beaver-db 0.17.4__py3-none-any.whl → 0.17.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of beaver-db might be problematic. Click here for more details.

beaver/server.py CHANGED
@@ -1,56 +1,71 @@
1
1
  try:
2
- from fastapi import FastAPI, HTTPException, Body
2
+ from typing import Any, Optional, List
3
+ import json
4
+ from datetime import datetime, timedelta, timezone
5
+ from fastapi import FastAPI, HTTPException, Body, UploadFile, File, Form, Response, WebSocket, WebSocketDisconnect
3
6
  import uvicorn
7
+ from pydantic import BaseModel, Field
4
8
  except ImportError:
5
- raise ImportError(
6
- "FastAPI and Uvicorn are required to serve the database. "
7
- 'Please install them with `pip install "beaver-db[server]"`'
8
- )
9
- from typing import Any
9
+ raise ImportError("Please install server dependencies with: pip install \"beaver-db[server]\"")
10
+
10
11
  from .core import BeaverDB
12
+ from .collections import Document, WalkDirection
11
13
 
12
14
 
13
- def build(db: BeaverDB) -> FastAPI:
14
- """
15
- Constructs a FastAPI application instance for a given BeaverDB instance.
15
+ # --- Pydantic Models for Collections ---
16
16
 
17
- Args:
18
- db: An active BeaverDB instance.
17
+ class IndexRequest(BaseModel):
18
+ id: Optional[str] = None
19
+ embedding: Optional[List[float]] = None
20
+ metadata: dict = Field(default_factory=dict)
21
+ fts: bool = True
22
+ fuzzy: bool = False
19
23
 
20
- Returns:
21
- A FastAPI application with all endpoints configured.
22
- """
23
- app = FastAPI(
24
- title="BeaverDB",
25
- description="A RESTful API for a BeaverDB instance.",
26
- version="0.1.0",
27
- )
24
+ class SearchRequest(BaseModel):
25
+ vector: List[float]
26
+ top_k: int = 10
28
27
 
29
- # --- Dicts Endpoints ---
28
+ class MatchRequest(BaseModel):
29
+ query: str
30
+ on: Optional[List[str]] = None
31
+ top_k: int = 10
32
+ fuzziness: int = 0
30
33
 
31
- @app.get("/dicts/{name}")
32
- def get_all_dict_items(name: str) -> dict:
33
- """Retrieves all key-value pairs in a dictionary."""
34
- d = db.dict(name)
35
- return {k: v for k, v in d.items()}
34
+ class ConnectRequest(BaseModel):
35
+ source_id: str
36
+ target_id: str
37
+ label: str
38
+ metadata: Optional[dict] = None
39
+
40
+ class WalkRequest(BaseModel):
41
+ labels: List[str]
42
+ depth: int
43
+ direction: WalkDirection = WalkDirection.OUTGOING
44
+
45
+
46
+ def build(db: BeaverDB) -> FastAPI:
47
+ """Constructs a FastAPI instance for a given BeaverDB."""
48
+ app = FastAPI(title="BeaverDB Server")
36
49
 
37
- @app.get("/dicts/{name}/{key}")
50
+ # --- Dicts Endpoints ---
51
+
52
+ @app.get("/dicts/{name}/{key}", tags=["Dicts"])
38
53
  def get_dict_item(name: str, key: str) -> Any:
39
54
  """Retrieves the value for a specific key."""
40
55
  d = db.dict(name)
41
- try:
42
- return d[key]
43
- except KeyError:
56
+ value = d.get(key)
57
+ if value is None:
44
58
  raise HTTPException(status_code=404, detail=f"Key '{key}' not found in dictionary '{name}'")
59
+ return value
45
60
 
46
- @app.post("/dicts/{name}/{key}")
61
+ @app.put("/dicts/{name}/{key}", tags=["Dicts"])
47
62
  def set_dict_item(name: str, key: str, value: Any = Body(...)):
48
- """Sets the value for a specific key."""
63
+ """Sets or updates the value for a specific key."""
49
64
  d = db.dict(name)
50
65
  d[key] = value
51
66
  return {"status": "ok"}
52
67
 
53
- @app.delete("/dicts/{name}/{key}")
68
+ @app.delete("/dicts/{name}/{key}", tags=["Dicts"])
54
69
  def delete_dict_item(name: str, key: str):
55
70
  """Deletes a key-value pair."""
56
71
  d = db.dict(name)
@@ -60,15 +75,16 @@ def build(db: BeaverDB) -> FastAPI:
60
75
  except KeyError:
61
76
  raise HTTPException(status_code=404, detail=f"Key '{key}' not found in dictionary '{name}'")
62
77
 
78
+
63
79
  # --- Lists Endpoints ---
64
80
 
65
- @app.get("/lists/{name}")
81
+ @app.get("/lists/{name}", tags=["Lists"])
66
82
  def get_list(name: str) -> list:
67
83
  """Retrieves all items in the list."""
68
84
  l = db.list(name)
69
85
  return l[:]
70
86
 
71
- @app.get("/lists/{name}/{index}")
87
+ @app.get("/lists/{name}/{index}", tags=["Lists"])
72
88
  def get_list_item(name: str, index: int) -> Any:
73
89
  """Retrieves the item at a specific index."""
74
90
  l = db.list(name)
@@ -77,14 +93,14 @@ def build(db: BeaverDB) -> FastAPI:
77
93
  except IndexError:
78
94
  raise HTTPException(status_code=404, detail=f"Index {index} out of bounds for list '{name}'")
79
95
 
80
- @app.post("/lists/{name}")
96
+ @app.post("/lists/{name}", tags=["Lists"])
81
97
  def push_list_item(name: str, value: Any = Body(...)):
82
98
  """Adds an item to the end of the list."""
83
99
  l = db.list(name)
84
100
  l.push(value)
85
101
  return {"status": "ok"}
86
102
 
87
- @app.put("/lists/{name}/{index}")
103
+ @app.put("/lists/{name}/{index}", tags=["Lists"])
88
104
  def update_list_item(name: str, index: int, value: Any = Body(...)):
89
105
  """Updates the item at a specific index."""
90
106
  l = db.list(name)
@@ -94,7 +110,7 @@ def build(db: BeaverDB) -> FastAPI:
94
110
  except IndexError:
95
111
  raise HTTPException(status_code=404, detail=f"Index {index} out of bounds for list '{name}'")
96
112
 
97
- @app.delete("/lists/{name}/{index}")
113
+ @app.delete("/lists/{name}/{index}", tags=["Lists"])
98
114
  def delete_list_item(name: str, index: int):
99
115
  """Deletes the item at a specific index."""
100
116
  l = db.list(name)
@@ -104,29 +120,220 @@ def build(db: BeaverDB) -> FastAPI:
104
120
  except IndexError:
105
121
  raise HTTPException(status_code=404, detail=f"Index {index} out of bounds for list '{name}'")
106
122
 
107
- # TODO: Add endpoints for all BeaverDB modalities
108
- # - Queues
109
- # - Collections
110
- # - Channels
111
- # - Logs
112
- # - Blobs
123
+ # --- Queues Endpoints ---
124
+
125
+ @app.get("/queues/{name}/peek", tags=["Queues"])
126
+ def peek_queue_item(name: str) -> Any:
127
+ """Retrieves the highest-priority item from the queue without removing it."""
128
+ q = db.queue(name)
129
+ item = q.peek()
130
+ if item is None:
131
+ raise HTTPException(status_code=404, detail=f"Queue '{name}' is empty")
132
+ return item
133
+
134
+ @app.post("/queues/{name}/put", tags=["Queues"])
135
+ def put_queue_item(name: str, data: Any = Body(...), priority: float = Body(...)):
136
+ """Adds an item to the queue with a specific priority."""
137
+ q = db.queue(name)
138
+ q.put(data=data, priority=priority)
139
+ return {"status": "ok"}
140
+
141
+ @app.delete("/queues/{name}/get", tags=["Queues"])
142
+ def get_queue_item(name: str, timeout: float = 5.0) -> Any:
143
+ """
144
+ Atomically retrieves and removes the highest-priority item from the queue,
145
+ blocking until an item is available or the timeout is reached.
146
+ """
147
+ q = db.queue(name)
148
+ try:
149
+ item = q.get(block=True, timeout=timeout)
150
+ return item
151
+ except TimeoutError:
152
+ raise HTTPException(status_code=408, detail=f"Request timed out after {timeout}s waiting for an item in queue '{name}'")
153
+ except IndexError:
154
+ # This case is less likely with block=True but good to handle
155
+ raise HTTPException(status_code=404, detail=f"Queue '{name}' is empty")
156
+
157
+
158
+ # --- Blobs Endpoints ---
159
+
160
+ @app.get("/blobs/{name}/{key}", response_class=Response, tags=["Blobs"])
161
+ def get_blob(name: str, key: str):
162
+ """Retrieves a blob as a binary file."""
163
+ blobs = db.blobs(name)
164
+ blob = blobs.get(key)
165
+ if blob is None:
166
+ raise HTTPException(status_code=404, detail=f"Blob with key '{key}' not found in store '{name}'")
167
+ # Return the raw bytes with a generic binary content type
168
+ return Response(content=blob.data, media_type="application/octet-stream")
169
+
170
+ @app.put("/blobs/{name}/{key}", tags=["Blobs"])
171
+ async def put_blob(name: str, key: str, data: UploadFile = File(...), metadata: Optional[str] = Form(None)):
172
+ """Stores a blob (binary file) with optional JSON metadata."""
173
+ blobs = db.blobs(name)
174
+ file_bytes = await data.read()
175
+
176
+ meta_dict = None
177
+ if metadata:
178
+ try:
179
+ meta_dict = json.loads(metadata)
180
+ except json.JSONDecodeError:
181
+ raise HTTPException(status_code=400, detail="Invalid JSON format for metadata.")
182
+
183
+ blobs.put(key=key, data=file_bytes, metadata=meta_dict)
184
+ return {"status": "ok"}
185
+
186
+ @app.delete("/blobs/{name}/{key}", tags=["Blobs"])
187
+ def delete_blob(name: str, key: str):
188
+ """Deletes a blob from the store."""
189
+ blobs = db.blobs(name)
190
+ try:
191
+ blobs.delete(key)
192
+ return {"status": "ok"}
193
+ except KeyError:
194
+ raise HTTPException(status_code=404, detail=f"Blob with key '{key}' not found in store '{name}'")
195
+
196
+
197
+ # --- Logs Endpoints ---
198
+
199
+ @app.post("/logs/{name}", tags=["Logs"])
200
+ def create_log_entry(name: str, data: Any = Body(...)):
201
+ """Adds a new entry to the log."""
202
+ log = db.log(name)
203
+ log.log(data)
204
+ return {"status": "ok"}
205
+
206
+ @app.get("/logs/{name}/range", tags=["Logs"])
207
+ def get_log_range(name: str, start: datetime, end: datetime) -> list:
208
+ """Retrieves log entries within a specific time window."""
209
+ log = db.log(name)
210
+ # Ensure datetimes are timezone-aware (UTC) for correct comparison
211
+ start_utc = start.astimezone(timezone.utc) if start.tzinfo else start.replace(tzinfo=timezone.utc)
212
+ end_utc = end.astimezone(timezone.utc) if end.tzinfo else end.replace(tzinfo=timezone.utc)
213
+ return log.range(start=start_utc, end=end_utc)
214
+
215
+ @app.websocket("/logs/{name}/live", name="Logs")
216
+ async def live_log_feed(websocket: WebSocket, name: str, window_seconds: int = 5, period_seconds: int = 1):
217
+ """Streams live, aggregated log data over a WebSocket."""
218
+ await websocket.accept()
219
+
220
+ async_logs = db.log(name).as_async()
221
+
222
+ # This simple aggregator function runs in the background and returns a
223
+ # JSON-serializable summary of the data in the current window.
224
+ def simple_aggregator(window):
225
+ return {"count": len(window), "latest_timestamp": window[-1]["timestamp"] if window else None}
226
+
227
+ live_stream = async_logs.live(
228
+ window=timedelta(seconds=window_seconds),
229
+ period=timedelta(seconds=period_seconds),
230
+ aggregator=simple_aggregator,
231
+ )
232
+
233
+ try:
234
+ async for summary in live_stream:
235
+ await websocket.send_json(summary)
236
+ except WebSocketDisconnect:
237
+ print(f"Client disconnected from log '{name}' live feed.")
238
+ finally:
239
+ # Cleanly close the underlying iterator and its background thread.
240
+ live_stream.close()
241
+
242
+
243
+ # --- Channels Endpoints ---
244
+
245
+ @app.post("/channels/{name}/publish", tags=["Channels"])
246
+ def publish_to_channel(name: str, payload: Any = Body(...)):
247
+ """Publishes a message to the specified channel."""
248
+ channel = db.channel(name)
249
+ channel.publish(payload)
250
+ return {"status": "ok"}
251
+
252
+ @app.websocket("/channels/{name}/subscribe", name="Channels")
253
+ async def subscribe_to_channel(websocket: WebSocket, name: str):
254
+ """Subscribes to a channel and streams messages over a WebSocket."""
255
+ await websocket.accept()
256
+
257
+ async_channel = db.channel(name).as_async()
258
+
259
+ try:
260
+ async with async_channel.subscribe() as listener:
261
+ async for message in listener.listen():
262
+ await websocket.send_json(message)
263
+ except WebSocketDisconnect:
264
+ print(f"Client disconnected from channel '{name}' subscription.")
265
+
266
+
267
+ # --- Collections Endpoints ---
268
+
269
+ @app.get("/collections/{name}", tags=["Collections"])
270
+ def get_all_documents(name: str) -> List[dict]:
271
+ """Retrieves all documents in the collection."""
272
+ collection = db.collection(name)
273
+ return [doc.model_dump() for doc in collection]
274
+
275
+ @app.post("/collections/{name}/index", tags=["Collections"])
276
+ def index_document(name: str, req: IndexRequest):
277
+ """Indexes a document in the specified collection."""
278
+ collection = db.collection(name)
279
+ doc = Document(id=req.id, embedding=req.embedding, **req.metadata)
280
+ try:
281
+ collection.index(doc, fts=req.fts, fuzzy=req.fuzzy)
282
+ return {"status": "ok", "id": doc.id}
283
+ except TypeError as e:
284
+ if "faiss" in str(e):
285
+ raise HTTPException(status_code=501, detail="Vector indexing requires the '[faiss]' extra. Install with: pip install \"beaver-db[faiss]\"")
286
+ raise e
287
+
288
+ @app.post("/collections/{name}/search", tags=["Collections"])
289
+ def search_collection(name: str, req: SearchRequest) -> List[dict]:
290
+ """Performs a vector search on the collection."""
291
+ collection = db.collection(name)
292
+ try:
293
+ results = collection.search(vector=req.vector, top_k=req.top_k)
294
+ return [{"document": doc.model_dump(), "distance": dist} for doc, dist in results]
295
+ except TypeError as e:
296
+ if "faiss" in str(e):
297
+ raise HTTPException(status_code=501, detail="Vector search requires the '[faiss]' extra. Install with: pip install \"beaver-db[faiss]\"")
298
+ raise e
299
+
300
+ @app.post("/collections/{name}/match", tags=["Collections"])
301
+ def match_collection(name: str, req: MatchRequest) -> List[dict]:
302
+ """Performs a full-text or fuzzy search on the collection."""
303
+ collection = db.collection(name)
304
+ results = collection.match(query=req.query, on=req.on, top_k=req.top_k, fuzziness=req.fuzziness)
305
+ return [{"document": doc.model_dump(), "score": score} for doc, score in results]
306
+
307
+ @app.post("/collections/{name}/connect", tags=["Collections"])
308
+ def connect_documents(name: str, req: ConnectRequest):
309
+ """Creates a directed edge between two documents."""
310
+ collection = db.collection(name)
311
+ source_doc = Document(id=req.source_id)
312
+ target_doc = Document(id=req.target_id)
313
+ collection.connect(source=source_doc, target=target_doc, label=req.label, metadata=req.metadata)
314
+ return {"status": "ok"}
315
+
316
+ @app.get("/collections/{name}/{doc_id}/neighbors", tags=["Collections"])
317
+ def get_neighbors(name: str, doc_id: str, label: Optional[str] = None) -> List[dict]:
318
+ """Retrieves the neighboring documents for a given document."""
319
+ collection = db.collection(name)
320
+ doc = Document(id=doc_id)
321
+ neighbors = collection.neighbors(doc, label=label)
322
+ return [n.model_dump() for n in neighbors]
113
323
 
114
- @app.get("/")
115
- def read_root():
116
- return {"message": "Welcome to the BeaverDB API"}
324
+ @app.post("/collections/{name}/{doc_id}/walk", tags=["Collections"])
325
+ def walk_graph(name: str, doc_id: str, req: WalkRequest) -> List[dict]:
326
+ """Performs a graph traversal (BFS) from a starting document."""
327
+ collection = db.collection(name)
328
+ source_doc = Document(id=doc_id)
329
+ results = collection.walk(source=source_doc, labels=req.labels, depth=req.depth, direction=req.direction)
330
+ return [doc.model_dump() for doc in results]
117
331
 
118
332
  return app
119
333
 
120
334
 
121
335
  def serve(db_path: str, host: str, port: int):
122
- """
123
- Initializes a BeaverDB instance and runs a Uvicorn server for it.
124
-
125
- Args:
126
- db_path: The path to the SQLite database file.
127
- host: The host to bind the server to.
128
- port: The port to run the server on.
129
- """
336
+ """Initializes and runs the Uvicorn server."""
130
337
  db = BeaverDB(db_path)
131
338
  app = build(db)
132
339
  uvicorn.run(app, host=host, port=port)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: beaver-db
3
- Version: 0.17.4
3
+ Version: 0.17.6
4
4
  Summary: Fast, embedded, and multi-modal DB based on SQLite for AI-powered applications.
5
5
  License-File: LICENSE
6
6
  Classifier: License :: OSI Approved :: MIT License
@@ -42,7 +42,7 @@ A fast, single-file, multi-modal database for Python, built with the standard `s
42
42
 
43
43
  `beaver` is built with a minimalistic philosophy for small, local use cases where a full-blown database server would be overkill.
44
44
 
45
- - **Minimalistic**: The core library has zero external dependencies. Vector search capabilities, which require `numpy` and `faiss-cpu`, are available as an optional feature.
45
+ - **Minimalistic**: The core library has zero external dependencies. Vector search, the REST server, and the CLI, which require external libraries, are available as optional features.
46
46
  - **Schemaless**: Flexible data storage without rigid schemas across all modalities.
47
47
  - **Synchronous, Multi-Process, and Thread-Safe**: Designed for simplicity and safety in multi-threaded and multi-process environments.
48
48
  - **Built for Local Applications**: Perfect for local AI tools, RAG prototypes, chatbots, and desktop utilities that need persistent, structured data without network overhead.
@@ -61,6 +61,8 @@ A fast, single-file, multi-modal database for Python, built with the standard `s
61
61
  - **Full-Text and Fuzzy Search**: Automatically index and search through document metadata using SQLite's powerful FTS5 engine, enhanced with optional fuzzy search for typo-tolerant matching.
62
62
  - **Knowledge Graph**: Create relationships between documents and traverse the graph to find neighbors or perform multi-hop walks.
63
63
  - **Single-File & Portable**: All data is stored in a single SQLite file, making it incredibly easy to move, back up, or embed in your application.
64
+ - **Built-in REST API Server (Optional)**: Instantly serve your database over a RESTful API with automatic OpenAPI documentation using FastAPI.
65
+ - **Full-Featured CLI Client (Optional)**: Interact with your database directly from the command line for administrative tasks and data exploration.
64
66
  - **Optional Type-Safety:** Although the database is schemaless, you can use a minimalistic typing system for automatic serialization and deserialization that is Pydantic-compatible out of the box.
65
67
 
66
68
  ## How Beaver is Implemented
@@ -79,7 +81,6 @@ The vector store in BeaverDB is designed for high performance and reliability, u
79
81
 
80
82
  This hybrid approach allows BeaverDB to provide a vector search experience that is both fast and durable, without sacrificing the single-file, embedded philosophy of the library.
81
83
 
82
-
83
84
  ## Installation
84
85
 
85
86
  Install the core, dependency-free library:
@@ -88,10 +89,17 @@ Install the core, dependency-free library:
88
89
  pip install beaver-db
89
90
  ```
90
91
 
91
- If you want vector search capabilities, install the `faiss` extra:
92
+ To include optional features, you can install them as extras:
92
93
 
93
94
  ```bash
95
+ # For vector search capabilities
94
96
  pip install "beaver-db[faiss]"
97
+
98
+ # For the REST API server and CLI
99
+ pip install "beaver-db[server,cli]"
100
+
101
+ # To install all optional features at once
102
+ pip install "beaver-db[full]"
95
103
  ```
96
104
 
97
105
  ## Quickstart
@@ -131,6 +139,53 @@ print(f"FTS Result: '{top_doc.content}'")
131
139
  db.close()
132
140
  ```
133
141
 
142
+ ## Built-in Server and CLI
143
+
144
+ Beaver comes with a built-in REST API server and a full-featured command-line client, allowing you to interact with your database without writing any code.
145
+
146
+ ### REST API Server
147
+
148
+ You can instantly expose all of your database's functionality over a RESTful API. This is perfect for building quick prototypes, microservices, or for interacting with your data from other languages.
149
+
150
+ **1. Start the server**
151
+
152
+ ```bash
153
+ # Start the server for your database file
154
+ beaver serve --database data.db --port 8000
155
+ ```
156
+
157
+ This starts a `FastAPI` server. You can now access the interactive API documentation at `http://127.0.0.1:8000/docs`.
158
+
159
+ **2. Interact with the API**
160
+
161
+ Here are a couple of examples using `curl`:
162
+
163
+ ```bash
164
+ # Set a value in the 'app_config' dictionary
165
+ curl -X PUT http://127.0.0.1:8000/dicts/app_config/api_key
166
+ -H "Content-Type: application/json"
167
+ -d '"your-secret-api-key"'
168
+
169
+ # Get the value back
170
+ curl http://127.0.0.1:8000/dicts/app_config/api_key
171
+ # Output: "your-secret-api-key"
172
+ ```
173
+
174
+ ### Command-Line Client
175
+
176
+ The CLI client allows you to call any BeaverDB method directly from your terminal.
177
+
178
+ ```bash
179
+ # Set a value in a dictionary
180
+ beaver client --database data.db dict app_config set theme light
181
+
182
+ # Get the value back
183
+ beaver client --database data.db dict app_config get theme
184
+
185
+ # Push an item to a list
186
+ beaver client --database data.db list daily_tasks push "Review PRs"
187
+ ```
188
+
134
189
  ## Things You Can Build with Beaver
135
190
 
136
191
  Here are a few ideas to inspire your next project, showcasing how to combine Beaver's features to build powerful local applications.
@@ -282,8 +337,10 @@ For enhanced data integrity and a better developer experience, BeaverDB supports
282
337
 
283
338
  This feature is designed to be flexible and works seamlessly with two kinds of models:
284
339
 
285
- * **Pydantic Models**: If you're already using Pydantic, your `BaseModel` classes will work out of the box.
286
- * **Lightweight `beaver.Model`**: For a zero-dependency solution, you can inherit from the built-in `beaver.Model` class, which is a standard Python class with serialization methods automatically included.
340
+ - **Pydantic Models**: If you're already using Pydantic, your `BaseModel` classes will work out of the box.
341
+
342
+ - **Lightweight `beaver.Model`**: For a zero-dependency solution, you can inherit from the built-in `beaver.Model` class, which is a standard Python class with serialization methods automatically included.
343
+
287
344
 
288
345
  Here’s a quick example of how to use it:
289
346
 
@@ -305,7 +362,8 @@ users["alice"] = User(name="Alice", email="alice@example.com")
305
362
 
306
363
  # The retrieved object is a proper instance of the User class
307
364
  retrieved_user = users["alice"]
308
- print(f"Retrieved: {retrieved_user.name}") # Your editor will provide autocompletion here
365
+ # Your editor will provide autocompletion here
366
+ print(f"Retrieved: {retrieved_user.name}")
309
367
  ```
310
368
 
311
369
  In the same way you can have typed message payloads in `db.channel`, typed metadata in `db.blobs`, and custom document types in `db.collection`, as well as custom types in lists and queues.
@@ -316,25 +374,25 @@ Basically everywhere you can store or get some object in BeaverDB, you can use a
316
374
 
317
375
  For more in-depth examples, check out the scripts in the `examples/` directory:
318
376
 
319
- - [`async_pubsub.py`](examples/async_pubsub.py): A demonstration of the asynchronous wrapper for the publish/subscribe system.
320
- - [`blobs.py`](examples/blobs.py): Demonstrates how to store and retrieve binary data in the database.
321
- - [`cache.py`](examples/cache.py): A practical example of using a dictionary with TTL as a cache for API calls.
322
- - [`fts.py`](examples/fts.py): A detailed look at full-text search, including targeted searches on specific metadata fields.
323
- - [`fuzzy.py`](examples/fuzzy.py): Demonstrates fuzzy search capabilities for text search.
324
- - [`general_test.py`](examples/general_test.py): A general-purpose test to run all operations randomly which allows testing long-running processes and synchronicity issues.
325
- - [`graph.py`](examples/graph.py): Shows how to create relationships between documents and perform multi-hop graph traversals.
326
- - [`kvstore.py`](examples/kvstore.py): A comprehensive demo of the namespaced dictionary feature.
327
- - [`list.py`](examples/list.py): Shows the full capabilities of the persistent list, including slicing and in-place updates.
328
- - [`logs.py`](examples/logs.py): A short example showing how to build a realtime dashboard with the logging feature.
329
- - [`pqueue.py`](examples/pqueue.py): A practical example of using the persistent priority queue for task management.
330
- - [`producer_consumer.py`](examples/producer_consumer.py): A demonstration of the distributed task queue system in a multi-process environment.
331
- - [`publisher.py`](examples/publisher.py) and [`subscriber.py`](examples/subscriber.py): A pair of examples demonstrating inter-process message passing with the publish/subscribe system.
332
- - [`pubsub.py`](examples/pubsub.py): A demonstration of the synchronous, thread-safe publish/subscribe system in a single process.
333
- - [`rerank.py`](examples/rerank.py): Shows how to combine results from vector and text search for more refined results.
334
- - [`stress_vectors.py`](examples/stress_vectors.py): A stress test for the vector search functionality.
335
- - [`textual_chat.py`](examples/textual_chat.py): A chat application built with `textual` and `beaver` to illustrate the use of several primitives (lists, dicts, and channels) at the same time.
336
- - [`type_hints.py`](examples/type_hints.py): Shows how to use type hints with `beaver` to get better IDE support and type safety.
337
- - [`vector.py`](examples/vector.py): Demonstrates how to index and search vector embeddings, including upserts.
377
+ - [`async_pubsub.py`](examples/async_pubsub.py): A demonstration of the asynchronous wrapper for the publish/subscribe system.
378
+ - [`blobs.py`](examples/blobs.py): Demonstrates how to store and retrieve binary data in the database.
379
+ - [`cache.py`](examples/cache.py): A practical example of using a dictionary with TTL as a cache for API calls.
380
+ - [`fts.py`](examples/fts.py): A detailed look at full-text search, including targeted searches on specific metadata fields.
381
+ - [`fuzzy.py`](examples/fuzzy.py): Demonstrates fuzzy search capabilities for text search.
382
+ - [`general_test.py`](examples/general_test.py): A general-purpose test to run all operations randomly which allows testing long-running processes and synchronicity issues.
383
+ - [`graph.py`](examples/graph.py): Shows how to create relationships between documents and perform multi-hop graph traversals.
384
+ - [`kvstore.py`](examples/kvstore.py): A comprehensive demo of the namespaced dictionary feature.
385
+ - [`list.py`](examples/list.py): Shows the full capabilities of the persistent list, including slicing and in-place updates.
386
+ - [`logs.py`](examples/logs.py): A short example showing how to build a realtime dashboard with the logging feature.
387
+ - [`pqueue.py`](examples/pqueue.py): A practical example of using the persistent priority queue for task management.
388
+ - [`producer_consumer.py`](examples/producer_consumer.py): A demonstration of the distributed task queue system in a multi-process environment.
389
+ - [`publisher.py`](examples/publisher.p) and [`subscriber.py`](examples/subscriber.py): A pair of examples demonstrating inter-process message passing with the publish/subscribe system.
390
+ - [`pubsub.py`](examples/pubsub.py): A demonstration of the synchronous, thread-safe publish/subscribe system in a single process.
391
+ - [`rerank.py`](examples/rerank.py): Shows how to combine results from vector and text search for more refined results.
392
+ - [`stress_vectors.py`](examples/stress_vectors.py): A stress test for the vector search functionality.
393
+ - [`textual_chat.py`](examples/textual_chat.py): A chat application built with `textual` and `beaver` to illustrate the use of several primitives (lists, dicts, and channels) at the same time.
394
+ - [`type_hints.py`](examples/type_hints.py): Shows how to use type hints with `beaver` to get better IDE support and type safety.
395
+ - [`vector.py`](examples/vector.py): Demonstrates how to index and search vector embeddings, including upserts.
338
396
 
339
397
  ## Roadmap
340
398
 
@@ -342,7 +400,7 @@ For more in-depth examples, check out the scripts in the `examples/` directory:
342
400
 
343
401
  These are some of the features and improvements planned for future releases:
344
402
 
345
- - **Async API**: Extend the async support with on-demand wrappers for all features besides channels.
403
+ - **Async API**: Extend the async support with on-demand wrappers for all features besides channels.
346
404
 
347
405
  Check out the [roadmap](roadmap.md) for a detailed list of upcoming features and design ideas.
348
406
 
@@ -350,4 +408,4 @@ If you think of something that would make `beaver` more useful for your use case
350
408
 
351
409
  ## License
352
410
 
353
- This project is licensed under the MIT License.
411
+ This project is licensed under the MIT License.
@@ -8,11 +8,11 @@ beaver/dicts.py,sha256=Xp8lPfQt08O8zCbptQLWQLO79OxG6uAVER6ryj3SScQ,5495
8
8
  beaver/lists.py,sha256=rfJ8uTNLkMREYc0uGx0z1VKt2m3eR9hvbdvDD58EbmQ,10140
9
9
  beaver/logs.py,sha256=a5xenwl5NZeegIU0dWVEs67lvaHzzw-JRAZtEzNNO3E,9529
10
10
  beaver/queues.py,sha256=Fr3oie63EtceSoiC8EOEDSLu1tDI8q2MYLXd8MEeC3g,6476
11
- beaver/server.py,sha256=lmzMu51cXa1Qdezg140hmsMLCxVSq8YGX0EPQfuGidk,4043
11
+ beaver/server.py,sha256=OixUvPTIbSYN3anPc98UiF2mM289yjJBQGla1S_HmIY,13556
12
12
  beaver/types.py,sha256=WZLINf7hy6zdKdAFQK0EVMSl5vnY_KnrHXNdXgAKuPg,1582
13
13
  beaver/vectors.py,sha256=qvI6RwUOGrhVH5d6PUmI3jKDaoDotMy0iy-bHyvmXks,18496
14
- beaver_db-0.17.4.dist-info/METADATA,sha256=VXJYu_d3IK1Mc4lnYWU6gsJl100LbKmvv5q6qDUs7S0,18664
15
- beaver_db-0.17.4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
16
- beaver_db-0.17.4.dist-info/entry_points.txt,sha256=bd5E2s45PoBdtdR9-ToKSdLNhmHp8naV1lWP5mOzlrc,42
17
- beaver_db-0.17.4.dist-info/licenses/LICENSE,sha256=1xrIY5JnMk_QDQzsqmVzPIIyCgZAkWCC8kF2Ddo1UT0,1071
18
- beaver_db-0.17.4.dist-info/RECORD,,
14
+ beaver_db-0.17.6.dist-info/METADATA,sha256=nfbNnxeVFvBoqoMxvXNAJ_JxMfnLvok_TY32FCFKqsE,20508
15
+ beaver_db-0.17.6.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
16
+ beaver_db-0.17.6.dist-info/entry_points.txt,sha256=bd5E2s45PoBdtdR9-ToKSdLNhmHp8naV1lWP5mOzlrc,42
17
+ beaver_db-0.17.6.dist-info/licenses/LICENSE,sha256=1xrIY5JnMk_QDQzsqmVzPIIyCgZAkWCC8kF2Ddo1UT0,1071
18
+ beaver_db-0.17.6.dist-info/RECORD,,