beaver-db 0.5.2__py3-none-any.whl → 0.5.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of beaver-db might be problematic. Click here for more details.
- beaver/collections.py +2 -2
- {beaver_db-0.5.2.dist-info → beaver_db-0.5.3.dist-info}/METADATA +7 -3
- {beaver_db-0.5.2.dist-info → beaver_db-0.5.3.dist-info}/RECORD +5 -5
- {beaver_db-0.5.2.dist-info → beaver_db-0.5.3.dist-info}/WHEEL +0 -0
- {beaver_db-0.5.2.dist-info → beaver_db-0.5.3.dist-info}/top_level.txt +0 -0
beaver/collections.py
CHANGED
|
@@ -331,7 +331,7 @@ class CollectionWrapper:
|
|
|
331
331
|
|
|
332
332
|
|
|
333
333
|
def rerank(
|
|
334
|
-
results: list[
|
|
334
|
+
*results: list[Document],
|
|
335
335
|
weights: list[float] | None = None,
|
|
336
336
|
k: int = 60
|
|
337
337
|
) -> list[Document]:
|
|
@@ -340,7 +340,7 @@ def rerank(
|
|
|
340
340
|
This function is specifically designed to work with beaver.collections.Document objects.
|
|
341
341
|
|
|
342
342
|
Args:
|
|
343
|
-
results (list[
|
|
343
|
+
results (sequence of list[Document]): A sequence of search result lists, where each
|
|
344
344
|
inner list contains Document objects.
|
|
345
345
|
weights (list[float], optional): A list of weights corresponding to each
|
|
346
346
|
result list. If None, all lists are weighted equally. Defaults to None.
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: beaver-db
|
|
3
|
-
Version: 0.5.
|
|
3
|
+
Version: 0.5.3
|
|
4
4
|
Summary: Fast, embedded, and multi-modal DB based on SQLite for AI-powered applications.
|
|
5
5
|
Requires-Python: >=3.13
|
|
6
6
|
Description-Content-Type: text/markdown
|
|
@@ -94,14 +94,18 @@ docs.index(doc)
|
|
|
94
94
|
|
|
95
95
|
# 1. Perform a vector search to find semantically similar documents
|
|
96
96
|
query_vector = [0.7, 0.2, 0.2]
|
|
97
|
-
vector_results = docs.search(vector=query_vector, top_k=
|
|
97
|
+
vector_results = docs.search(vector=query_vector, top_k=3)
|
|
98
98
|
top_doc, distance = vector_results[0]
|
|
99
99
|
print(f"Vector Search Result: {top_doc.content} (distance: {distance:.2f})")
|
|
100
100
|
|
|
101
101
|
# 2. Perform a full-text search to find documents with specific words
|
|
102
|
-
text_results = docs.match(query="database", top_k=
|
|
102
|
+
text_results = docs.match(query="database", top_k=3)
|
|
103
103
|
top_doc, rank = text_results[0]
|
|
104
104
|
print(f"Full-Text Search Result: {top_doc.content} (rank: {rank:.2f})")
|
|
105
|
+
|
|
106
|
+
# 3. Combine both vector and text search for refined results
|
|
107
|
+
from beaver.collections import rerank
|
|
108
|
+
combined_results = rerank([d for d,_ in vector_results], [d for d,_ in text_results], weights=[2,1])
|
|
105
109
|
```
|
|
106
110
|
|
|
107
111
|
### Graph Traversal
|
|
@@ -1,9 +1,9 @@
|
|
|
1
1
|
beaver/__init__.py,sha256=-z5Gj6YKMOswpJOOn5Gej8z5i6k3c0Xs00DIYLA-bMI,75
|
|
2
|
-
beaver/collections.py,sha256=
|
|
2
|
+
beaver/collections.py,sha256=II26aeXelbtfs0zkcHImvPDtoyDhPCCP8bsosEqoKvw,15064
|
|
3
3
|
beaver/core.py,sha256=sk0Z_k7EcORe6bN8CfPukGX7eAfmCGSX_B37KpJmQJ4,7279
|
|
4
4
|
beaver/lists.py,sha256=JG1JOkaYCUldADUzPJhaNi93w-k3S8mUzcCw574uht4,5915
|
|
5
5
|
beaver/subscribers.py,sha256=tCty2iDbeE9IXcPicbxj2CB5gqfLufMB9-nLQwqNBUU,1944
|
|
6
|
-
beaver_db-0.5.
|
|
7
|
-
beaver_db-0.5.
|
|
8
|
-
beaver_db-0.5.
|
|
9
|
-
beaver_db-0.5.
|
|
6
|
+
beaver_db-0.5.3.dist-info/METADATA,sha256=MAtHrjLqdqBKTPzHGJiX4gORwcwQl38pZXr3mSFWsk4,6105
|
|
7
|
+
beaver_db-0.5.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
8
|
+
beaver_db-0.5.3.dist-info/top_level.txt,sha256=FxA4XnX5Qm5VudEXCduFriqi4dQmDWpQ64d7g69VQKI,7
|
|
9
|
+
beaver_db-0.5.3.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|