMrnooovMk9Oc559/Xt5++23zBtaYvil9+OGH8uqrr8qqVavMm92tt94qXm13eXm5bN682bxR6f/PPfec+eO9+uqrPd/uaJ7zn/70p/Lzn/9clixZIhs2bDCBbNiwYeaA5fW21/eTn/xE/vd//1cee+wx2b59u7mubV+0aFFM+8Jrjh07JpdddplkZmbKSy+9JNu2bZP58+fLmWee6et21/e3v/1NHn/8cbnwwgsb3H7XXXfJCy+8ICtXrpQ///nP5gPINddcI16m7dCgocdv/XvVD1vf/va3zXHAz+1uyooVK2T69Olmaq8e3/VYqK/tQ4cOSavSqb2ITHfP888/f9rtn3zyidOtWzdn69atzrnnnuv893//d933tm3bZh73t7/9re62l156yQmFQk5xcbGn213fxo0bzf327Nnjm3ZHanttba3TuXNn55FHHqm77fjx4052drazfPlyX7V9xIgRzs0339zgtmuuuca58cYbo94XXnTPPfc4l19+eZPf92u7wz777DOnd+/ezquvvur867/+qzNt2rS6NmZmZjorV66su+/27dvNa339+vWOXxw6dMi06c9//nOg2h02aNAg54477qi7XlNT43Tt2tWZN2+e05qojMRx0r6bbrpJ/vM//1POP//8076/fv16U6YfOHBg3W1a0tXz6+gnKr8oKSkxJV1tq5/b/fHHH8uBAwdMW+qfZ0FLmdpmP7X90ksvlTVr1sjf//53c/3999+XN998U4YPHx71vvCiP/7xj+a5u/baa03Zvn///vLLX/6y7vt+bXeYVglGjBjRoH1q06ZNpmpQ//Y+ffrIOeec44t21z+Wqfbt2weq3aqystK0t35b9bil11u7rZ44UZ6baOk6IyNDpk6dGvH7etDSA1p9en99oev3/EBL0zqG5IYbbqg7qZJf2x3e9k6dOjW4Xa+Hv+eXts+YMcOcvVMPvOnp6WYMyYMPPmi6oKLdF1700Ucfme4pLVXfe++9pstC/76zsrJk/Pjxvm23euaZZ0xpXtvcmLZN90H4A4ef2l3/w6WOkdFuugsuuCAw7Q47cuSI+TuP9NresWOHtCbCSAw0QT766KPmj1erAkGknxi+973vmQF9egCHfzz77LPy9NNPy7Jly0zV77333jMHah0XpW/KfqVvSFoZeeihh8x1rYxs3brVjA/xc7v1dPHTpk0z4yZ04GIQaVVIn2utAMIuumli8MYbb5hBPVqu00++etmzZ4/88Ic/NCORVefOnU8b+FNdXW1mW+j3/BBEtM16AKt/qmm/tju87Y1H0uv18Pf80nbtetTqyPXXX29mk2h3pA7k09kH0e4LL9IZMv369WtwW9++fWXv3r2+brd+uNLX7Te+8Y2645kO1tSBuvq1fjrWMv7x48d91e6wKVOmmMHmr7/+unTv3r3udm2bn9tdX4cOHUwV1A2vbcJIDPTg/MEHH5hPjOGLfmrUg/jLL79s7jN48GDzItY/9LC1a9eaT1/ax+z1IKLTGV977TUz5a0+v7Zbp7nqH6WOpQjTrgwdC6Jt9lPbddaU9hfXpwcqbUe0+8KLtETfeGqnjps599xzfd3uK664QrZs2dLgeKYVIu2WC3+tM4zqt1v3k4Y0L7dbq7oaRHRGpP6d6vNb34ABA3zZ7ki0O0rbW7+t+veu11u9ra06XNYjI8vfffddc9Hds2DBAvN1eNZIY41n06grr7zS6d+/v7NhwwbnzTffNCPVb7jhBser7a6srHSuvvpqp3v37s57773nfPrpp3WXU6dOebrd0TznDz/8sNOuXTvnD3/4g/PBBx843/nOd5xevXo5FRUVnm97fePHjzezxFatWuV8/PHHznPPPed06NDBufvuu+vuE82+8BqdGZaRkeE8+OCDzq5du5ynn37aycvLc5566ilftzuS+rNp1G233eacc845ztq1a5133nnHGTx4sLl42e233+4UFBQ469ata3AsKy8v93W7m/LMM8+YmWG/+c1vzMzAW2+91bzWDxw44LQmwkgjr7/+unlDanzRA3W0YeSf//yneSM644wznPz8fGfChAnmDc+r7dY3pkjf04s+zsvtjuY516mds2fPdjp16mT+aK+44gpn586dDX6GV9teX2lpqXkj0oNwTk6O85WvfMW57777GgTOaPaFF73wwgvOBRdcYNrUp08f5xe/+EWD7/u13S2FEQ1b//7v/+6ceeaZJqCNHj3avHF7WVPHsl//+te+bndzFi1aZP7us7KyzFTft99+22ltIf2ndWsxAAAAX2LMCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAQGz6/57sWxfNOZVHAAAAAElFTkSuQmCC",
|
|
240
|
+
"text/plain": [
|
|
241
|
+
"<Figure size 640x480 with 1 Axes>"
|
|
242
|
+
]
|
|
243
|
+
},
|
|
244
|
+
"metadata": {},
|
|
245
|
+
"output_type": "display_data"
|
|
246
|
+
}
|
|
247
|
+
],
|
|
248
|
+
"source": [
|
|
249
|
+
"n_time_bins = len(change_times) + 1\n",
|
|
250
|
+
"for s in states:\n",
|
|
251
|
+
" estimates = [\n",
|
|
252
|
+
" log_summary[f\"birthRatei{i}_{s}_median\"].median() for i in range(n_time_bins)\n",
|
|
253
|
+
" ]\n",
|
|
254
|
+
" plt.step(change_times, estimates[:-1], label=rf\"$\\lambda_{{{s}}}$\")\n",
|
|
255
|
+
" plt.legend()\n",
|
|
256
|
+
"plt.gca().invert_xaxis() # This reverses the x-axis"
|
|
257
|
+
]
|
|
258
|
+
},
|
|
259
|
+
{
|
|
260
|
+
"cell_type": "code",
|
|
261
|
+
"execution_count": 39,
|
|
262
|
+
"id": "b3f4b7c8",
|
|
263
|
+
"metadata": {},
|
|
264
|
+
"outputs": [
|
|
265
|
+
{
|
|
266
|
+
"data": {
|
|
267
|
+
"text/plain": [
|
|
268
|
+
"1378"
|
|
269
|
+
]
|
|
270
|
+
},
|
|
271
|
+
"execution_count": 39,
|
|
272
|
+
"metadata": {},
|
|
273
|
+
"output_type": "execute_result"
|
|
274
|
+
}
|
|
275
|
+
],
|
|
276
|
+
"source": [
|
|
277
|
+
"len(trees[0].get_leaves())"
|
|
278
|
+
]
|
|
279
|
+
},
|
|
280
|
+
{
|
|
281
|
+
"cell_type": "code",
|
|
282
|
+
"execution_count": 31,
|
|
283
|
+
"id": "3548e424",
|
|
284
|
+
"metadata": {},
|
|
285
|
+
"outputs": [
|
|
286
|
+
{
|
|
287
|
+
"data": {
|
|
288
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOYtJREFUeJzt3Qt4lOWZ//E7CTmiHBQhHGKgLpeAIkehCF3pShsPfy1KLRUVhIqXrBQUuwoKuChKd1kRQVpaWqorWkGL2oqiFkWlRqgJoVIlwnIUDYdSCSYhgeT9X/djZzo5z0xm5j19P9c1kBlmkvedkJlf7ud57ifJsixLAAAAbJJs1xcGAABQhBEAAGArwggAALAVYQQAANiKMAIAAGxFGAEAALYijAAAAFsRRgAAgK1aiQvU1NTI559/LmeeeaYkJSXZfTgAACAM2lf1xIkT0qVLF0lOTnZ3GNEgkpOTY/dhAACAKBw4cEC6desWuzDy7rvvysKFC6WgoEC++OILefHFF2X06NGN3l/vc/fdd8uHH34ou3btkmnTpsnixYsj+ppaEQmcTJs2bSI9ZAAAYIPS0lJTTAi8j8csjJSVlUm/fv1k0qRJct111zV7/8rKSjnnnHNk9uzZ8thjj0k0AkMzGkQIIwAAuEtzUywiDiNXXHGFuYSre/fu8vjjj5uPV65cGemXAwAAHufIOSNaTdFLaJkHAAB4kyOX9i5YsEDatm0bvDB5FQAA73JkZWTWrFkyY8aMehNgAABw2tLV06dPS3V1tfhRSkqKtGrVqsVtNxwZRtLT080FAACnqqqqMitGy8vLxc+ysrKkc+fOkpaW5q0wAgCA05tx7tmzx1QGtKGXvhH7rSmnZVkmkB05csQ8Fz179myysVlMw8hXX31l+oUE6AEUFRXJWWedJeeee64ZYjl48KD87//+b/A++u+Bx+pB63X9xvXp0yeqgwYAwE76JqyBRKcQaGXArzIzMyU1NVX27dtnnpOMjIzEhBFtXvbtb387eD0wt2PChAny5JNPmpLV/v37az1mwIABwY+1Wdqzzz4rubm5snfv3qgOGgAAJ4i2EuAlyTF4DiIOIyNHjjSlmcZoIKmrqfsDAAB/I9IBAABbEUYAAICtfLuaRoeOrIqKmHyupMxM382iBgAgVvwbRioqpHjgoJh8rvTevaX7qqd1JyCJFQIOAMAvfBtGYqnyk0+keNDgmH7OzIEDJfeZVVRcAMBFFfeKU/Z0Ys1MTYno/WLTpk1mZeyJEyeCy3F1hWuPHj3M37riNZF8G0a08nB+YUHLPollyd6bbjZhJNYqCgtN9SbJx+vXAcBNNIj0mfu6LV/74wfzJCst/Ld07ffVu3fvWn1Btm7dKu3bt094EPF3GElKiskbfY+1v4vZ3BNVU1EhO4ePiNnnAwCgrm3bttXqARYIKP369Qtef+WVV+Tuu+82zd3uvfdeufXWWyVefBtGnBZqAADupkMlWqGw62tHQoPHuHHjat2mlZH+/fubj3XzP21q+vbbb0vbtm1l0KBBcu2118rZZ58t8UAYAQAgRr+cRjJUYpfq6mrZvn17vcpIYWGhjBkzxny8ZcsWueCCC6Rr167m+hVXXCFvvPGG3HDDDXE5JvqMAADgI8XFxXLy5EmzwV9Afn6+2VcuUBn5/PPPg0FE6cf67/Hi/AjnYzp/JBwsAwYAhCuwee3SpUtl2rRpZvNb/VvpZnd2IIw4WLgTWVkGDACIJIzk5eXJ7t27pW/fvtKnTx+ZN2+eTJkyRZYsWSJPP/20qZqEVkL04yFDhki8EEYcRqscGi50aW+4WAYMAIhkJc3FF18s8+fPr3V76IRWDR46r0RDiE5gfe2112TOnDkSL4QRB06A0mZn4SwXZhkwACCaMDJp0qQm79OqVSt59NFHTWM0Xdp7zz33xG0ljfl6cfvMiBrLhQEA8VBSUiKHDh0ywzPNueaaa8wlEQgjAAD4RHZ2tmlb7zQs7QUAALYijAAAAFsRRgAAgK0IIwAAwFaEEQAAYCtW0/isdXwo2sgDAJyAMOKz1vGhaCMPAHAChmk80Do+WoE28gAA2InKiE9ax4eijTwAwEl8G0a0A13F6dhUBTJbZZpgYAdaxwMA3M63YUSDyNBnh8bkc/U6q5c8dflTEkt2BhwAABLJt2EklnYc2xGzYBMwoOMAE3AIJADgErrny6lye752apaWysO++6ZNm8yOvCdOnJCMjAxz2969e6VHjx7m79zcXEkk34YRrTxsHre5xZ9nwvoJJozE2tbDW031Jkv/gwEAnE+DyCNd7Pna930uktY67LsXFRVJ7969g0FEbd26Vdq3b5/wIOLrMKIVh1i80a/5f2tiNvdE6ecauWakOLk/STzR+wQA4m/btm0yYMCAegGlX79+wevXXnutbNy4US677DJ54YUX4no8vg0jTgs1bupPEk/0PgHgWvpeoBUKu752BDR4jBs3rtZtWhnp379/8Pr06dNl0qRJ8tRTsZ0T2RDCiI/7k2ifEacJ9D5JynJvwAPgUzpnI4KhErtUV1fL9u3b61VGCgsLZcyYMcHrI0eONJWRRCCM+FC0/Uniid4nAJAYxcXFcvLkSenS5Z/zW/Lz8+XgwYO1KiOJRBjxKfqTAIA/FRUVmb+XLl0q06ZNk127dpm/VVVVlS3HRDt4B9PJrOWnypu9aAM3AADCDSN5eXmye/du6du3r9x///0yb948adOmjSxZskRcURl59913ZeHChVJQUCBffPGFvPjiizJ69OgmH6NjTjNmzJC//vWvkpOTI7Nnz5ZbbrmlJcftC+GuqqEnCQAgkpU0F198scyfP7/W7XUntDq6MlJWVmaW/ixbtiys++/Zs0euuuoq01xF09idd94pt956q7z++uvRHK8v+p9ouIimJwkAAOGEEa2INGfUqFFy/fXXy6uvvirdunUz80ocUxm54oorzCVcy5cvNx3dHn30UXNdm6xo57fHHnvMlIlQfy6Hdl4NJ1wkuicJAMDdSkpK5NChQ2GFkT/+8Y/imQmsmqQ0XYXSEKIVksZUVlaaS0Bpaan4idt7l3itEVsADdkAuF12drYj5xm2SkQK69SpU63b9LoGjIqKCsnMzKz3mAULFpjJNPAnpzViC6AhGwD4aDXNrFmz5Pjx48HLgQMH7D4kJKgRm5MFGrIBAFxWGdGSkI5PhdLruoSooaqISk9PNxf4hxMbsQXQkA0AXB5Ghg0bZmbihnrzzTfN7UAoGrEBgD9FPEzz1VdfmSW6gQ5uunRXP96/f39wiGX8+PHB+99+++2msco999wjO3bskJ/97GeyZs0aueuuu2J5HgAAwC9h5MMPPzSb6wQ22NFmZvrx3LlzzXVthBYIJkqX9a5bt85UQ7Q/iS7x/dWvfsWyXgAAEN0wje7i19SyoCeffLLBx+jWxIifaJqeaYM1HRoBAMBObJTnEdE0P6ONPADACRy5tBfxax0fijbyAAAnoDLik9bxoWgjDwBwEiojHmkdH8lFKyoAAP/atGmTpKamysmTJ4O37d2717yn7Nu3L+HHQ2UEAIAY0MUddu2gnhnhggRtyaEb12ZkZARv04Um7du3l9zcXEk0wggAADGgQWTos0NteS43j9sc0Qar27ZtC7boCA0o2oJD6TYsN998sxw+fFhatWolc+bMkeuvv17ihWEaAAB8pqioSPr371/rNq2MBG7TALJ48WL5+OOP5Y033pA777xTysrK4nY8VEZ8zq6SYmPofQLArfT1SysUdn3tcFVXV8v27dvrVUYKCwtlzJgx5uPOnTubS2CPuQ4dOsixY8ekdevWEg+EEZ+Lpj9JPDm994lumhfLnYqdep4Aol9Q4HTFxcVm4mqXLl2Ct+Xn58vBgwfrVUtUQUGBCTA5OTlxOybCiI/7k2ifEacJ9D5x6g/0zuEjYva5MgcONDsVE0gAJFJgb7mlS5fKtGnTZNeuXeZvVVVVVeu+Wg3R/eZWrFgR12MijPhQtP1J4snJvU+0gqHBoaKwMKafVz+fVVEhSVnODF4AvBtG8vLyzCa2ffv2lT59+si8efNkypQpsmTJEnn66afN/SorK2X06NEyc+ZMueSSS+J6TIQRn3JLOdEpz5VWMDQ4xGqoJ5YVFgCIhK6kufjii2X+/Pm1bh83blytZcq33HKL/Nu//ZtZVRNvhBEgzEBCBQOAV8LIpEmTmrzPn/70J1m9erVcdNFF8tJLL5nbtGKilZR4IIwAAOATJSUlcujQoWZDxYgRI6SmpiZhx0UYAQDAJ7Kzs80QjNPQ9AwAANiKMAIAAGxFGAEAALYijAAAAFsxgRWO46RmbKHYNwcA4oMwAsdxaidWp++bAwBuxTANHLVfjpMF9s0BAMQWlRE4ghP3y3HDvjkA4AWEETgG++UAgD8xTAMAAGxFZQSwke7gG4mkzEwm0ALwHMIIYKOdw0dEdP/MgQMl95lVBBIALbJp0yb59re/LSdOnJCMjAxz2969e6VHjx7m79zcXEkkwgiQYFrd0FBRUVgY8WP1MVZFhSRlZcXl2ABETzeg059POyRFWDUtKiqS3r17B4OI2rp1q7Rv3z7hQUQRRoAE0xcMrW5E8qKlwzmRVlEAJJb+TBcPHGTL035+YUFEv6Rs27ZNBgwYUC+g9OvXz3z85ZdfyqhRo+T06dPmMn36dJk8ebLEC2EEsCmQUN0AYJeioiIZN25crdu0MtK/f3/z8ZlnninvvvuuZGVlSVlZmVx44YVy3XXXydlnnx2X4yGMAAAQo6ESrVDY9bXDVV1dLdu3b69XGSksLJQxY8aYj1NSUkwQUZWVlV8PQVmWxAthBAAAH1U8i4uL5eTJk9KlS5fgbfn5+XLw4MFgZSQwVHPppZfKzp07ZeHChdKhQ4e4HRN9RgAA8NkQjVq6dKkJGq+99pqMHz/e3FZVVSUB7dq1M3NL9uzZI88++6wcOnRI4oUwAgCAz8JIXl6e7N69W/r27Sv333+/zJs3T9q0aSNLliypd/9OnTqZia3vvfde3I6JYRoAAHxk27ZtcvHFF8v8+fNr3R46oVWrIDpnRCeyHj9+3ExmnTJlirMqI8uWLZPu3bub9clDhw6VLVu2NHrfU6dOyYMPPijnnXeeub+mq/Xr17fkmAEAQAvCiFZEmrJv3z751re+Zd6z9e8f//jHzT4moZWR1atXy4wZM2T58uUmiCxevNiUe3RCTMeOHevdf/bs2bJq1SpZsWKF9OrVS15//XW59tpr5f333683kxdwuljuKpzZitbuABKrpKTEVD2aCxZDhgwJzi1JhCQrwrU6GkC0vPPEE0+Y6zU1NZKTk2NS08yZM+vdX2fr6njUHXfcEbxNlw5lZmaakBKO0tJSadu2rSkV6ZgWkEjlp8pl6LNDY/55B3QcIE9d/lRYXRNrysuDzZR06WCyC2bsA16mq1F0Yqe2Tw/tYupHJ5t4LsJ9/45omEZn2RYUFJiubMFPkJxsruuyoIbo+uS6B6dBRPviN0YfoycQegHsohUMDQ6xtvXw1phWWgDArSIapjl69KhplqIza0Pp9R07djT4GB3CWbRokfzrv/6rmTeyYcMGWbt2rfk8jVmwYIGZ2Qs4gVYutIIRq+Cgn2fkmpEx+VwA4AVxX9r7+OOPS8+ePc18kbS0NJk6dapMnDjRVFQaM2vWLFPSCVwOHDgQ78MEmg0kWalZMblopQUAEGUY0e5r2iK2buMTvZ6dnd3gY8455xx56aWXTG97nZ2rFZQzzjhDvvGNbzT6ddLT083YUugFAAB4U0RhRCsbgwYNMkMtATqBVa8PGzasycfqvJGuXbua3f9+97vfyfe+973ojxoAAAeI534tfnoOIl7aq8t6J0yYIIMHDzZLf3Rpr1Y9dOhFaUtZDR0670Nt3rw52O9e//7P//xPE2DuueeeFh88AAB2SE1NNX+Xl5ebRRl+Vl5eXus5SUgYGTt2rBw5ckTmzp1r1itryNAmZoFJrfv37681H0SX/GivEW07q8MzV155pTz99NOm5z0AAG6kUxb0fezw4cPmunYrDWeZvtcqIuXl5eY50OdCn5OE9RmxA31G4NW+JZvHbTaTWptDnxHAefTtU38p191t/axdu3Zm3mhDYSzc92/2pgEAIAr65tu5c2fTfVy3PvGj1NTUFlVEAggjAAC0gL4Zx+IN2c8IIwAA+Hioyar4uqFjUqZ9+2XFvekZAABwJquiwux7pZdAKLEDYQQAANiKYRrARuHud1Nzig31AHgXYQSwUbgb5qVXWfL0Pz52wWp8AIgIwzRAgulGeQM6Doj68RWnT8b0eADAblRGgATT2epPXf5U2EM0qvzEMTny6HfielwA/MWyLKmxcdJqKMIIYFMgCafzakBNijNeMAB4J4jsG3ejVGzdWus2uzBMAwCAz1gVFbWCyI5uIiej3+euxaiMAADgsyZnNSHDM7dOS5HSLJE8Gzf6I4wAAODToRlVqRURm3ccZpgGAAAfDs2o9AH9vg4jNqMyAgCAz/T80yZJzsyUilaWyG+/affhEEYAAPDikExFSPsA7W8USoNIclaWJJ0qFyegMgIAgMeCyPjXxkvRkaLgbb3O6iW/+dflwevlpyok+ZQ4hn/DiK6njlUi1H4RNk/+gX+YmfCpzf/ftXM7cAD2qThdUSuI6PvdnpJPJO+ZS+VX/7hp5JpLpTItSXLb5IoT+DeMaBB5pEtsPlfON0UmrSeQICE+GxleJ9bMgQMl95lVBBLAx966/i0pvPZyOXdfw7/A7CvdJ07AappYOPCBSNlRkaqy2F3YDA0hkjIzTFOiSFQUFpoqCgD/yjyVXC+I6AqadyZsNkM3AbpfVt15JYnk38qIDq3c93nLPkdVucj//MvXHwf+jhWqLQihwy1zb0qR9FMiG3/wjmSlNv6ioc2Mdg4fwfMHoMEVNIEh3DX/b01wkqsGETuHdf0bRvRJT2vd8kCjoUErI7Gmn1OHklp6jPCOpCSpTBNJzsqU5Aj2tQGA0BU00e6RFU/+DSOxCjQ6VySWS6NCqy0AAES4jDeSHcGdgjDihAoLAAAxWsbrRkxgBQDAK8t4Q3w9KTVD3IDKiJPpkE046HMCAL638Qcba62I0Y/dsqKOMOJk4c4dYeUNAPheZqvMehNSLZc8KwzTOE1ghU40K28AAHAhKiNuXqHDyhsAgAcQRpyIFToAAB8hjAAA4MJ+Im7tKdIQwggAAA5neaSfSGOYwAoAgIv7iThho7uWojICAICL+4k4YaO7liKM+K1BWiiapXme7uDbmMDOnQDc30+koWEdbXjW1GuA68PIsmXLZOHChVJSUiL9+vWTpUuXypAhQxq9/+LFi+XnP/+57N+/Xzp06CDf//73ZcGCBZKR4Y42ta4QzeZ6NEvzvJ3DRzT6b5kDB0ruM6sIJIADJqI2J5L76+ffN+5Gqdi6Vdwi4jCyevVqmTFjhixfvlyGDh1qgkZeXp4UFxdLx44d693/2WeflZkzZ8rKlSvlkksukU8//VRuueUW8wK4aNGiWJ2HvxukadOzaASapbHRn6doxUODRkVhYZP303/X35ySQrYUB+D+iahWRUW9IKKvCfra4JkwogFi8uTJMnHiRHNdQ8m6detM2NDQUdf7778vw4cPl3Hjxpnr3bt3lxtuuEE2b94ci+P3t0gapIWiWZqnadDXikdje1Jo2bapigkA+yaiNifSiao9/7RJknVI1uHDshGFkaqqKikoKJBZs2YFb0tOTpZRo0ZJfn5+g4/RasiqVatky5YtZihn9+7d8uqrr8rNN9/c6NeprKw0l4DS0tJIDtNfaJCGBv9bJFHxAFw4EbU5kU5U1SCS7ILqZ0Rh5OjRo1JdXS2dOnWqdbte37FjR4OP0YqIPm7EiBGmPHX69Gm5/fbb5b777mv06+h8knnz5kVyaIBvhDt27PbZ9YDXhTMR1S/ivppm48aN8sgjj8jPfvYzM8dk165dMn36dHnooYdkzpw5DT5GKy86LyW0MpKTkxPvQwVcYeSakWGXc5+6/CkCCeCgSape6ZhqaxjRlTApKSly6NChWrfr9ezs7AYfo4FDh2RuvfVWc71v375SVlYmt912m9x///1mmKeu9PR0cwHwz9+gNFxsPRz+7Hi9r77w8ZsXkFhe75ZqexhJS0uTQYMGyYYNG2T06NHmtpqaGnN96tSpDT6mvLy8XuDQQBP4hsGF/Uniid4nDdLhFq1yhPNbld4n3OoJAHsmqbq9Y6rtwzQ6fDJhwgQZPHiwmZCqS3u10hFYXTN+/Hjp2rWrmfehrr76arMCZ8CAAcFhGq2W6O2BUAKX9SeJJ3qfNBlIqHIA3pikypyuFoaRsWPHypEjR2Tu3Lmm6Vn//v1l/fr1wUmt2tgstBIye/Zs8yKqfx88eFDOOeccE0QefvjhSL80nNKfJJ7ofQLAQzvpMkk1jhNYdUimsWEZnbBa6wu0aiUPPPCAucDl/Uniid4nAFyGuSGxw940fkV/EgBoEa/vpJtIhBHAx5y0iZbTO0QCfttJN5EII4CPOaktPBv3wc2YG9Iy9Zt8APDFRnpOE9i4D4D/UBkBfKa5jfQSjY37ABBG4DxOa8TmwYZsbKQHwEkII3AepzViC6AhGwDEBWEEzuDkRmwubsjWVPt4ZvoD3ul3YoUMuzpplVy4CCNwBic2YvNAQ7am9qhhV1/AG0Fk37gbpWJr+JtoOhFhBM5BI7aE7vDLrr6A+1kVFY0GEV01p6vn3IAwAvhsh1929QW8qeefNklySPhwUyNBwgjgQezwC/hPcmamJGdliRvR9AwAANiKMAIAAGxFGAEAALYijAAAAFsRRgAAgK0IIwAAwFYs7QV8rKl28YlSc8r+YwDc2Pbdra3fG0IYAXysqXbxiZJeZcnTIS+2ALzb9r0xhBHAZ8JtF2+HitMn5Qxxz0aE8NabfaSVwkRWFq0m2r5H1PpdA39je4DphqU2dWwljACRbpoXKzb94DfXLj7Ryk8ckyOPfsfuw4DPg8j418ZL0ZEicWPb92ZbvwcCiP79m8tFSj5q+H73fW7bruSEESASsdy9N+ebX+9UbFMgydIw5AA1Kc4IRfAvDeYtCSJaadSKoyPbvluWyMo8kQObxckII0Bz9E1bg8OBD2L7XOnn099WbPpNBEB9G3+wMeJgofd37IZ0p8rrB5HsviITG/hFyMZfUAgjQHP0B1YrGI2Ns0Yz1BPLCguAmNFg4ZSqYYsEhmZCh5Z/skskLcvWuSGNIYwA4dAfXCoYANzAamRoRoOIQ1/HCCMAANjcL6Q5EfUTaWhoRoeaHVzxIYwAcAx9ga5JbflwWJMrCwCv9Qux6izXdcnQTCjCCADH+GxkbJb4as+F3GdWEUjgOM31C2lOvX4iza2WcfDQTCjCCABbJWVmyI5uIr0+i93nrCgsNC/6SeEufwQc0i8k4qpfQ0MyLhmaCUUYAWArfWGde1OKpJ/SZZXvSFZq9P0adFx95/ARMT0+wBH9QhrrntrQkEyAw4dmQhFGANgvKUkq00SSszIl2SW/yQEJZYXRvMwlQzINIYwAAHy994xtWyNoVaNVmJtD6n2bCiIuGpJpCGEEAOBpduw909jy3ZrykGEVbX4YbhgJVXc4xmVDMg0hjAAAPC3cvWditcdMXJbvhlZAWndwdfCIWRhZtmyZLFy4UEpKSqRfv36ydOlSGTJkSIP3HTlypLzzzjv1br/yyitl3bp10Xx5AABivvdMVHvMNDCp1CorbzaIZHaolKR7PxVJj3COh8srIDELI6tXr5YZM2bI8uXLZejQobJ48WLJy8uT4uJi6dixY737r127VqqqqoLX//a3v5kAc/3117f86AG3C50J7+MXIsCVe8/oUMyvvyvW3j/XurnmtP6MZpuPe44ukeQGhmKSug+RpDPO4ec52jCyaNEimTx5skycONFc11CiFY6VK1fKzJkz693/rLPOqnX9ueeek6ysLMIIoCLdME9LtLppH4EEsJ1VVSb7ntwtFUc7N3qf5Hs/leTWDYQffrGIPoxohaOgoEBmzZoVvC05OVlGjRol+fn5YX2OX//61/LDH/5QWrd25/IjoMX0RUhDxYEPIn+sPkZLwi5dvteclq5qqDlVEd1eHv9AG3lEwqo4KRVH05rultrOe/M7bA8jR48elerqaunUqVOt2/X6jh07mn38li1bZPv27SaQNKWystJcAkpLSyM5TMDZ9IVJqxt1mxc1N5wTaRXFhUauGdmix6dXWfL0Pz6OpvkZbeQRrZ5vvyHJbc+udRvh1qGraTSE9O3bt9HJrgELFiyQefPmJey4AFsCiUerG9GM4esqhq2HW77yoDJVWtRanjby7uwT0pxE9BGJuJsqog8jHTp0kJSUFDl06FCt2/V6dvbXk3UaU1ZWZuaLPPjgg81+HR0G0kmyoZWRnJycSA4VgEvo6oWnLn8qJm8Y+jlGyqURt5anjbyz2dEnBA4OI2lpaTJo0CDZsGGDjB492txWU1Njrk+dOrXJxz7//PNm6OWmm25q9uukp6ebCwD/BJKYrXCgtbxnKhqR9glJVB8ROGCYRisWEyZMkMGDB5vhFl3aq1WPwOqa8ePHS9euXc1QS90hGg0wZ59de0wNAOBN8ahoNNUnpDlR9RGBM8PI2LFj5ciRIzJ37lzT9Kx///6yfv364KTW/fv3mxU2obQHyaZNm+SNN96I3ZEDABwtVhWN0MrGWRlnESg8KKoJrDok09iwzMaNG+vddv7555uEDADwp5ZUNAKobHgXe9MAANzV+RSeQxgB4EmRTJoMbZYGIPEIIwDE7w3UQpulMaQMJB5hBIBnxKKBWsXpk3KG0JAuFkt1E9FsDN5AGAEgfm+gVn7imBx59DtxOy6voPkY4oUwAkD83kCtJoXf4OO5VNcVzcZ0xWck+0WpSO+PRhFGAABxXarr+CW5GkRW5okc2BzZ407rOXWO11H5CmEEAODvpbpa4Yg0iNQV5j5IaBhhBADge1ocsaqTRKb/RSTMkKUbLMoL3/36ipMrPy5AGAEAiN8n5u7b0EEqjqaJvJBn9+H4EmEEAEJYFRVSk1p/YmJSpsPnPSBqVsXJr4NIlDIHDjT/PxA9wggAhPhs5HcafcPJfWYVgcTjer79hiS3jWx3eYJqyxFGAPheUmaG7Ogm0uuzxp+KisJCUzVJyvLIpE00KDkzU5L5HiccYQSA7+nwy9ybUiT9lMj6MeslI+WfJXcNII1VSwDEBmEEAFRSklSmiXz7D1fUej7Yt8YjmmpqRvMy2xFGAPheuHvasG+NSzXX1IzmZbYjjABuUxVmC2rtlcDqjxbvacO+NR5wqlys/Zu/7iPSgBoTRv6B5mW2IIwAbvM//xLe/XK+KTJpPYGkhXva+GHfmnB34nXrLry1+og0hwBvC8II4Ab6Jqnh4sAH4T9G76tj4Wmt43lkvtJYDxI3L/P0w0684fYRoV+IfQgjgBvom5tWOcKZaKfDOOFWTxCRcFbVuK0fSTQ78bpiF94o+oi4LUh6CWEEcAt9kaTK4cgeJF7pRxLuTryO34W3CfQRcSbCCABE2YMkVGg/ErOBWpzF47d4J+/Ea9XUiFV6LKrH1kT5OCQOYQQAouxB0lg/kp3DR8T9ObVrOEjnmGjwSqiaGtl75SVSefhUYr8uEoYwAgAx6EFSmSoRDee0lA4HVR87ZoYdWqLmVIUJUnr8Ya1KGXejVGxt+rlwqsyu6ZLU5iy7DwMNIIwAQJQ9SELpv4+US81wTjzp5//VkuqYVmC0oqNByhpnNXk/rYjYGUTS252S7r/fEPXcKQ0iScnJMT8utBxhBACi7EFSr4LSaWCzFZSWqky14lKB0c+nS2DDfaPv+adN4VVlTBv2Fg7r6Cqyxy+SpBRLktp1YCK3BxFGACCBFZRYmHDWeNlzaEfMKy2ZrTJiuyqluTbskeDdytP49gJ+bR1Pu3hbKiixsObq52MWemrKK+TAkq+He6yTJ6WmiQmxEa8S0opGLIJIgDb+c+hqH7QMYQTwsqaan9Eu3rViGXpqQiauxnUV0E92iaS18JgJ0J5FGAH82jqedvH4R78SXSasq3PCFVXbdA0iNO1DIwgjgN9ax9MuHrX+uySZfiWR9A6hbTpijTACeBGt4xHRf5ek8NvXm9UxYeyR1NycJSAEYQQAEJ5Yro4BQtD9BQAQ39UxrIJBM6iMAADiuzqGVTBoBmEE8DMnjenzhuUurI6B3WFk2bJlsnDhQikpKZF+/frJ0qVLZciQIY3e/8svv5T7779f1q5dK8eOHZPc3FxZvHixXHnllS05dgDx7EOSaPQ9AXwr4jkjq1evlhkzZsgDDzwghYWFJozk5eXJ4cOHG7x/VVWVfOc735G9e/fKCy+8IMXFxbJixQrp2rVrLI4fQLR9SJwm0PcEgO9EXBlZtGiRTJ48WSZOnGiuL1++XNatWycrV66UmTNn1ru/3q7VkPfff19SU79u9de9e/dYHDuAePQhSTT6ngC+F1EY0SpHQUGBzJo1K3hbcnKyjBo1SvLz8xt8zO9//3sZNmyY3HHHHfLyyy/LOeecI+PGjZN7771XUlJSGnxMZWWluQSUlpb6/hsFxBR9SAC4dZjm6NGjUl1dLZ06dap1u17X+SMN2b17txme0ce9+uqrMmfOHHn00Udl/vz5jX6dBQsWSNu2bYOXnJycSA4TAAC4SNz7jNTU1EjHjh3ll7/8pQwaNEjGjh1rJrPq8E5jtPJy/Pjx4OXAgQPxPkwAAOCGYZoOHTqYoZVDhw7Vul2vZ2dnN/iYzp07m7kioUMyvXv3NpUUHfZJS0ur95j09HRzAQAA3hdRZUSDg1Y3NmzYUKvyodd1XkhDhg8fLrt27TL3C/j0009NSGkoiAAAbGjzXlUWxsUhk57hORGvptFlvRMmTJDBgweb3iLaL6SsrCy4umb8+PFm2a7O+1BTpkyRJ554QqZPny4//vGPZefOnfLII4/ItGnTYn82AIDIsN8M3BhGdM7HkSNHZO7cuWaopX///rJ+/frgpNb9+/ebFTYBOvn09ddfl7vuuksuuugiE1Q0mOhqGgCAC/ebYa8ZxFiSZWksdjZd2quranQya5s2bew+HACxpOX/R7pEvt9JU2gtH9/nn+cXMX7/Zm8aAN5rT09r+eiw3wy8urQXABLenp7W8oCrUBkB4J329H5pLa+j67Fq588KGTgAYQSAN9vTR/Mm64a5EKx+gQcRRgB4UzQVEjfMNYlm9Us4WCEDGxFGAHhv/onOGWnJXJNYV2niJVarj9xSFYJnEUYAeEe080/cOteE1S/wCMIIAG+Jx/wTOyaWNoYJp/AgwggAxCJk6H1+c7lIyUc8n0CECCMA0FTlwakhgwmn8BDCCACEaunckey+IhMTsCKHCafwEMIIAISzCifckEFIACJGGAGAcFbhEDKAuCGMAIDdq3AAn2OjPAAAYCvCCAAAsBVhBAAA2IowAgAAbEUYAQAAtiKMAAAAWxFGAACArQgjAADAVoQRAABgK8IIAACwFWEEAADYijACAABsRRgBAAC2IowAAABbEUYAAICtCCMAAMBWhBEAAGArwggAALAVYQQAANiKMAIAAGxFGAEAAO4LI8uWLZPu3btLRkaGDB06VLZs2dLofZ988klJSkqqddHHAQAARBVGVq9eLTNmzJAHHnhACgsLpV+/fpKXlyeHDx9u9DFt2rSRL774InjZt28fzz4AADBaSYQWLVokkydPlokTJ5rry5cvl3Xr1snKlStl5syZDT5GqyHZ2dniJJZlScWpanGqzNQU87wBAOB1EYWRqqoqKSgokFmzZgVvS05OllGjRkl+fn6jj/vqq68kNzdXampqZODAgfLII4/IBRdc0Oj9KysrzSWgtLRUYk2DSJ+5r4tTDc5tL8/fPoxAAgDwvIiGaY4ePSrV1dXSqVOnWrfr9ZKSkgYfc/7555uqycsvvyyrVq0ygeSSSy6Rzz77rNGvs2DBAmnbtm3wkpOTI37z4b6/O7pyAwCAbcM0kRo2bJi5BGgQ6d27t/ziF7+Qhx56qMHHaOVF56WEVkZiHUh0GOTjB/PEacqrqmXw/D/afRgAADgzjHTo0EFSUlLk0KFDtW7X6+HOCUlNTZUBAwbIrl27Gr1Penq6ucSTzsfISot7FmtxMAkH80sAAG4W0btxWlqaDBo0SDZs2CCjR482t+mwi16fOnVqWJ9Dh3k++ugjufLKK6M7Yh8Jt0LC/BIAgK+W9urwyYoVK+Spp56STz75RKZMmSJlZWXB1TXjx4+vNcH1wQcflDfeeEN2795tlgLfdNNNZmnvrbfeGtsz8Qitcmi4iATzSwAAbhbxOMXYsWPlyJEjMnfuXDNptX///rJ+/frgpNb9+/ebFTYBf//7381SYL1v+/btTWXl/ffflz59+sT2TDxCh490FU04k1eZXwIA8IIkSxtuOJxOYNVVNcePHzcN1PC18qrTweXJOhnX6XNgAAD+Uhrm+zd70wAAAFvxq7RHhLvyJhSrcADA36yQbuR2vicQRjwimt4krMIBAH+rCOlGbudwP8M0Plt5E4pVOADgv0pIedXpkIszOn1TGfHJyptQrMIBAH8Gke8vz5eCfX8XpyGMuFxLO8k6JRUHMI8FAOIzL0Rf7xsLIlpl19dfuxBGfM5p++AwjwUA4l8N+XD2KMlKS3HML4LMGfGhls41iSfmsQBA7GhFpG4Q0df/s1unmap64GJnEFFURnwo2rkm8cQ8FgCIr0A1xO4qSEMIIz7lhl2LAQCxo0HEqa/7zjwq+JrTJtUGOPG3CQDwAsIIHMdpk2oDmFwLwI0raNyAMAJHTarVCaxOFZhc69QyJwA4vZ9IY3hVhSM4cVJtAJNrAXhhBU2mjX1EmkMYgWMwqRYA/LOCJhRhBAAAj8py8AqaUDQ9AwAAtiKMAAAAWzm/dgM4SCyXyTl9DBeAu5bxBrhlOW8owghgUw8U+pYA8OMy3oYwTAPYtLEgmwICiMcyXrcs5w1FZQRIcA8U+pYAiMVwTN0hmcAyXjcOBRNGgDDQAwWA04djslyyjLchDNMAAODi4Ri3Dck0xJ0RCgAADw23NKep4Ri3Dck0hDACAICLVr9kuXg4pjHeOhsAABxc/dAKR0uCyGCXD8c0hjAC2CjS5kRuL8UCfggdliVy/fJ8+fiL0iYf29Bwi19fAwgjgIuaqNEoDfDGkIv+LJ/dOs2TwSIahBHApiZq2vQs2kZpXhsvBry4wqVP5zamR1FDecOrFY5o8YoGuKCJGo3SAGfz4gqXRCKMADagiRrgLV5c4ZJIND0DAAC2IowAAABbEUYAAID7wsiyZcuke/fukpGRIUOHDpUtW7aE9bjnnnvOjJWPHj06mi8LAAA8KOIwsnr1apkxY4Y88MADUlhYKP369ZO8vDw5fPhwk4/bu3ev/OQnP5FvfetbLTleAADi0jOkvOp0hJfImhaicRFP/V20aJFMnjxZJk6caK4vX75c1q1bJytXrpSZM2c2+Jjq6mq58cYbZd68efLee+/Jl19+GemXBQDAsfvFIIGVkaqqKikoKJBRo0b98xMkJ5vr+fn5jT7uwQcflI4dO8qPfvSjsL5OZWWllJaW1roAAGBH8zK/7hfj2MrI0aNHTZWjU6dOtW7X6zt27GjwMZs2bZJf//rXUlRUFPbXWbBggamiAACQSOwX48HVNCdOnJCbb75ZVqxYIR06dAj7cbNmzZLjx48HLwcOHIjnYQIAUKt5WSQXuqwmuDKigSIlJUUOHTpU63a9np2dXe/+//d//2cmrl599dXB22pqar7+wq1aSXFxsZx33nn1Hpeenm4uAOoLd9IcragBeDKMpKWlyaBBg2TDhg3B5bkaLvT61KlT692/V69e8tFHH9W6bfbs2aZi8vjjj0tOTk5Ljx/wnXB3+mWHX6D2JNXG9oNiVYwLV9Post4JEybI4MGDZciQIbJ48WIpKysLrq4ZP368dO3a1cz70D4kF154Ya3Ht2vXzvxd93YAsd3plx1+ga+xWsaDYWTs2LFy5MgRmTt3rpSUlEj//v1l/fr1wUmt+/fvNytsANiz0y87/ALRrZZhVYx9kiyNjA6nS3vbtm1rJrO2adPG7sMBHE2bMfWZ+7r5+OMH89hJFL4X+jPR1GoZ5lnZ9/7NfscAAFfP+WhO6JyQwGoZOAvfEcDDmpqYx2+BcAvmfHgfYQTw6cobVtvA6RWN0FAdi1btzAlxLsII4NOVN6y2gRsrGtF0SA2gGuhchBHAZytvWG0Dt+z5UpeG7LNbp9Hx1IMII4BHA0k4k/Sc1OyJ31q9N+wS+v+rJRWNAP6PeBdhBPCxcLu5JgJzWLw97MIqFjSF7mSAT+eUOE1gDgu8N+zCxFE0h8oI4DORdHNNBOawuFMkwy4Mr6A5hBHAh8KdUwI0hmEXxBKvRgDgc+FOSnXShGd4C2EEgGPE6s2OYYHw0d0UTkAYAeC51T2szInvpFQmpCLWCCMAXNExNhL6uf5WVhVxXwu/V1TCnZTq9+cJsUcYAeCZ1T2hK3OiqbK4paISi/1eAtjRFk5AGAHgmdU9La2yRFtRSSTLErl+eb58/EWp3YcCxAxhBID4vcrS0oqKFzAPBHYijAAQv1dZ4jFvJd76dG7zjyGl2Hw+5oHAToQRAL7ntK604SA8wEsIIwBAV1rAVmyUBwAAbEUYAQAAtiKMAAAAWxFGAACArQgjAADAVoQRAABgK8IIAACwFWEEAADYijACAABsRRgBAAC2IowAAABbEUYAAICtCCMAAMBWrti117Is83dpaandhwIAAMIUeN8OvI+7OoycOHHC/J2Tk2P3oQAAgCjex9u2bdvovydZzcUVB6ipqZHPP/9czjzzTElKShInJT4NSAcOHJA2bdqIX3De/vp+K77n/vqe8/3m+x0rGjE0iHTp0kWSk5PdXRnRE+jWrZs4lb5I+emFKoDz9h++5/7C99tf2sTpvaypikgAE1gBAICtCCMAAMBWhJEWSE9PlwceeMD87Sect7++34rvub++53y/+X4nmismsAIAAO+iMgIAAGxFGAEAALYijAAAAFsRRgAAgK0II3W8++67cvXVV5tucdrt9aWXXmr0ybv99tvNfRYvXlzr9mPHjsmNN95omse0a9dOfvSjH8lXX30lbj73U6dOyb333it9+/aV1q1bm/uMHz/edMZ1+7k39z3XOd5z586Vzp07S2ZmpowaNUp27tzp+vOuq7q6WubMmSM9evQw53neeefJQw89VGtPiXCeCzc6ePCg3HTTTXL22Web89L/5x9++KHnzzvUT3/6U/P//8477wzedvLkSbnjjjvM83LGGWfImDFj5NChQ+JmCxYskIsvvth09O7YsaOMHj1aiouLa93Hi+fdlGXLlkn37t0lIyNDhg4dKlu2bJFEI4zUUVZWJv369TPfnKa8+OKL8sEHH5g3sLr0Temvf/2rvPnmm/LKK6+YN7vbbrtN3Hzu5eXlUlhYaN6s9O+1a9eaH+BrrrnG9efe3Pf8v//7v2XJkiWyfPly2bx5swljeXl55gXLzedd13/913/Jz3/+c3niiSfkk08+Mdf13JcuXRrRc+E2f//732X48OGSmpoqr732mnz88cfy6KOPSvv27T193qH+/Oc/yy9+8Qu56KKLat1+1113yR/+8Ad5/vnn5Z133jG/fFx33XXiZnoeGjT09Vt/XvUXre9+97vmdcDL592Y1atXy4wZM0ybCn1t19dC/b99+PBhSShd2ouG6dPz4osv1rv9s88+s7p27Wpt377dys3NtR577LHgv3388cfmcX/+85+Dt7322mtWUlKSdfDgQdefe6gtW7aY++3bt88z5173vGtqaqzs7Gxr4cKFwdu+/PJLKz093frtb3/rmfNWV111lTVp0qRat1133XXWjTfeGPZz4Ub33nuvNWLEiEb/3avnHXDixAmrZ8+e1ptvvmldeuml1vTp04PnmJqaaj3//PPB+37yySfm/3p+fr7lFYcPHzbn9M477/jqvAOGDBli3XHHHcHr1dXVVpcuXawFCxZYiURlJIpN+26++Wb5j//4D7ngggvq/Xt+fr4p0w8ePDh4m5Z0dX8d/Y3KS44fP27Kunq+Xj33PXv2SElJiTmP0H0WtJSp5+ul877kkktkw4YN8umnn5rr27Ztk02bNskVV1wR9nPhRr///e/N9+766683ZfsBAwbIihUrgv/u1fMO0CrBVVddVev8VEFBgakahN7eq1cvOffccz1x3qGvY+qss87y1Xmrqqoqc76h56qvW3o90efqio3ynERL161atZJp06Y1+O/6oqUvaKH0/vofXf/NK7Q8rXNIbrjhhuDGSl4898Bxd+rUqdbtej3wb14575kzZ5rdWvWFNyUlxcwhefjhh80QVLjPhRvt3r3bDE9pqfq+++4zQxb6852WliYTJkzw7Hmr5557zpTm9Zzr0nPT5yDwy4aXzjv0l0udI6PDdBdeeKFvzjvg6NGj5ue8of/bO3bskEQijERAE+Tjjz9ufni1IuBX+lvDD37wAzOpT1/E4Q1r1qyRZ555Rp599llT9SsqKjIv1DovSt+UvUrfkLQy8sgjj5jrWhnZvn27mR/i5fM+cOCATJ8+3cyb0ImLfqRVIf1eawUQ9mKYJgLvvfeemdSj5Tr9zVcv+/btk7vvvtvMRFbZ2dn1Jv6cPn3arLbQf/NKENHz1hex0O2mvXjugeOuO5Nerwf+zSvnrUOPWh354Q9/aFaT6HCkTuTT1QfhPhdupCtk+vTpU+u23r17y/79+z193vrLlf6/HThwYPD1TCdr6kRd/Vh/O9Yy/pdffump8w6YOnWqmWz+9ttvS7du3YK367l5+bxDdejQwVRBnfB/mzASAX1x/stf/mJ+Ywxc9LdGfRF//fXXzX2GDRtm/hPrD3rAW2+9ZX770jFmLwQRXdL4xz/+0Sx7C+XFc9dlrvpDqXMpAnQoQ+eC6Pl66bx1xZSOF4fSFyo9j3CfCzfSEn3dpZ06byY3N9fT533ZZZfJRx99VOv1TCtEOiwX+FhXGIWetz5PGtLcfN5a0dUgoisi9edUv7+hBg0a5MnzbogOR+n5hp6r/rzr9YSfa0Kny7pkZvnWrVvNRZ+eRYsWmY8DK0bqqruaRl1++eXWgAEDrM2bN1ubNm0yM9VvuOEGy83nXlVVZV1zzTVWt27drKKiIuuLL74IXiorK1197s19z3/6059a7dq1s15++WXrL3/5i/W9733P6tGjh1VRUeHq865rwoQJZpXYK6+8Yu3Zs8dau3at1aFDB+uee+4J3iec58JtdFVYq1atrIcfftjauXOn9cwzz1hZWVnWqlWrPH3eDQldTaNuv/1269xzz7Xeeust68MPP7SGDRtmLm42ZcoUq23bttbGjRtrvY6Vl5d7+rwb89xzz5mVYU8++aRZGXjbbbeZ/+slJSVWIhFG6nj77bfNG1Ldi75QhxtG/va3v5k3ojPOOMNq06aNNXHiRPOG5+Zz1zenhv5NL/o4N597c99zXdo5Z84cq1OnTuaH9rLLLrOKi4trfQ43nnddpaWl5o1IX4QzMjKsb3zjG9b9999fK2yG81y40R/+8AfrwgsvNOfUq1cv65e//GWtf/fqeTcXRjRs/fu//7vVvn17E9CuvfZa88btZo29jv3mN7/x9Hk3ZenSpebnPi0tzSz1/eCDD6xES9I/EluLAQAA+CfmjAAAAFsRRgAAgK0IIwAAwFaEEQAAYCvCCAAAsBVhBAAA2IowAgAAbEUYAQAAtiKMAAAAWxFGAACArQgjAADAVoQRAAAgdvr/y8I+MqvIei8AAAAASUVORK5CYII=",
|
|
289
|
+
"text/plain": [
|
|
290
|
+
"<Figure size 640x480 with 1 Axes>"
|
|
291
|
+
]
|
|
292
|
+
},
|
|
293
|
+
"metadata": {},
|
|
294
|
+
"output_type": "display_data"
|
|
295
|
+
}
|
|
296
|
+
],
|
|
297
|
+
"source": [
|
|
298
|
+
"n_time_bins = len(change_times) + 1\n",
|
|
299
|
+
"for s in states:\n",
|
|
300
|
+
" estimates = [\n",
|
|
301
|
+
" log_summary[f\"deathRatei{i}_{s}_median\"].median() for i in range(n_time_bins)\n",
|
|
302
|
+
" ]\n",
|
|
303
|
+
" plt.step(change_times, estimates[:-1], label=rf\"$\\mu_{{{s}}}$\")\n",
|
|
304
|
+
" plt.legend()\n",
|
|
305
|
+
"plt.gca().invert_xaxis() # This reverses the x-axis"
|
|
306
|
+
]
|
|
307
|
+
},
|
|
308
|
+
{
|
|
309
|
+
"cell_type": "code",
|
|
310
|
+
"execution_count": 43,
|
|
311
|
+
"id": "0e4a01c1",
|
|
312
|
+
"metadata": {},
|
|
313
|
+
"outputs": [
|
|
314
|
+
{
|
|
315
|
+
"data": {
|
|
316
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOdpJREFUeJzt3Qt0VOW5//FnhlyYIKCAgAhKRZZcBA1QLkoFKktQezx4qxcQRA8uLVQUSpW2aD1gkYrWlvovx7rw0CMUxaqlVvHCpVUPIiRBsQrHWo0URESqKDPkOv/1vDgxCZNkJtkze797fz9rjSYzk2TvIZn5zXt5nlA8Ho8LAACAJcJuHwAAAEA6CC8AAMAqhBcAAGAVwgsAALAK4QUAAFiF8AIAAKxCeAEAAFYhvAAAAKvkiM9UV1fLnj17pG3bthIKhdw+HAAAkAKtmfvFF19It27dJBwOByu8aHDp0aOH24cBAACaYdeuXdK9e/dghRcdcUmcfLt27dw+HAAAkIKDBw+awYfE63igwktiqkiDC+EFAAC7pLLkgwW7AADAKoQXAABgFcILAACwiu/WvKS6HauyslKqqqokiFq1aiU5OTlsJQcAWClw4aW8vFw++ugjiUajEmQFBQVywgknSF5entuHAgBAWgIVXrSA3fvvv29GHrQIjr5wB62QnY46aYD75JNPzGPRu3fvJosBAQDgJYEKL/qirQFG95HryENQRSIRyc3NldLSUvOYtG7d2u1DAgAgZYF8y81IA48BAMBegQwvAADAXoQXAABgFcILAACwCuHFBxYsWCDDhw93+zAABGjXYnU0mtJF7ws4LVC7jfzqjTfekDPPPNPtwwAQABpGSq+eKLGSkpTuHxk0SE5e8WjgylIgsxh58QHCC4BsicdiKQcXFSsuNl8DOImRF8sUFRXJrbfeKlu2bJE+ffrI0qVL5b333mPkBUDW9X71FQlHIklvq47F5N2zR2b9mBAMgQ8vOgQaq3Cnx1Ekt1VaQ6k7duyQMWPGyMyZM+WRRx6Rbdu2yYQJE8xtAwcOzOCRArD5Oc7JkQ8NJQkaXMIBLvgJ9wQ+vGhw6XfH8648+G//5zgpyEv9n2D69OkmrMyfP9983qtXL1m1apVs377dVAx+5plnZPbs2aaK8G233Sb/8R//kcGjB+C39SmALQIfXmyhpfzXr18vxcXFda7XMv+6WFe7ZM+aNUs2bNgg7du3l8GDB8vFF18sHTt2dO2YAWR3VCTZKEmmgosuxA01MGUEZFrgw4tO3egIiFs/O1U6RZSTkyMDBgyoc31JSYlMmTJFXn/9denfv7+ceOKJ5vrzzz9fXnjhBbnqqqscP24A9o2KNLY+pTk0uLCDCG4JfHjRP750pm7c7Mek00HaSFFDjHr22WfNOhgdedmzZ09NcFH68e7du108YiC4UhlRyeSoSLJRklYdOhA24Bvef9WGodNAOkU0Z84cs67lrbfekptuusncpuHllVde4ZECLB1RcXpUpD5GSeA3hBdLdOvWTR5++GGZO3euLFu2TIYOHSqTJ082u466du1qbq890qIf630AeLsOCqMiQPoILxaZNGmSudS2cOFC838NKjoao6FFF+w+99xzMm/ePJeOFECqIypBGBWpvb26KUF4PNByhBef0HUw9913n6kDo2tjfvjDH7LTCHAZdVCOSKdYHe0EkArCi49cdNFF5gIAbtMRFA0i2h4gHYl2AiGK36ERhBcAgON06kcbMqZax6Z2O4F0ppka/PlMP/ka4QUAkLEA05wRFCd6IuX37Ss9H/0fPYhmfT3hx9sILwAAa6eZGlL2zjuyc/CQZn89a2+8jfACALBumqlB8bh8MOkaE15agrU33kZ4AQAHK+g6sV4jqJo7zVTfN578Q7NDUO21N/AuwgsApIFOzcEJQfCusNsHAAB+rKBL12XA8vDy4IMPSs+ePaV169YybNgw0wG5Ib/97W/lW9/6lhx33HHmMnbs2EbvDwBuVtA9rbgo6UXXb1ApFrA0vDz22GMya9YsufPOO6W4uFjOOOMMGTdunOzbty/p/Tdu3ChXXXWVbNiwQTZt2iQ9evSQ8847jw7JADxbQTfZheACWBxe7r//fpk2bZpMnTpV+vXrJ0uXLpWCggLTXDCZFStWyPe+9z3TKblPnz6mGaGWu1+3bl2mDxUAAAQ9vJSXl0tRUZGZ+qn5geGw+VxHVVIRjUaloqJCOnTokPT2srIyOXjwYJ1L0CxYsECGDx/u9mEAAGB/eNm/f79UVVVJly5d6lyvn+/duzel73HbbbdJt27d6gSg+l2VtYty4qLTTEHzxhtvmJEqAIBzdNt0dTSa9KK7zuAeT2+Vvueee2TVqlVmHYwu9k1m7ty5Zk1Ngo68BC3AaHip/RgAAFqusXovVOD18chLp06dpFWrVvLxxx/XuV4/79q1a6Nfu3jxYhNeXnjhBRk4cGCD98vPz5d27drVufiZTsOdc845EolEpLCwUDZv3izvvfceIy8A4GCbglQr8MKHIy95eXkyePBgs9h2woQJ5rrE4tsZM2Y0+HU///nP5e6775bnn39ehgxpfm8Kv9mxY4eMGTNGZs6cKY888ohs27at5nFtLOABAJxpU0AF3oBMG+l0xpQpU0wIGTp0qDzwwANy6NAhs/tITZ48WU488USzdkUtWrRI7rjjDlm5cqWpDZNYG3PMMceYi+N03rIiKq7ILUir4+n06dNNWJk/f775vFevXmZabfv27WYH18UXX2ym2M4991x54oknMnjgAOBfVOj1voyHlyuuuEI++eQTE0g0iOjC0rVr19Ys4v3www/NDqSE3/zmN2aX0mWXXVbn+2idmJ/+9KfOH6AGl591E1f8aI9IXpuU7lpaWirr1683tXJqy83NrZky0hGZ6667TpYvX56RwwUAIDALdnWKqKFpIh0pqO2DDz7IxiFZR6eIcnJyZMCAAXWuLykpMSNbavTo0Uc9ngAA+I2ndxtlbepGR0Dc+tkp0tEpXS+ko1IaYtSzzz5r1sGwTRoAECSEF11zkuLUjZt04bNOEc2ZM0dmz54tb731ltx0003mNsILACBI6CptCS3Up60S1qxZI/3795f77rvPLHbWtUNNbTsHAMBPGHmxyKRJk8yltsQuLQAAgoLw4iPaQkGr7epW9O7du8vq1atlxIgRbh8WAACOIrz4yEsvveT2IQAAkHGEFwAAmkGr7Tan/YAWwUPLEF4AAHC4cWNDaOjoDHYbAQDgcOPGhtDQ0RmMvAAA4FDjxobQ0NFZhBcAgRaPx9N6IWrOOgf4C40b3Ud4ARDo4FJ69USJlZS4fSgA0sCaFwCBpSMuzQ0uuu5B1z8AyD5GXgBARHq/+oqE0wgjbHkF3EN4AQAdho5EJFyQeqd3AO5h2ggAAFiF8AIAAKxCePGBBQsWyPDhw90+DAAAsoLw4gPaSfrMM890+zAAAMgKwosPEF4AAEFCeLFMUVGRnHPOORKJRKSwsFA2b94s7733HiMvAIDACPxWaa2wGat0p9x3JCe91ug7duyQMWPGyMyZM+WRRx6Rbdu2yYQJE8xtAwcOzOCRAgDgHYEPLxpchq0c5sqDv/nqzVKQm3pdienTp5uwMn/+fPN5r169ZNWqVbJ9+3b59NNP5YILLpB9+/ZJTk6OzJs3Ty6//PIMHj0AAO4IfHixRWlpqaxfv16Ki4vrXJ+bm2umjDSwPPDAA+bjvXv3yuDBg02YadOmjWvHDABAJgQ+vOjUjY6AuPWzU6VTRBpQBgwYUOf6kpISmTJlipxwwgnmorp27SqdOnWSAwcOEF4AAL4T+PCia07SmbpxSzgclurqaikvLzchRj377LNmHUz9bdK6qLeqqkp69Ojh0tECAJA57DayhE4D6RTRnDlz5B//+IesWbNGpk2bZm6rHV50tGXy5Mny0EMPuXi0AABkTuBHXmzRrVs3efjhh2Xu3LmybNkyGTp0qAkpuutIp4lUWVmZWdB7++23y1lnneX2IQMZ3SUYj7V8l2C1A98DQPYRXiwyadIkc6lt4cKFNU/m1157rXz729+Wa665xqUjBDJPf9dLr54osZISHm4goJg28olXX31VHnvsMXn66afNNJJedAs14Dc64uJ0cIkMGiShSOoL6AG4i5EXnxg5cqRZ0AsESe9XX5GwA6FDg0s6BSMBuIvwAsBaGlzCBd7fLejFCt/ZrhAOOInwAgAuhZIpa6fIjgM7rHz8CzsXyvLxywkwcAXhBQAcDi6Tn5ss2z7Z5uvHtWRfiQloNtTJgv8QXgDAQfqCnk5w6dOhjxnBsOn8Rj8+2u3DQMARXgAgQzZ+d2OTbUBYOwKkj/ACABmiwYRpFcB51HkBAABWIbwAAACrEF4AAIBVCC8AAMAqhBcfWLBggQwfPtztwwAApNjNvDoaPeqiNYKQGnYb+cAbb7xhGjECALzv3bNHNtgg9OQVj1K1OAWMvPgA4QXILn2HHK2IJr3Y2qsImaXNPzWcNCZWXGy6pqNpjLxYpqioSG699VbZsmWL9OnTR5YuXSrvvfceIy9AlgSl/D+cpU0sdVQlWTjRaaSGRmOQXODDiz4RuZV0NYmn05V1x44dMmbMGJk5c6Y88sgjsm3bNpkwYYK5beDAgRk8UgDplv/XxoVNVdc1DRwrqjL+4EZyWzEV4QH6fB+yuAu6lxBeYjHZOWiwKw/+acVFaf0iT58+3YSV+fPnm8979eolq1atku3bt0t5ebmcc845UllZaS4acKZNm5bBowfw3MXrGgworVu1bjSY6NrMy5dukrc/OpjxB7LfCe1k9Y0jJI33Sg2KVX59TqlMkdH+AJkQ+PBii9LSUlm/fr0UFxfXuT43N9dMGbVt21b++te/SkFBgRw6dEhOP/10ueSSS6Rjx46uHTPgR7V3hIxc+KpIPE+8TgNS/zufd+abhcqlbZ8jH6bSoFFHoLTxZDqjzEGmU0hOjNT7XeDDi/5C6AiIWz87VTpFlJOTIwMGDKhzfUlJiUyZMkVatWplgosqKys7Mh3GtjvAcYcrqz07KpKV0Z14rlRGT5acgtKU7l6yr8SM0NDjKTXsREoN4cWSOchwOCzV1dVmekhDjHr22WfNOpjENunPPvtMRo0aJe+++67ce++90qlTJ5ePGvC3l28bIx0LjvH0epQ/3zzS0XU10fIqGbJA331VSNG8seb4k9HAksrIDL7eiaS7jZraiWTD61U2BD682GLw4MFmimjOnDkye/Zseeutt+Smm24ytyXCy7HHHmu2TX/88cdmyuiyyy6TLl26uHzkgH8V5LWSgjxvP41qMHL+GENmuuxI12xvn78N2ImUPuq8WKJbt27y8MMPy5o1a6R///5y3333yeTJk0046dq1a5376nVnnHGGvPzyy64dL2BVzZbyyjQumd8dhGAGmHBBwdGXNJYXBAmR2SKTJk0yl9oWLlxo/q+jLbrmRRfufv7552bxbmJkBkDDweWypZukqPRfzVqwCsAdhBcf7Ua64YYbahbqfv/73z9qcS/gNzoSEs6pbMHXV6UXXOppncPgNeAGwotPDB061OxIAvyu9i66wQtekrKcfEe+79afjDVrWJpiFqKuvsN8zNZVwB2EFwBWyURF2iEnHycd2+SlFkZCTQecoGhs/U/tYnaA0wgvAKz1ym3fljbtW7ZVWVE+v3mGLHgppbVB1JyC0wgvAKwVyQ17fquy32jQ05GqrWmsFdLCfm28X4gYFuGvHgCQMp1a04rATU3ffRr9Ui74Iw8sMiOQ4YUhTB4DAJktfBerZG0QMidQ4UUr1KpoNCqRgBf+0ceg9mMCBJW+mUmlO3JCOvcFstG0sSF+buYYqPCizQu1hP6+ffvM51rUza//sI1WE41GzWOgj4U+JkBQ6d/D5Ocmy7ZPKDMAe5s2NkT7JZ284lFfvs5lJbw8+OCDplHg3r17Tdn6JUuWmLokyfztb3+TO+64Q4qKikzhtV/84hdyyy23OHYsiVL6iQATVBpc6rcVABodncjAFuXmiFU419VZR1GaG1wKOxea3j6A200bg9jMMePh5bHHHpNZs2bJ0qVLZdiwYfLAAw/IuHHjZOfOndK5c+ej7q+jAqeccopcfvnlcuuttzp+PJpATzjhBPOzKyoqJIh0qogRF2S0hH4G5VeWydMZ+L4bv7sxrTCi9/XjO9pM1YOJpFgJmW3rqTdtbGx6Kd1RGttkPLzcf//9Mm3aNJk6dar5XEPMn//8Z1m2bJncfvvtR93/m9/8prmoZLc7RV+8eQEHmqYjLl4JLsle6Bz7XqZDsv/eoXrBtxZtMF2oU6HbsHU3E8Hwa/pY+HH0xLPhpby83Ez/zJ07t+a6cDgsY8eOlU2bNjnyM8rKyswl4eDBg458XwC1xOOSX1VuisJpbRU36TvQfz5z5GNe4LyruX2ftH6MBmbq98C18LJ//36pqqqSLl261LleP9+xY4cjP0O7Kt91112OfC8AyaeNFr/8oPQ/8IHs/yo0AE2pHSyL5o1tckpOp5YardgL+Gm3kY7q6Jqa2iMvPXr0cPWYAD8txo0ePGSCi9foIkZdzAjv0+m9gtwcR3ompfMzGZnzr4yGl06dOpl1JR9//HGd6/Vzp3a65OfnmwuAzCzGrb1AtvuGjdKmfVtPPNR+rmERdE6MwLB2xt8yGl7y8vJk8ODBsm7dOpkwYYK5rrq62nw+Y8aMTP5oABlYjFvQ7hgJs3AQHumZ1Bj9Pp8eKpeCvOYt6mbkJuDTRjqlM2XKFBkyZIip7aJbpQ8dOlSz+2jy5Mly4oknmrUriUW+b7/9ds3Hu3fvlm3btskxxxwjp556aqYPFwisrT8Zm/SJvjoalV3P/Nh8zEgH3O6Z1JTaa2daMoLDyE3Aw8sVV1whn3zyiSk8p0XqzjzzTFm7dm3NIt4PP/zQ7EBK2LNnjxQWFtZ8vnjxYnMZNWqUbNy4MdOHCwSWBpdkOzyqK61fGgcf9UzK1ggOu568LSvPSjpF1NA0Uf1A0rNnTxonAnC0H1FD6FPkPy0dwWHXkx14SwXAKvQjQjZGcOBt7labAoAs9iNqCH2KALsQTQFYK91+RA2hT1FmpTM956V/i8bqzdiyG6k6SU8kP5QZILwAAe4E7UQxMDfRj8gOox8fndYo2PLxyz3x4trYbiVbdiO9m6RBoxZ41GaPXj/2xhBeAB/yWido34nHRSqijd9Hmzxa/OLgRLDUIFKyryStr9P760iNW00yU92t5OXdSKFIxASUWHFx0tv1eu0RZnOzR+896gCyXnxOn6yd7NDs++CybJzIrs2N36/HcJHr1gY2wOi7eh1BSXXKSO+XzgiNW7uVbNiNFAqFzMiKBpT6U0jJRmJsRHgBAlp8zsb5e0/QEZemgova9dqR++a1kUDv+nFpBCXou5VCoZDVIytNsftfB0Czi8/BAT/4u0hevReI8qjIYqqBA5nEMxoANJcGl8ZGVjTINCXga2OA5iC8AAi2VBbfphtIElIZgQn42higOQgvAIIr1cW36dCRFA0kuuYlFayNAdJGeAEQXKkuvk1GA0qyxag6gqIjKU2N5rA2xnrNqZPE4nhnEF4AoKHFt81dq6LXB3iXUVA0Z8u0LcXtvI7wAgScFrSrXw+iqfLigVx8m0nprKNpDssWBTvR7TtTbQZSLWJnY3E7m/DoAQEPLqVXT5RYSXpVUOGwTG+ttmxRsBPF6jLVZqCpInYNsaG4nU0IL0CA6YhLqsFFy41r2XFP0XUluujWqyMeTi7sbQkLFgU3t52AG20G/FDEznY8+gCM3q++IuFGwolnOtHWDiv3ntqy8OKmVBf2toRFi4LTbSfg9TYDyCzCCwBDg0vYhnLiDqyHSHnnUKaxsNcX7QSQfYQXAPaa+aZIQcfALWgFgo7wAsBebu4Qgue1ZAoqU7uV4AzCCwDAl1qy9iVTu5XgjLBD3wcAAM/sWnJqtxK8iZEXAAgCp7eFe3SdUEt3LbFbyQ6EFwAIAqe3THu48B27lvyPaSMA8KtEIbxMFr6DlapjMamORutctOK2LRh5ASygTyrplCNvTrdb+FAmCuFZVPgODXv37JFJq2ifvOJRKxYpE14AC4LLZUs3SVEzG8Eh4CiEh1pVsjWgxIqLJRm9XluGhCwoVkl4ATxOR1yaG1y0+612wQWAUChkRlbqd5HXKaRkIzFeRngBLLL1J2OlIC/1MKLBxYkhYDNt5ZFto145DqC5GprWdervtTH6/W0YWWkK4QWwiAaXbHez1eAy+bnJsu2TbVn9uYBfDVnwUtLr+53QTlbfOCLpBq5sBBubEF4ANDnS4cXgUnj4sERatXb7MICUaPjQadytjUwBv/3RQel/5/NJb9OvPRJsCDCK8AKgcbW2T24s/adEPLKdUo+DJ3LYQn9XNXwk2zWof1KXL91kwktDNPTo12Z75NWreBQANK7WGhMNDAUeCS+mfonWMQFcWF/VnMaNpnheA+HjzzePTBpsdH1MQ9NMQUZ4AZC6mW+KFHT0xiPm0fL0CEZjR6cbNzYWbJpbvyni43UyhBcAqcsrEMlrwyMG3zd21MaMqTRuLMji6F+6IzBDfLxOhvACAMhcs0fLRsiaauyY7caNqSz0DeI6Gf+dEQAgO1JpE+DhBo42NHZsbKFvQ4KwTobwAgBIv9mjNmZMp4Ej040ZXQ+TzjoZP6yFIbwAAJxv9kgDR08YkmQExg9rYQgvgE9pZdz6PUzq054mQNpo9uhpkSbWyfhhLYy9Rw54lOkDlMb8dFPS3R6ZOIbSqydKrKTxHRMA/CfUwDoZP62FIbwADtLQcNnSTc3uAu3YccRiaQWXyKBBEopEMnpMAOxYJ2MD/54Z4AJ9p5Op4KLDwDocnK7er74i4SaCiQYXm+e/AQQL4QXIkK0/GWu6QDuluTsENLiECxrZ9qnl/htbfJlKLQ8AyCLCC5AhGlw8P2yri3qXnSexf25p8C4xDUwnd8/qYQHIrGittXTV5ZXWPdwef2YFkEnx8kMyubJUtvXskdoX5LAuBvCDIbUW7uZXlsnTtdbt2SDs9gEAcE+s6rBsa52f0n0Ljy+UiEeqjgJo/hbqxji5UzKTGHkBYGy8+FmJRDo22rCORb2A/7ZQH/r8S9n/jFiF8AKgJpx4pZ8LgOxtoa7OtW8Sxr4jBgAAgUZ4AQAAViG8AAAAq7DmBVZyun+Qm32IAADpIbzAOl7pHwQAcAfhBdbJZP8gt/sQAbBHrDKW9td4veRArKJawuWVzW5Hki2EF1jN6f5BTvH6Hz6Alhv9+Oi0v6awc6EsH7/cs88PIxetl7KcfPMGTGvCePU4CS+wmhX9gwD4ho6caAAp2VfSrK/Xr9MRGy/VVIokGSXeWvovM8rt1edXbx4VAAAepCMROnKS7pSR3r85IzXZEKo1uvLKbd+Wb973qngd4QUAkFnl0dTvqyMSHp2qqFOl1kMjJ06KWFJtl/AC67Ylsx0ZsMziU1O/b4/hItet9XyAgbsIL2gU25J98q43J97yd8RAOnRkQoPIrtfSe9z0/hVRkbw2PN5oEOEF1m5LZjtyI+Lxuu96Gwov+u62Zw+n/2mAI79bOoKiQSQVGqTTGaFBoGUlvDz44INy7733yt69e+WMM86QJUuWyNChQxu8/+rVq2XevHnywQcfSO/evWXRokVywQUXZONQYdG2ZLYjN6Ii/foTkhNpwb8G0ECAYQTFKvFYTPIry6SsVZ4EOrw89thjMmvWLFm6dKkMGzZMHnjgARk3bpzs3LlTOnfufNT9//d//1euuuoqWbhwoXznO9+RlStXyoQJE6S4uFhOP/30TB8uGsG2ZEvNfFOkfcfkt+mOidVjjnzMGgMg8P45ZrQ8LSJ/69BT4vFxnn08Mr6s+P7775dp06bJ1KlTpV+/fibEFBQUyLJly5Le/5e//KWMHz9e5syZI3379pX58+fLoEGD5Ne//nWmDxXw79oDffeb7OLTHRMAUheKRCQyaFCd6/of+MCMwgQyvJSXl0tRUZGMHTv26x8YDpvPN23alPRr9Pra91c6UtPQ/cvKyuTgwYN1LgC+Fq2KSbQimvTSnPLmAPwlFArJySseldOKi6T7ho1ig4xOG+3fv1+qqqqkS5cuda7Xz3fs2JH0a3RdTLL76/XJ6PTSXXfd5eBR+1dztjyzLdnef+uE0U+eL2V5bDsF0HiACRUUSKi8sk6fozbxuCdbBFi/22ju3LlmTU2Cjrz06MHuifrY8hwsserDad1fy51r2XMAqN3naECvrp7scZTR8NKpUydp1aqVfPzxx3Wu18+7du2a9Gv0+nTun5+fby7I7JZntiXba+1FT0pBh+5Wd7oF4E6fo62l/5JPD5WbDRte2uGZ0fCSl5cngwcPlnXr1pkdQ6q6utp8PmPGjKRfM2LECHP7LbfcUnPdiy++aK6He1uevfRLi/S0zon4tpQ5AGcle54fsuClI//3UKfpjE8b6ZTOlClTZMiQIaa2i26VPnTokNl9pCZPniwnnniiWbuiZs6cKaNGjZL77rtPLrzwQlm1apVs3bpVHnrooUwfamCw5RkA0JRBJx0nm/ZEjxqF6dgmz/UAk/HwcsUVV8gnn3wid9xxh1l0e+aZZ8ratWtrFuV++OGHZgdSwllnnWVqu/zkJz+RH/3oR6ZI3dNPP02NFwAICifaVljQ4NHrHr1+qJTl5puNGzWjLwte8sQITFYW7OoUUUPTRBs3Hr0t6/LLLzcXAEAAOdEmgAaPznTPzssxywY0sOjIi9L/a6Bpk+/enh87el8DAILRyNEpiQaPcCTE6EiLrpdMuHzppjolGbLN+q3SAIAANnJsCA0eMxZgdK1LvxPaydsfHTQX3cWqIzNuILwEpPgcxeYAeB6NHK0Ygel/5/NuHwrhxXYUnwMAZItX1kAz8hKw4nMUmwMANJcu3n37P8clLWiXTYSXgBWfo9gcgMBoyZZrtlo3ugPJbe4fARxD8TkAcGjLNVutPY2t0gAA/3BqyzVbrT2NkReP7QpKF7uIAMDBLddstbYC4SVLwUNr+WhRH90bDwDIILZc+x7hJUUaXPrd4f7e9oawiwgAEBSElyzT6oRHGlo5+33ZRQQACArCSzP2trcEIQMAgJYhvFi2tx0AgKBjqzQAALAK4QUAAFiF8AIAAKxCeAEAAFZhBSoAAOk2dqRxo6sILwAApNvYkcaNrmLaCACAdBs70rjRVYy8AACQamNHGjd6AuEFAIDaaOxoVMdiEopETJFWr2HaCAAAHOXds0dK6cRJEo/HxWsILwAAZFGsMibRiuhRFy+EhFAkIpFBg2o+jxUXSzwWE69h2ggAgCwa/fjopNcXdi6U5eOXuzpNEwqF5OQVj0rVgQNm5MWrGHkBACDDIjkRE04aU7KvxIzKuC0UCkk4EhEvY+QFAIAsBAIdVUkWTvS6hkZjkBzhBQCALAWYAq0jgxYjvAA20IV8DdWdSKbc/aFnAMgUwgtgQ3BZNk5k1+bUv6ZKl7N1zeRRAYBrCC+A1+mISzrBpb5W3l54B+BrDS3Y1QW/XiwW5xbCC2CTH/xdJC+FOfMvDoisPu/IxzzhAdbw8jZqL2GrNGDJzFF1ZSjlS7yCJzjAFjZto/YKRl4Aj9Oqm6XrOklsf57IE99y+3AAOIxt1OkjvAAeF48dPhJcmmFHd5GTIq0dPyYAwdlGXf1VewAvNWkkvAAW6b3hBQm379jk/aIVWvRqlJTliozzyJMNADu9+1WbAO15pK0DvBBgCC+ARbRkd7ig6Xdn4QqRsjz3n2AAXytPo/ZSgo6ueODFP9UGjdqYsX6TxlAKz0GZRngBAKA5Fp+a/tf0GC5y3VrPB5jQVw0aNazotJHXmjSy2wgAgHRGTjSANNeu19Krlu12g8aCAk82aWTkBQCAVOmIiY6cpBtAdIqpOSM1SIrwAgBAugEmr00gH7NqXfPigV1HhBfAItGqmIRTeMdHMSsAmaBrX7yw64jwAlhQpC5h9JPns4sIgKs7j7yw64jwAnhcrPpws79WS45r6XEA9kt3RDXiUDPHxM6jqgMHPLPriPACWGTtRU9KQYfuKd+fTrSA/5s2NsTJZo5m55GHdh0RXgCLtM6JeLaEOIDMNW3UxozpKvmqmaMfnzMILwAAWNi0sSF633RHaWxDeAEAwMO83LTRLVTYBQAAViG8AACA9NQq4eAGwgsAAEjLB5OuqVODKtsILwAA+FSsMibRimidS3NDhxary+/b13xc9s47plCdW1iwCzhNnxic7Bpb7t4TBAC7jU6y66i59V/0/j0f/R/ZOXiIuI3wAjgdXJaNE9m12bnvWaUDpF2d+34AAl0bpqQl9V9cbsiYQHgBnKQjLk4Gl/paeafCJQC7asPEfFT/hfACZMoP/i6S50Bthi8OiKw+z1PvegB4W8jntWEIL0CmaHDJa9Py75PT/MaMAOBH7DYCAABWYeQFyMCa3XhVSCQaE6ls+TSPm9sRAcCLCC+Ag7R+Qum6ThLbnyfyxLd4bAHApmmjAwcOyMSJE6Vdu3Zy7LHHyvXXXy9ffvllo1/z0EMPyejRo83X6GKjzz77LFOHB2REPHb4SHDJgB3dtUhU64x8bwCwScZGXjS4fPTRR/Liiy9KRUWFTJ06VW644QZZuXJlg18TjUZl/Pjx5jJ37txMHRqQFb03vCDh9h1b/H2iFbq9cZSU5YqMY7cRABdpld3TiotqPvZVeHnnnXdk7dq1smXLFhky5EglviVLlsgFF1wgixcvlm7duiX9ultuucX8f+PGjZk4LCCrwpGIhAtavlUxXCFSlscWaQDuC4VCEnLgec2T00abNm0yU0WJ4KLGjh0r4XBYNm/OYAEvAADgexkZedm7d6907ty57g/KyZEOHTqY25xUVlZmLgkHDx509PsDAOA3sXrVdxNtBdLtd2RFeLn99ttl0aJFTU4ZZdPChQvlrrvuyurPBADAZqMdbNjo+fAye/Zsufbaaxu9zymnnCJdu3aVffv21bm+srLS7EDS25ykC3tnzZpVZ+SlR48ejv4MAABsF8lkw0Yvh5fjjz/eXJoyYsQIs825qKhIBg8ebK5bv369VFdXy7Bhw8RJ+fn55gJ4TbQqJmFt1JiB4V0ACHLDxoyseenbt6/Z7jxt2jRZunSp2So9Y8YMufLKK2t2Gu3evVvOPfdc+d3vfidDhw411+l6GL38/e9/N59v375d2rZtKyeddJJZLwPYUKQuYfST57NLCICnhHzSsDFjRepWrFghffr0MQFFt0iPHDnSFKFL0ECzc+dOU9slQYNOYWGhCT3qnHPOMZ+vWbMmU4cJOCpWnbkmijrcq8O+ACxXHhUpP3T0pdabHzQuFK/9VtEHdM1L+/bt5fPPPzeVeoFs+vLTXbLr7PPMx8f/5Y9S0KG7Y9/bpp0AAOrRcPKz5DXOavQYLnLdWh0eyerDF62IyrCVR5Z0bL56s2sjM+m8ftPbCMiQ1jkRXwzPAnCAPhdoONn1WsP30dt0nVxeGx7yJhBeAADINB1N0VGVZIv4dRpp8an8G6SB8AIAQLYCTFOjKhpkGhq5Ydq4BuEFAACvaGgExqX1MIHbbQQAANJYD9OYxHoYGIy8AADgJtbDpI3wAgCADethUINpIwAAYBVGXmAnra3oxfnfcvoQAcjU80uaz3m5/t2hRHiBncFl2TiRXZvFc6p0MNPZzukAYKRbC6aHf3coEV5gn4qoxD/cLPEq7/1B1jmmVvQhApCFyrwBrNhLeIF1tB1X6bpOEtufJ57mw3c7ADy0E6khAajYS3iBdeKxw54PLju6i5wUae32YQDwA3YiHYXwAqv13vCChNt3FK+IVsRk9OOjpCxXZBwjLwCQEYQXWC0ciUi4wDudm8MVImV5TBcB8PAOpVz7dyERXgAA8KvFp6a1CylWeaTcQyQnIiEPBxyK1AEAEKReSbsa7pM0+vHRMmzlMJmydorZHOFVjLwAABCEHUrlyXch6ShLYedCKdlXUnOdfqyjMAUahDyI8AIAgN+ksUNJp4eWj19uwopedPTF6wgvAAAEXCgU8uwoSzKseQEAAFYhvAAAAKswbQT7OjjXOpZoVUzCHjq2xDZDAEDmEF5gXQfneKXWHjjBfDz6yfMpCgcAThWvswThBY3TUQ0PBRcV83DhpATddqjbDwHAquJ11zwpNiC8IKXBl3hVSGTmm55I5vEv/yWy+iLz8dpL10pB2w7iNV6vTgkgwMXrdr2W/Ha93pKpb8ILGqUVFkvXdTrSxfmJcZ57tFq3ili1vQ8AbCle52WEFzQqHjt8JLh40I7uIidFWrt9GADgy+J1XkZ4Qcp6b3hBwu07uv6IRSu0AuQoKcsVGcfUDAAEDuEFKQtHIhIucH+KJlwh7DACgACjSB0AAEhat8qrnaUJLwAA4CjaoHHK2imeDDCEFwAAYERatTZ1qhJK9pXIgcMHJFoR9VSIYc0LAAAwQhUxWf7t/ycHqg7L6NVjakZgVJ8OfWT5+OWeqGPFyAsAADhi8akSWniidPj91VJ4/NcjMGrHgR0ybOUwT0wlMfICAECQ5R5deTe0a7Msn7RbYuEjYxwaWDS8JKaSdDGvmwVCCS9B0pzu0B7q2AwAyIDalXdrVdvVqaFEQHn8O4+btS+JKSS3EV6CorndoWt1cAYABLPybigU8lSzWcJLUOhK8Q83H2mwmIZqE16+kuudX1wAQHARXoLYYLG5KMUPAPAAwktAtLTBYn7hGRLLiUvIA2tgdKEYACC4CC8BlE6DRR2xmfbCNNny+Zsivx+e8WMDAKAp1HkJcIPFVC5leSHZcnC7J6eMtAqklxaQAUBQTHG51gsjL0jZxu9u9FRY8EKVRwAIikhOxFTZ1XovenGz1gvhBWn94rpZlAgAkEVa80Wf8796k6hvFrU9gFbZdRvTRgAA4GharG7Z+CN1wjyG8AIAAOq2CkjQlgEe2GVaH+EFAADUbRXwg7/XnT4qP+SpERjWvAAAgHqtAmqtb/yq15EZkbnmSfECRl4AAEDj00eJKaTop+IFjLwEpVu0B+csAQB2dZqWXw4U6dnD7aMjvASmWzTdoQEAzek0nRiF0ZEXj2DayHaaipsKLvXRHRoA0JJFvIoKu3CE/mLVXmRVWzQm8sS3jnxYeVjCFalVpqUJIgBANMC06STSpb+IHDzygGiTXB2ZcQFrXvxEg0sDv0jxiq8/Hv34KNOzCACAtALMNU+LPPFtcRvTRgERqzzcoq+nCSIAQGq3iHGx1x0jLz6g047xqtCRqSGzMDfJfWKxmo/XXrpWCtp2SOtn0AQRABDJLZDNVx9ZZ+lmo17Ci+W0JXnpuk4S259Xs6alKa1b0WARAJA+bc7ohQa9TBtZLh47fCS4pGhHd5FQpHVGjwkAgExi5MVHem94QcLtOya9LVoRO7JQN1dk3FftzQEAsBHhxWuVcNNV6/uFIxEJFyQfzgtXCDuMAAC+QHjxWiXcdFE5FwAQMBld83LgwAGZOHGitGvXTo499li5/vrr5csvv2z0/t///vfltNNOk0gkIieddJLcfPPN8vnnn4snwoe2BG/u5dB+54NLfVTOBQAEQEZHXjS4fPTRR/Liiy9KRUWFTJ06VW644QZZuXJl0vvv2bPHXBYvXiz9+vWT0tJSufHGG811TzzxhLhKp2d+1i3zlXDTVatyrikgBACAz2UsvLzzzjuydu1a2bJliwwZMsRct2TJErngggtMOOnW7eggcPrpp8sf/vCHms979eold999t0yaNEkqKyslJ8cHs1za3EpLLDsVNBqo6wIAgF9lLA1s2rTJTBUlgosaO3ashMNh2bx5s1x88cUpfR+dMtJpp4aCS1lZmbkkHDz4Vc8Fp+m+9h/tceb7MEICAID3wsvevXulc+fOdX9YTo506NDB3JaK/fv3y/z5881UU0MWLlwod911l2StNXgLC8rVrnTrhGqHvx8AAL4LL7fffrssWrSoySmjltIRlAsvvNCsffnpT3/a4P3mzp0rs2bNqvN1PXr0EKe1OHjE4/LBpGukzIHHBgCAIEs7vMyePVuuvfbaRu9zyimnSNeuXWXfvn11rtd1K7qjSG9rzBdffCHjx4+Xtm3bylNPPSW5ubkN3jc/P99cMk2Dy85Bg8WrIoMGSSjiXp8JAAA8G16OP/54c2nKiBEj5LPPPpOioiIZPPjIi/769eulurpahg0b1uDX6cjJuHHjTCBZs2aNtG7tr1L2+X37Ss9H/8fxdS8aXLTnBAAAfpexNS99+/Y1oyfTpk2TpUuXmq3SM2bMkCuvvLJmp9Hu3bvl3HPPld/97ncydOhQE1zOO+88iUaj8uijj5rPEwtwNTC1atVK3KLh4LTiIke+DyEDAIDmy+je4xUrVpjAogFFdxldeuml8qtf/armdg00O3fuNGFFFRcXm51I6tRTT63zvd5//33p2bOnuEUDR6iB0vsAAMAn4UV3FjVUkE5pGNGFsAmjR4+u8zlSo49ZrLLxxcRN3Q4AgC18UPUt2DS4TH5usmz7ZJvbhwIAgP29jZB5OqKSTnAp7FwokRx2JQEA7MXIi49s/O7GJoOJ3s6CYQCAzQgvPqLBpEDbDwAA4GNMGwEAAKsQXgAAgFUILwAAwCqEFwAAYBXCCwAAsArhBQAAWIXwAgAArEKdF4/1IEoXPYsAAEFDeMkSehABAOAMwkuWRk3S7UGULnoWAQCCgvCSRvgYtnJY1noQpYueRQCAoCC8ZJmOkHRo3YHmiAAANBPhJY2Rjc1Xb3bk+9DVGQCA5iO8pEgDBx2bAQBwH3VeAACAVQgvAADAKoQXAABgFcILAACwCuEFAABYhfACAACsQngBAABWIbwAAACrEF4AAIBVCC8AAMAqhBcAAGAVwgsAALAK4QUAAFjFd12l4/G4+f/BgwfdPhQAAJCixOt24nU8UOHliy++MP/v0aOH24cCAACa8Trevn37Ru8TiqcScSxSXV0te/bskbZt20ooFBIvJUoNVLt27ZJ27dpJkAT13Dlv/r2DIKi/50E+94MZOm+NIxpcunXrJuFwOFgjL3rC3bt3F6/Sf+gg/ZLXFtRz57yDhX/v4OHf3DlNjbgksGAXAABYhfACAACsQnjJkvz8fLnzzjvN/4MmqOfOefPvHQRB/T0P8rnne+C8fbdgFwAA+BsjLwAAwCqEFwAAYBXCCwAAsArhBQAAWIXw0kJ//etf5d/+7d9MRUCt6Pv00083eN8bb7zR3OeBBx6oc/2BAwdk4sSJptDRscceK9dff718+eWXYut5V1RUyG233SYDBgyQNm3amPtMnjzZVD7283krXf9+xx13yAknnCCRSETGjh0r7777rvXnXV9VVZXMmzdPvvGNb5jz7NWrl8yfP79OT5JUHgsb7d69WyZNmiQdO3Y056W/51u3bvX9edd2zz33mN//W265pea6w4cPy/Tp083jcswxx8ill14qH3/8sdhu4cKF8s1vftNUbe/cubNMmDBBdu7cWec+fj33ZB588EHp2bOntG7dWoYNGyavv/66uIHw0kKHDh2SM844w/yDNuapp56S1157zbzo1acvZH/729/kxRdflGeeeca8QN5www1i63lHo1EpLi42L276/yeffNL8sV900UW+Pm/185//XH71q1/J0qVLZfPmzSa8jRs3zjy52Xze9S1atEh+85vfyK9//Wt55513zOd67kuWLEnrsbDNv/71Lzn77LMlNzdXnnvuOXn77bflvvvuk+OOO87X513bli1b5L/+679k4MCBda6/9dZb5U9/+pOsXr1a/vKXv5g3K5dcconYTs9Fg4k+f+vfrL45O++888xzgd/Pvb7HHntMZs2aZbZJ63O7Phfq7/a+ffsk63SrNJyhD+dTTz111PX//Oc/4yeeeGL8rbfeip988snxX/ziFzW3vf322+brtmzZUnPdc889Fw+FQvHdu3dbfd61vf766+Z+paWlvj3v6urqeNeuXeP33ntvzXWfffZZPD8/P/773//eN+etLrzwwvh1111X57pLLrkkPnHixJQfCxvddttt8ZEjRzZ4u1/PO+GLL76I9+7dO/7iiy/GR40aFZ85c2bNOebm5sZXr15dc9933nnH/K5v2rQp7if79u0z5/WXv/wlcOc+dOjQ+PTp02s+r6qqinfr1i2+cOHCrB8LIy9ZaBR5zTXXyJw5c6R///5H3b5p0yYzdTBkyJCa63SYWXs06bs2v/j888/NMLOeq1/P+/3335e9e/ea86jdp0OHVvV8/XTeZ511lqxbt07+7//+z3z+xhtvyCuvvCLnn39+yo+FjdasWWP+7S6//HIzhVBYWCi//e1va27363kn6AjEhRdeWOf8VFFRkRmRqH19nz595KSTTvLFedd/LlMdOnQI1LmXl5ebc619nvq8pZ+7cZ6+a8zoNTqcnpOTIzfffHPS2/WJTp8Ea9P76x+G3uYHOlyua2CuuuqqmsaMfjzvxHF36dKlzvX6eeI2v5z37bffbjrL6pN0q1atzBqYu+++20yJpfpY2Ogf//iHmS7TofMf/ehHZgpF/7bz8vJkypQpvj1vtWrVKjNVoOdcn56bPgaJNyd+Ou/6b0Z1nY9OHZ5++umBOvf9+/ebv/Nkv9s7duzI+vEQXjJIU+ovf/lL8wevow5BpO9Ivvvd75pFjPqkD394/PHHZcWKFbJy5Uozorht2zbzpK5ruvRF3K/0xUtHXn72s5+Zz3Xk5a233jLrW/x83rt27ZKZM2eaNR+6UDOodORJ/711lBHuYtoog15++WWzkEmHD/XdtV5KS0tl9uzZZrW26tq161GLnSorK82OFL3ND8FFz1mf9BKjLn4978Rx199loJ8nbvPLees0qI6+XHnllWa3jU6N6qJF3ZmR6mNhI91B1K9fvzrX9e3bVz788ENfn7e+EdPf20GDBtU8l+nCVF2YrB/ru2+dVvjss898dd61zZgxwyyw37Bhg3Tv3r3mej0/v5+76tSpkxll9crvNuElg/QJ/c033zTvShMXfWeqT/zPP/+8uc+IESPML70+OSSsX7/evMPTeXLbg4tuEX3ppZfMFsLa/Hjeum1Y/4h1LUiCTq3oWhY9Xz+dt+4o0/nu2vSJTc8j1cfCRjpdUH+brK77Ofnkk3193ueee65s3769znOZjkDpNGHiY92BVfu89XHSUGfzeSsdNdbgojtG9W9V/41rGzx4sG/PvTadGtNzrX2e+veun7tynllfIuwzuvq+pKTEXPThvP/++83HiV019dXfbaTGjx8fLywsjG/evDn+yiuvmNX8V111VdzW8y4vL49fdNFF8e7du8e3bdsW/+ijj2ouZWVlvj1vdc8998SPPfbY+B//+Mf4m2++Gf/3f//3+De+8Y14LBaz+rzrmzJlitlB98wzz8Tff//9+JNPPhnv1KlT/Ic//GHNfVJ5LGyju+ZycnLid999d/zdd9+Nr1ixIl5QUBB/9NFHfX3eydTebaRuvPHG+EknnRRfv359fOvWrfERI0aYi+1uuummePv27eMbN26s81wWjUZ9f+71rVq1yuyc++///m+zc/KGG24wv+t79+6NZxvhpYU2bNhgXsTqX/TJPdXw8umnn5oXr2OOOSberl27+NSpU82LpK3nrS9myW7Ti36dX887sVV23rx58S5dupg/8nPPPTe+c+fOOt/DxvOu7+DBg+aFS5+wW7duHT/llFPiP/7xj+uE01QeCxv96U9/ip9++unmnPr06RN/6KGH6tzu1/NuKrxoOPve974XP+6440ygu/jii82LvO0aei575JFHfH/uySxZssT83efl5Zmt06+99lrcDSH9T/bHewAAAJqHNS8AAMAqhBcAAGAVwgsAALAK4QUAAFiF8AIAAKxCeAEAAFYhvAAAAKsQXgAAgFUILwAAwCqEFwAAYBXCCwAAsArhBQAAiE3+Pzs0hq/UYplYAAAAAElFTkSuQmCC",
|
|
317
|
+
"text/plain": [
|
|
318
|
+
"<Figure size 640x480 with 1 Axes>"
|
|
319
|
+
]
|
|
320
|
+
},
|
|
321
|
+
"metadata": {},
|
|
322
|
+
"output_type": "display_data"
|
|
323
|
+
}
|
|
324
|
+
],
|
|
325
|
+
"source": [
|
|
326
|
+
"for s in states:\n",
|
|
327
|
+
" estimates = [\n",
|
|
328
|
+
" log_summary[f\"birthRatei{i}_{s}_median\"].median()\n",
|
|
329
|
+
" - log_summary[f\"deathRatei{i}_{s}_median\"].median()\n",
|
|
330
|
+
" for i in range(n_time_bins)\n",
|
|
331
|
+
" ]\n",
|
|
332
|
+
" plt.step(change_times, estimates[:-1], label=rf\"$d_{{{s}}}$\")\n",
|
|
333
|
+
" plt.legend()\n",
|
|
334
|
+
"plt.gca().invert_xaxis() # This reverses the x-axis"
|
|
335
|
+
]
|
|
336
|
+
}
|
|
337
|
+
],
|
|
338
|
+
"metadata": {
|
|
339
|
+
"kernelspec": {
|
|
340
|
+
"display_name": "env",
|
|
341
|
+
"language": "python",
|
|
342
|
+
"name": "python3"
|
|
343
|
+
},
|
|
344
|
+
"language_info": {
|
|
345
|
+
"codemirror_mode": {
|
|
346
|
+
"name": "ipython",
|
|
347
|
+
"version": 3
|
|
348
|
+
},
|
|
349
|
+
"file_extension": ".py",
|
|
350
|
+
"mimetype": "text/x-python",
|
|
351
|
+
"name": "python",
|
|
352
|
+
"nbconvert_exporter": "python",
|
|
353
|
+
"pygments_lexer": "ipython3",
|
|
354
|
+
"version": "3.11.6"
|
|
355
|
+
}
|
|
356
|
+
},
|
|
357
|
+
"nbformat": 4,
|
|
358
|
+
"nbformat_minor": 5
|
|
359
|
+
}
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
{
|
|
2
|
+
"types": "0,1,2,3",
|
|
3
|
+
"startTypePriorProbs": "0.25 0.25 0.25 0.25",
|
|
4
|
+
"birthRateUpper": 2,
|
|
5
|
+
"deathRateUpper": 2,
|
|
6
|
+
"samplingRateUpper": 10,
|
|
7
|
+
"samplingRateInit": "5 5 5 5 5 5 5",
|
|
8
|
+
"migrationRateUpper": 10,
|
|
9
|
+
"migrationRateInit": "0.5 0 0 0.5 0.5 0 0 0.5 0.5 0 0 0.5",
|
|
10
|
+
"nodes": "16 8"
|
|
11
|
+
}
|