beaver-db 0.14.0__py3-none-any.whl → 0.16.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of beaver-db might be problematic. Click here for more details.

beaver/core.py CHANGED
@@ -8,6 +8,7 @@ from .channels import ChannelManager
8
8
  from .collections import CollectionManager, Document
9
9
  from .dicts import DictManager
10
10
  from .lists import ListManager
11
+ from .logs import LogManager
11
12
  from .queues import QueueManager
12
13
 
13
14
 
@@ -51,11 +52,31 @@ class BeaverDB:
51
52
  self._create_edges_table()
52
53
  self._create_fts_table()
53
54
  self._create_list_table()
55
+ self._create_logs_table()
54
56
  self._create_priority_queue_table()
55
57
  self._create_pubsub_table()
56
58
  self._create_trigrams_table()
57
59
  self._create_versions_table()
58
60
 
61
+ def _create_logs_table(self):
62
+ """Creates the table for time-indexed logs."""
63
+ self._conn.execute(
64
+ """
65
+ CREATE TABLE IF NOT EXISTS beaver_logs (
66
+ log_name TEXT NOT NULL,
67
+ timestamp REAL NOT NULL,
68
+ data TEXT NOT NULL,
69
+ PRIMARY KEY (log_name, timestamp)
70
+ )
71
+ """
72
+ )
73
+ self._conn.execute(
74
+ """
75
+ CREATE INDEX IF NOT EXISTS idx_logs_timestamp
76
+ ON beaver_logs (log_name, timestamp)
77
+ """
78
+ )
79
+
59
80
  def _create_blobs_table(self):
60
81
  """Creates the table for storing named blobs."""
61
82
  self._conn.execute(
@@ -343,3 +364,16 @@ class BeaverDB:
343
364
  raise TypeError("Blob store name must be a non-empty string.")
344
365
 
345
366
  return BlobManager(name, self._conn, model)
367
+
368
+ def log[T](self, name: str, model: type[T] | None = None) -> LogManager[T]:
369
+ """
370
+ Returns a wrapper for interacting with a named, time-indexed log.
371
+ If model is defined, it should be a type used for automatic (de)serialization.
372
+ """
373
+ if not isinstance(name, str) or not name:
374
+ raise TypeError("Log name must be a non-empty string.")
375
+
376
+ if model and not isinstance(model, JsonSerializable):
377
+ raise TypeError("The model parameter must be a JsonSerializable class.")
378
+
379
+ return LogManager(name, self._conn, self._db_path, model)
beaver/logs.py ADDED
@@ -0,0 +1,278 @@
1
+ import asyncio
2
+ import collections
3
+ import json
4
+ import sqlite3
5
+ import threading
6
+ import time
7
+ from datetime import datetime, timedelta, timezone
8
+ from queue import Empty, Queue
9
+ from typing import Any, AsyncIterator, Callable, Iterator, Type, TypeVar
10
+
11
+ from .types import JsonSerializable
12
+
13
+
14
+ # A special message object used to signal the iterator to gracefully shut down.
15
+ _SHUTDOWN_SENTINEL = object()
16
+
17
+
18
+ class LiveIterator[T,R]:
19
+ """
20
+ A thread-safe, blocking iterator that yields aggregated results from a
21
+ rolling window of log data.
22
+ """
23
+
24
+ def __init__(
25
+ self,
26
+ db_path: str,
27
+ log_name: str,
28
+ window: timedelta,
29
+ period: timedelta,
30
+ aggregator: Callable[[list[T]], R],
31
+ deserializer: Callable[[str], T],
32
+ ):
33
+ self._db_path = db_path
34
+ self._log_name = log_name
35
+ self._window_duration_seconds = window.total_seconds()
36
+ self._sampling_period_seconds = period.total_seconds()
37
+ self._aggregator = aggregator
38
+ self._deserializer = deserializer
39
+ self._queue: Queue = Queue()
40
+ self._stop_event = threading.Event()
41
+ self._thread: threading.Thread | None = None
42
+
43
+ def _polling_loop(self):
44
+ """The main loop for the background thread that queries and aggregates data."""
45
+ # Each thread needs its own database connection.
46
+ thread_conn = sqlite3.connect(self._db_path, check_same_thread=False)
47
+ thread_conn.row_factory = sqlite3.Row
48
+
49
+ window_deque: collections.deque[tuple[float, T]] = collections.deque()
50
+ last_seen_timestamp = 0.0
51
+
52
+ # --- Initial window population ---
53
+ now = datetime.now(timezone.utc).timestamp()
54
+ start_time = now - self._window_duration_seconds
55
+ cursor = thread_conn.cursor()
56
+ cursor.execute(
57
+ "SELECT timestamp, data FROM beaver_logs WHERE log_name = ? AND timestamp >= ? ORDER BY timestamp ASC",
58
+ (self._log_name, start_time),
59
+ )
60
+ for row in cursor:
61
+ ts, data_str = row
62
+ window_deque.append((ts, self._deserializer(data_str)))
63
+ last_seen_timestamp = max(last_seen_timestamp, ts)
64
+
65
+ # Yield the first result
66
+ try:
67
+ initial_result = self._aggregator([item[1] for item in window_deque])
68
+ self._queue.put(initial_result)
69
+ except Exception as e:
70
+ # Propagate aggregator errors to the main thread
71
+ self._queue.put(e)
72
+
73
+ # --- Continuous polling loop ---
74
+ while not self._stop_event.is_set():
75
+ time.sleep(self._sampling_period_seconds)
76
+
77
+ # Fetch only new data since the last check
78
+ cursor.execute(
79
+ "SELECT timestamp, data FROM beaver_logs WHERE log_name = ? AND timestamp > ? ORDER BY timestamp ASC",
80
+ (self._log_name, last_seen_timestamp),
81
+ )
82
+ for row in cursor:
83
+ ts, data_str = row
84
+ window_deque.append((ts, self._deserializer(data_str)))
85
+ last_seen_timestamp = max(last_seen_timestamp, ts)
86
+
87
+ # Evict old data from the left of the deque
88
+ now = datetime.now(timezone.utc).timestamp()
89
+ eviction_time = now - self._window_duration_seconds
90
+ while window_deque and window_deque[0][0] < eviction_time:
91
+ window_deque.popleft()
92
+
93
+ # Run aggregator and yield the new result
94
+ try:
95
+ new_result = self._aggregator([item[1] for item in window_deque])
96
+ self._queue.put(new_result)
97
+ except Exception as e:
98
+ self._queue.put(e)
99
+
100
+ thread_conn.close()
101
+
102
+ def __iter__(self) -> "LiveIterator[T,R]":
103
+ self._thread = threading.Thread(target=self._polling_loop, daemon=True)
104
+ self._thread.start()
105
+ return self
106
+
107
+ def __next__(self) -> R:
108
+ result = self._queue.get()
109
+ if result is _SHUTDOWN_SENTINEL:
110
+ raise StopIteration
111
+ if isinstance(result, Exception):
112
+ # If the background thread put an exception in the queue, re-raise it
113
+ raise result
114
+ return result
115
+
116
+ def close(self):
117
+ """Stops the background polling thread."""
118
+ self._stop_event.set()
119
+ self._queue.put(_SHUTDOWN_SENTINEL)
120
+ if self._thread:
121
+ self._thread.join()
122
+
123
+
124
+ class AsyncLiveIterator[T,R]:
125
+ """An async wrapper for the LiveIterator."""
126
+
127
+ def __init__(self, sync_iterator: LiveIterator[T,R]):
128
+ self._sync_iterator = sync_iterator
129
+
130
+ async def __anext__(self) -> R:
131
+ try:
132
+ return await asyncio.to_thread(self._sync_iterator.__next__)
133
+ except StopIteration:
134
+ raise StopAsyncIteration
135
+
136
+ def __aiter__(self) -> "AsyncLiveIterator[T,R]":
137
+ # The synchronous iterator's __iter__ method starts the thread.
138
+ # This is non-blocking, so it's safe to call directly.
139
+ self._sync_iterator.__iter__()
140
+ return self
141
+
142
+ def close(self):
143
+ self._sync_iterator.close()
144
+
145
+
146
+ class AsyncLogManager[T]:
147
+ """An async-compatible wrapper for the LogManager."""
148
+
149
+ def __init__(self, sync_manager: "LogManager[T]"):
150
+ self._sync_manager = sync_manager
151
+
152
+ async def log(self, data: T, timestamp: datetime | None = None) -> None:
153
+ """Asynchronously adds a new entry to the log."""
154
+ await asyncio.to_thread(self._sync_manager.log, data, timestamp)
155
+
156
+ async def range(self, start: datetime, end: datetime) -> list[T]:
157
+ """Asynchronously retrieves all log entries within a specific time window."""
158
+ return await asyncio.to_thread(self._sync_manager.range, start, end)
159
+
160
+ def live[R](
161
+ self,
162
+ window: timedelta,
163
+ period: timedelta,
164
+ aggregator: Callable[[list[T]], R],
165
+ ) -> AsyncIterator[R]:
166
+ """Returns an async, infinite iterator for real-time log analysis."""
167
+ sync_iterator = self._sync_manager.live(
168
+ window, period, aggregator
169
+ )
170
+ return AsyncLiveIterator(sync_iterator)
171
+
172
+
173
+ class LogManager[T]:
174
+ """
175
+ A wrapper for interacting with a named, time-indexed log, providing
176
+ type-safe and async-compatible methods.
177
+ """
178
+
179
+ def __init__(
180
+ self,
181
+ name: str,
182
+ conn: sqlite3.Connection,
183
+ db_path: str,
184
+ model: Type[T] | None = None,
185
+ ):
186
+ self._name = name
187
+ self._conn = conn
188
+ self._db_path = db_path
189
+ self._model = model
190
+
191
+ def _serialize(self, value: T) -> str:
192
+ """Serializes the given value to a JSON string."""
193
+ if isinstance(value, JsonSerializable):
194
+ return value.model_dump_json()
195
+
196
+ return json.dumps(value)
197
+
198
+ def _deserialize(self, value: str) -> T:
199
+ """Deserializes a JSON string into the specified model or a generic object."""
200
+ if self._model:
201
+ return self._model.model_validate_json(value)
202
+
203
+ return json.loads(value)
204
+
205
+ def log(self, data: T, timestamp: datetime | None = None) -> None:
206
+ """
207
+ Adds a new entry to the log.
208
+
209
+ Args:
210
+ data: The JSON-serializable data to store. If a model is used, this
211
+ should be an instance of that model.
212
+ timestamp: A timezone-naive datetime object. If not provided,
213
+ `datetime.now()` is used.
214
+ """
215
+ ts = timestamp or datetime.now(timezone.utc)
216
+ ts_float = ts.timestamp()
217
+
218
+ with self._conn:
219
+ self._conn.execute(
220
+ "INSERT INTO beaver_logs (log_name, timestamp, data) VALUES (?, ?, ?)",
221
+ (self._name, ts_float, self._serialize(data)),
222
+ )
223
+
224
+ def range(self, start: datetime, end: datetime) -> list[T]:
225
+ """
226
+ Retrieves all log entries within a specific time window.
227
+
228
+ Args:
229
+ start: The start of the time range (inclusive).
230
+ end: The end of the time range (inclusive).
231
+
232
+ Returns:
233
+ A list of log entries, deserialized into the specified model if provided.
234
+ """
235
+ start_ts = start.timestamp()
236
+ end_ts = end.timestamp()
237
+
238
+ cursor = self._conn.cursor()
239
+ cursor.execute(
240
+ "SELECT data FROM beaver_logs WHERE log_name = ? AND timestamp BETWEEN ? AND ? ORDER BY timestamp ASC",
241
+ (self._name, start_ts, end_ts),
242
+ )
243
+ return [self._deserialize(row["data"]) for row in cursor.fetchall()]
244
+
245
+ def live[R](
246
+ self,
247
+ window: timedelta,
248
+ period: timedelta,
249
+ aggregator: Callable[[list[T]], R],
250
+ ) -> Iterator[R]:
251
+ """
252
+ Returns a blocking, infinite iterator for real-time log analysis.
253
+
254
+ This maintains a sliding window of log entries and yields the result
255
+ of an aggregator function at specified intervals.
256
+
257
+ Args:
258
+ window: The duration of the sliding window (e.g., `timedelta(minutes=5)`).
259
+ period: The interval at which to update and yield a new result
260
+ (e.g., `timedelta(seconds=10)`).
261
+ aggregator: A function that takes a list of log entries (the window) and
262
+ returns a single, aggregated result.
263
+
264
+ Returns:
265
+ An iterator that yields the results of the aggregator.
266
+ """
267
+ return LiveIterator(
268
+ db_path=self._db_path,
269
+ log_name=self._name,
270
+ window=window,
271
+ period=period,
272
+ aggregator=aggregator,
273
+ deserializer=self._deserialize,
274
+ )
275
+
276
+ def as_async(self) -> AsyncLogManager[T]:
277
+ """Returns an async-compatible version of the log manager."""
278
+ return AsyncLogManager(self)
beaver/queues.py CHANGED
@@ -1,3 +1,4 @@
1
+ import asyncio
1
2
  import json
2
3
  import sqlite3
3
4
  import time
@@ -14,8 +15,34 @@ class QueueItem[T](NamedTuple):
14
15
  data: T
15
16
 
16
17
 
18
+ class AsyncQueueManager[T]:
19
+ """An async wrapper for the producer-consumer priority queue."""
20
+
21
+ def __init__(self, queue: "QueueManager[T]"):
22
+ self._queue = queue
23
+
24
+ async def put(self, data: T, priority: float):
25
+ """Asynchronously adds an item to the queue with a specific priority."""
26
+ await asyncio.to_thread(self._queue.put, data, priority)
27
+
28
+ @overload
29
+ async def get(self, block: Literal[True] = True, timeout: float | None = None) -> QueueItem[T]: ...
30
+ @overload
31
+ async def get(self, block: Literal[False]) -> QueueItem[T]: ...
32
+
33
+ async def get(self, block: bool = True, timeout: float | None = None) -> QueueItem[T]:
34
+ """
35
+ Asynchronously and atomically retrieves the highest-priority item.
36
+ This method will run the synchronous blocking logic in a separate thread.
37
+ """
38
+ return await asyncio.to_thread(self._queue.get, block=block, timeout=timeout)
39
+
40
+
17
41
  class QueueManager[T]:
18
- """A wrapper providing a Pythonic interface to a persistent priority queue."""
42
+ """
43
+ A wrapper providing a Pythonic interface to a persistent, multi-process
44
+ producer-consumer priority queue.
45
+ """
19
46
 
20
47
  def __init__(self, name: str, conn: sqlite3.Connection, model: Type[T] | None = None):
21
48
  self._name = name
@@ -50,19 +77,13 @@ class QueueManager[T]:
50
77
  (self._name, priority, time.time(), self._serialize(data)),
51
78
  )
52
79
 
53
- @overload
54
- def get(self, safe:Literal[True]) -> QueueItem[T] | None: ...
55
- @overload
56
- def get(self) -> QueueItem[T]: ...
57
-
58
- def get(self, safe:bool=False) -> QueueItem[T] | None:
80
+ def _get_item_atomically(self) -> QueueItem[T] | None:
59
81
  """
60
- Atomically retrieves and removes the highest-priority item from the queue.
61
- If the queue is empty, returns None if safe is True, otherwise (the default) raises IndexError.
82
+ Performs a single, atomic attempt to retrieve and remove the
83
+ highest-priority item from the queue. Returns None if the queue is empty.
62
84
  """
63
85
  with self._conn:
64
86
  cursor = self._conn.cursor()
65
- # The compound index on (queue_name, priority, timestamp) makes this query efficient.
66
87
  cursor.execute(
67
88
  """
68
89
  SELECT rowid, priority, timestamp, data
@@ -76,19 +97,61 @@ class QueueManager[T]:
76
97
  result = cursor.fetchone()
77
98
 
78
99
  if result is None:
79
- if safe:
80
- return None
81
- else:
82
- raise IndexError("No item available.")
100
+ return None
83
101
 
84
102
  rowid, priority, timestamp, data = result
85
- # Delete the retrieved item to ensure it's processed only once.
86
103
  cursor.execute("DELETE FROM beaver_priority_queues WHERE rowid = ?", (rowid,))
87
104
 
88
105
  return QueueItem(
89
106
  priority=priority, timestamp=timestamp, data=self._deserialize(data)
90
107
  )
91
108
 
109
+ @overload
110
+ def get(self, block: Literal[True] = True, timeout: float | None = None) -> QueueItem[T]: ...
111
+ @overload
112
+ def get(self, block: Literal[False]) -> QueueItem[T]: ...
113
+
114
+ def get(self, block: bool = True, timeout: float | None = None) -> QueueItem[T]:
115
+ """
116
+ Atomically retrieves and removes the highest-priority item from the queue.
117
+
118
+ This method is designed for producer-consumer patterns and can block
119
+ until an item becomes available.
120
+
121
+ Args:
122
+ block: If True (default), the method will wait until an item is available.
123
+ timeout: If `block` is True, this specifies the maximum number of seconds
124
+ to wait. If the timeout is reached, `TimeoutError` is raised.
125
+
126
+ Returns:
127
+ A `QueueItem` containing the retrieved data.
128
+
129
+ Raises:
130
+ IndexError: If `block` is False and the queue is empty.
131
+ TimeoutError: If `block` is True and the timeout expires.
132
+ """
133
+ if not block:
134
+ item = self._get_item_atomically()
135
+ if item is None:
136
+ raise IndexError("get from an empty queue.")
137
+ return item
138
+
139
+ start_time = time.time()
140
+ while True:
141
+ item = self._get_item_atomically()
142
+ if item is not None:
143
+ return item
144
+
145
+ if timeout is not None and (time.time() - start_time) > timeout:
146
+ raise TimeoutError("Timeout expired while waiting for an item.")
147
+
148
+ # Sleep for a short interval to avoid busy-waiting and consuming CPU.
149
+ time.sleep(0.1)
150
+
151
+ def as_async(self) -> "AsyncQueueManager[T]":
152
+ """Returns an async version of the queue manager."""
153
+ return AsyncQueueManager(self)
154
+
92
155
  def __len__(self) -> int:
93
156
  """Returns the current number of items in the queue."""
94
157
  cursor = self._conn.cursor()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: beaver-db
3
- Version: 0.14.0
3
+ Version: 0.16.0
4
4
  Summary: Fast, embedded, and multi-modal DB based on SQLite for AI-powered applications.
5
5
  Requires-Python: >=3.13
6
6
  Description-Content-Type: text/markdown
@@ -19,24 +19,26 @@ A fast, single-file, multi-modal database for Python, built with the standard `s
19
19
 
20
20
  `beaver` is built with a minimalistic philosophy for small, local use cases where a full-blown database server would be overkill.
21
21
 
22
- - **Minimalistic**: Uses only Python's standard libraries (`sqlite3`) and `numpy`/`faiss-cpu`.
23
- - **Schemaless**: Flexible data storage without rigid schemas across all modalities.
24
- - **Synchronous, Multi-Process, and Thread-Safe**: Designed for simplicity and safety in multi-threaded and multi-process environments.
25
- - **Built for Local Applications**: Perfect for local AI tools, RAG prototypes, chatbots, and desktop utilities that need persistent, structured data without network overhead.
26
- - **Fast by Default**: It's built on SQLite, which is famously fast and reliable for local applications. Vector search is accelerated with a high-performance, persistent `faiss` index.
27
- - **Standard Relational Interface**: While `beaver` provides high-level features, you can always use the same SQLite file for normal relational tasks with standard SQL.
22
+ - **Minimalistic**: Uses only Python's standard libraries (`sqlite3`) and `numpy`/`faiss-cpu`.
23
+ - **Schemaless**: Flexible data storage without rigid schemas across all modalities.
24
+ - **Synchronous, Multi-Process, and Thread-Safe**: Designed for simplicity and safety in multi-threaded and multi-process environments.
25
+ - **Built for Local Applications**: Perfect for local AI tools, RAG prototypes, chatbots, and desktop utilities that need persistent, structured data without network overhead.
26
+ - **Fast by Default**: It's built on SQLite, which is famously fast and reliable for local applications. Vector search is accelerated with a high-performance, persistent `faiss` index.
27
+ - **Standard Relational Interface**: While `beaver` provides high-level features, you can always use the same SQLite file for normal relational tasks with standard SQL.
28
28
 
29
29
  ## Core Features
30
30
 
31
- - **Sync/Async High-Efficiency Pub/Sub**: A powerful, thread and process-safe publish-subscribe system for real-time messaging with a fan-out architecture. Sync by default, but with an `as_async` wrapper for async applications.
32
- - **Namespaced Key-Value Dictionaries**: A Pythonic, dictionary-like interface for storing any JSON-serializable object within separate namespaces with optional TTL for cache implementations.
33
- - **Pythonic List Management**: A fluent, Redis-like interface for managing persistent, ordered lists.
34
- - **Persistent Priority Queue**: A high-performance, persistent queue that always returns the item with the highest priority, perfect for task management.
35
- - **Simple Blob Storage**: A dictionary-like interface for storing medium-sized binary files (like PDFs or images) directly in the database, ensuring transactional integrity with your other data.
36
- - **High-Performance Vector Storage & Search**: Store vector embeddings and perform fast, crash-safe approximate nearest neighbor searches using a `faiss`-based hybrid index.
37
- - **Full-Text and Fuzzy Search**: Automatically index and search through document metadata using SQLite's powerful FTS5 engine, enhanced with optional fuzzy search for typo-tolerant matching.
38
- - **Knowledge Graph**: Create relationships between documents and traverse the graph to find neighbors or perform multi-hop walks.
39
- - **Single-File & Portable**: All data is stored in a single SQLite file, making it incredibly easy to move, back up, or embed in your application.
31
+ - **Sync/Async High-Efficiency Pub/Sub**: A powerful, thread and process-safe publish-subscribe system for real-time messaging with a fan-out architecture. Sync by default, but with an `as_async` wrapper for async applications.
32
+ - **Namespaced Key-Value Dictionaries**: A Pythonic, dictionary-like interface for storing any JSON-serializable object within separate namespaces with optional TTL for cache implementations.
33
+ - **Pythonic List Management**: A fluent, Redis-like interface for managing persistent, ordered lists.
34
+ - **Persistent Priority Queue**: A high-performance, persistent priority queue perfect for task orchestration across multiple processes. Also with optional async support.
35
+ - **Time-Indexed Log for Monitoring**: A specialized data structure for structured, time-series logs. Query historical data by time range or create a live, aggregated view of the most recent events for real-time dashboards.
36
+ - **Simple Blob Storage**: A dictionary-like interface for storing medium-sized binary files (like PDFs or images) directly in the database, ensuring transactional integrity with your other data.
37
+ - **High-Performance Vector Storage & Search**: Store vector embeddings and perform fast, crash-safe approximate nearest neighbor searches using a `faiss`-based hybrid index.
38
+ - **Full-Text and Fuzzy Search**: Automatically index and search through document metadata using SQLite's powerful FTS5 engine, enhanced with optional fuzzy search for typo-tolerant matching.
39
+ - **Knowledge Graph**: Create relationships between documents and traverse the graph to find neighbors or perform multi-hop walks.
40
+ - **Single-File & Portable**: All data is stored in a single SQLite file, making it incredibly easy to move, back up, or embed in your application.
41
+ - **Optional Type-Safety:** Although the database is schemaless, you can use a minimalistic typing system for automatic serialization and deserialization that is Pydantic-compatible out of the box.
40
42
 
41
43
  ## How Beaver is Implemented
42
44
 
@@ -219,6 +221,29 @@ attachments.put(
219
221
  avatar = attachments.get("user_123_avatar.png")
220
222
  ```
221
223
 
224
+ ### 8. Real-time Application Monitoring
225
+
226
+ Use the **time-indexed log** to monitor your application's health in real-time. The `live()` method provides a continuously updating, aggregated view of your log data, perfect for building simple dashboards directly in your terminal.
227
+
228
+ ```python
229
+ from datetime import timedelta
230
+ import statistics
231
+
232
+ logs = db.log("system_metrics")
233
+
234
+ def summarize(window):
235
+ values = [log.get("value", 0) for log in window]
236
+ return {"mean": statistics.mean(values), "count": len(values)}
237
+
238
+ live_summary = logs.live(
239
+ window_duration=timedelta(seconds=10),
240
+ sampling_period=timedelta(seconds=1),
241
+ aggregator=summarize
242
+ )
243
+
244
+ for summary in live_summary:
245
+ print(f"Live Stats (10s window): Count={summary['count']}, Mean={summary['mean']:.2f}")
246
+ ```
222
247
 
223
248
  ## Type-Safe Data Models
224
249
 
@@ -260,21 +285,24 @@ Basically everywhere you can store or get some object in BeaverDB, you can use a
260
285
 
261
286
  For more in-depth examples, check out the scripts in the `examples/` directory:
262
287
 
263
- - [`examples/async_pubsub.py`](examples/async_pubsub.py): A demonstration of the asynchronous wrapper for the publish/subscribe system.
264
- - [`examples/blobs.py`](examples/blobs.py): Demonstrates how to store and retrieve binary data in the database.
265
- - [`examples/cache.py`](examples/cache.py): A practical example of using a dictionary with TTL as a cache for API calls.
266
- - [`examples/fts.py`](examples/fts.py): A detailed look at full-text search, including targeted searches on specific metadata fields.
267
- - [`examples/fuzzy.py`](examples/fuzzy.py): Demonstrates fuzzy search capabilities for text search.
268
- - [`examples/general_test.py`](examples/general_test.py): A general-purpose test to run all operations randomly which allows testing long-running processes and synchronicity issues.
269
- - [`examples/graph.py`](examples/graph.py): Shows how to create relationships between documents and perform multi-hop graph traversals.
270
- - [`examples/kvstore.py`](examples/kvstore.py): A comprehensive demo of the namespaced dictionary feature.
271
- - [`examples/list.py`](examples/list.py): Shows the full capabilities of the persistent list, including slicing and in-place updates.
272
- - [`examples/publisher.py`](examples/publisher.py) and [`examples/subscriber.py`](examples/subscriber.py): A pair of examples demonstrating inter-process message passing with the publish/subscribe system.
273
- - [`examples/pubsub.py`](examples/pubsub.py): A demonstration of the synchronous, thread-safe publish/subscribe system in a single process.
274
- - [`examples/queue.py`](examples/queue.py): A practical example of using the persistent priority queue for task management.
275
- - [`examples/rerank.py`](examples/rerank.py): Shows how to combine results from vector and text search for more refined results.
276
- - [`examples/stress_vectors.py`](examples/stress_vectors.py): A stress test for the vector search functionality.
277
- - [`examples/vector.py`](examples/vector.py): Demonstrates how to index and search vector embeddings, including upserts.
288
+ - [`async_pubsub.py`](examples/async_pubsub.py): A demonstration of the asynchronous wrapper for the publish/subscribe system.
289
+ - [`blobs.py`](examples/blobs.py): Demonstrates how to store and retrieve binary data in the database.
290
+ - [`cache.py`](examples/cache.py): A practical example of using a dictionary with TTL as a cache for API calls.
291
+ - [`fts.py`](examples/fts.py): A detailed look at full-text search, including targeted searches on specific metadata fields.
292
+ - [`fuzzy.py`](examples/fuzzy.py): Demonstrates fuzzy search capabilities for text search.
293
+ - [`general_test.py`](examples/general_test.py): A general-purpose test to run all operations randomly which allows testing long-running processes and synchronicity issues.
294
+ - [`graph.py`](examples/graph.py): Shows how to create relationships between documents and perform multi-hop graph traversals.
295
+ - [`kvstore.py`](examples/kvstore.py): A comprehensive demo of the namespaced dictionary feature.
296
+ - [`list.py`](examples/list.py): Shows the full capabilities of the persistent list, including slicing and in-place updates.
297
+ - [`pqueue.py`](examples/pqueue.py): A practical example of using the persistent priority queue for task management.
298
+ - [`producer_consumer.py`](examples/producer_consumer.py): A demonstration of the distributed task queue system in a multi-process environment.
299
+ - [`publisher.py`](examples/publisher.py) and [`subscriber.py`](examples/subscriber.py): A pair of examples demonstrating inter-process message passing with the publish/subscribe system.
300
+ - [`pubsub.py`](examples/pubsub.py): A demonstration of the synchronous, thread-safe publish/subscribe system in a single process.
301
+ - [`rerank.py`](examples/rerank.py): Shows how to combine results from vector and text search for more refined results.
302
+ - [`stress_vectors.py`](examples/stress_vectors.py): A stress test for the vector search functionality.
303
+ - [`textual_chat.py`](examples/textual_chat.py): A chat application built with `textual` and `beaver` to illustrate the use of several primitives (lists, dicts, and channels) at the same time.
304
+ - [`type_hints.py](examples/type_hints.py): Shows how to use type hints with `beaver` to get better IDE support and type safety.
305
+ - [`vector.py`](examples/vector.py): Demonstrates how to index and search vector embeddings, including upserts.
278
306
 
279
307
  ## Roadmap
280
308
 
@@ -283,7 +311,6 @@ For more in-depth examples, check out the scripts in the `examples/` directory:
283
311
  These are some of the features and improvements planned for future releases:
284
312
 
285
313
  - **Async API**: Extend the async support with on-demand wrappers for all features besides channels.
286
- - **Type Hints**: Extend type hints for channels and documents.
287
314
 
288
315
  Check out the [roadmap](roadmap.md) for a detailed list of upcoming features and design ideas.
289
316
 
@@ -2,14 +2,15 @@ beaver/__init__.py,sha256=qyEzF1Os7w4b4Hijgz0Y0R4zTrRBrHIGT1mEkZFl2YM,101
2
2
  beaver/blobs.py,sha256=5cmcvlJLY9jaftIRuNbdEryZxI47sw_pYpysYli23NY,3996
3
3
  beaver/channels.py,sha256=pCO8wFJAHdMzBLKvinI32L_XfU2B91H2qfsj1Tej-bc,9322
4
4
  beaver/collections.py,sha256=Uz241TSs0xRABPYeKenDYmkbaM0PKfvcBX5j0lMzMMA,24306
5
- beaver/core.py,sha256=zAPlym786_sOpRkP6LfKkd5BH2DXPwdOPTdAkSYojvQ,12469
5
+ beaver/core.py,sha256=t_UzpqcbF2U8BjmQ9aIWTvUzPuVuOLcPzTrZQ2htjn4,13706
6
6
  beaver/dicts.py,sha256=1BQ9A_cMkJ7l5ayWbDG-4Wi3WtQ-9BKd7Wj_CB7dGlU,5410
7
7
  beaver/lists.py,sha256=0LT2XjuHs8pDgvW48kk_lfVc-Y-Ulmym0gcVWRESPtA,9708
8
- beaver/queues.py,sha256=SFu2180ONotnZOcYp1Ld5d8kxzYxaOlgDdcr70ZoBL8,3641
8
+ beaver/logs.py,sha256=mlJizZU0emlqLwuNeBJSPlict35Vyi35L4eIl5orv-M,9673
9
+ beaver/queues.py,sha256=IQoeNhcYrVZTuH_4bWhtiEa-EYbFx_2iVKkR254XPnE,5953
9
10
  beaver/types.py,sha256=65rDdj97EegghEkKCNjI67bPYtTTI_jyB-leHdIypx4,1249
10
11
  beaver/vectors.py,sha256=j7RL2Y_xMAF2tPTi6E2LdJqZerSQXlnEQJOGZkefTsA,18358
11
- beaver_db-0.14.0.dist-info/licenses/LICENSE,sha256=1xrIY5JnMk_QDQzsqmVzPIIyCgZAkWCC8kF2Ddo1UT0,1071
12
- beaver_db-0.14.0.dist-info/METADATA,sha256=vnsXMoILckkEY7YPrppHQbkvK4MP4qfNQLTjvjcEGBU,15621
13
- beaver_db-0.14.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
14
- beaver_db-0.14.0.dist-info/top_level.txt,sha256=FxA4XnX5Qm5VudEXCduFriqi4dQmDWpQ64d7g69VQKI,7
15
- beaver_db-0.14.0.dist-info/RECORD,,
12
+ beaver_db-0.16.0.dist-info/licenses/LICENSE,sha256=1xrIY5JnMk_QDQzsqmVzPIIyCgZAkWCC8kF2Ddo1UT0,1071
13
+ beaver_db-0.16.0.dist-info/METADATA,sha256=hNq6GOos295d5QeaUfTqSiLw4MDty9vyzNXpVYV7JzI,17070
14
+ beaver_db-0.16.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
15
+ beaver_db-0.16.0.dist-info/top_level.txt,sha256=FxA4XnX5Qm5VudEXCduFriqi4dQmDWpQ64d7g69VQKI,7
16
+ beaver_db-0.16.0.dist-info/RECORD,,