bdext 0.1.65__py3-none-any.whl → 0.1.67__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,178 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: bdext
3
- Version: 0.1.65
4
- Summary: Estimation of BDEISS-CT parameters from phylogenetic trees.
5
- Home-page: https://github.com/modpath/bdeissct
6
- Author: Anna Zhukova
7
- Author-email: anna.zhukova@pasteur.fr
8
- License: UNKNOWN
9
- Keywords: phylogenetics,birth-death model,incubation,super-spreading,contact tracing
10
- Platform: UNKNOWN
11
- Classifier: Development Status :: 4 - Beta
12
- Classifier: Environment :: Console
13
- Classifier: Intended Audience :: Developers
14
- Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
15
- Classifier: Topic :: Software Development
16
- Classifier: Topic :: Software Development :: Libraries :: Python Modules
17
- Description-Content-Type: text/markdown
18
- Requires-Dist: tensorflow==2.19.0
19
- Requires-Dist: six
20
- Requires-Dist: ete3
21
- Requires-Dist: numpy==2.0.2
22
- Requires-Dist: scipy==1.14.1
23
- Requires-Dist: biopython
24
- Requires-Dist: scikit-learn==1.5.2
25
- Requires-Dist: pandas==2.2.3
26
- Requires-Dist: treesumstats==0.7
27
-
28
- # bdeissct_dl
29
-
30
- Estimator of BDEISS-CT model parameters from phylogenetic trees
31
-
32
-
33
-
34
- [//]: # ([![DOI:10.1093/sysbio/syad059](https://zenodo.org/badge/DOI/10.1093/sysbio/syad059.svg)](https://doi.org/10.1093/sysbio/syad059))
35
- [![GitHub release](https://img.shields.io/github/v/release/evolbioinfo/bdeissct_dl.svg)](https://github.com/evolbioinfo/bdeissct_dl/releases)
36
- [![PyPI version](https://badge.fury.io/py/bdeissct_dl.svg)](https://pypi.org/project/bdeissct_dl/)
37
- [![PyPI downloads](https://shields.io/pypi/dm/bdeissct_dl)](https://pypi.org/project/bdeissct_dl/)
38
- [![Docker pulls](https://img.shields.io/docker/pulls/evolbioinfo/bdeissct)](https://hub.docker.com/r/evolbioinfo/bdeissct/tags)
39
-
40
- ## BDEISS-CT model
41
-
42
- BD-PN model extends the classical birth-death (BD) model with incomplete sampling [[Stadler 2009]](https://pubmed.ncbi.nlm.nih.gov/19631666/), by adding partner notification (PN).
43
- Under this model, infected individuals can transmit their pathogen with a constant rate λ,
44
- get removed (become non-infectious) with a constant rate ψ,
45
- and their pathogen can be sampled upon removal
46
- with a constant probability ρ. On top of that, in the BD-PN model,
47
- at the moment of sampling the sampled individual
48
- might notify their most recent partner with a constant probability υ.
49
- Upon notification, the partner is removed almost instantaneously (modeled via a constant notified
50
- removal rate φ >> ψ) and their pathogen is sampled.
51
-
52
- BD-PN model therefore has 5 parameters:
53
- * λ -- transmission rate
54
- * ψ -- removal rate
55
- * ρ -- sampling probability upon removal
56
- * υ -- probability to notify the last partner upon sampling
57
- * φ -- removal (and sampling) rate after notification
58
-
59
- These parameters can be expressed in terms of the following epidemiological parameters:
60
- * R<sub>0</sub>=λ/ψ -- reproduction number
61
- * 1/ψ -- infectious time
62
- * 1/φ -- partner removal time
63
-
64
- BD-CT model makes 3 assumptions:
65
- 1. only observed individuals can notify (instead of any removed individual);
66
- 2. notified individuals are always observed upon removal;
67
- 3. only the most recent partner can get notified.
68
-
69
- For identifiability, BD-PN model requires one of the three BD model parameters (λ, ψ, ρ) to be fixed.
70
-
71
- ## BDEISS-CT parameter estimator
72
-
73
- The bdeissct_dl package provides deep-learning-based BDEISS-CT model parameter estimator
74
- from a user-supplied time-scaled phylogenetic tree.
75
- User must also provide a value for one of the three BD model parameters (λ, ψ, or ρ).
76
- We recommend providing the sampling probability ρ,
77
- which could be estimated as the number of tree tips divided by the number of declared cases for the same time period.
78
-
79
-
80
- ## Input data
81
- One needs to supply a time-scaled phylogenetic tree in newick format.
82
- In the examples below we will use an HIV tree reconstructed from 200 sequences,
83
- published in [[Rasmussen _et al._ PLoS Comput. Biol. 2017]](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005448),
84
- which you can find at [PairTree GitHub](https://github.com/davidrasm/PairTree)
85
- and in [hiv_zurich/Zurich.nwk](hiv_zurich/Zurich.nwk).
86
-
87
- ## Installation
88
-
89
- There are 4 alternative ways to run __bdeissct_dl__ on your computer:
90
- with [docker](https://www.docker.com/community-edition),
91
- [apptainer](https://apptainer.org/),
92
- in Python3, or via command line (requires installation with Python3).
93
-
94
-
95
-
96
- ### Run in python3 or command-line (for linux systems, recommended Ubuntu 21 or newer versions)
97
-
98
- You could either install python (version 3.9 or higher) system-wide and then install bdeissct_dl via pip:
99
- ```bash
100
- sudo apt install -y python3 python3-pip python3-setuptools python3-distutils
101
- pip3 install bdeissct_dl
102
- ```
103
-
104
- or alternatively, you could install python (version 3.9 or higher) and bdeissct_dl via [conda](https://conda.io/docs/) (make sure that conda is installed first).
105
- Here we will create a conda environment called _phyloenv_:
106
- ```bash
107
- conda create --name phyloenv python=3.12
108
- conda activate phyloenv
109
- pip install bdeissct_dl
110
- ```
111
-
112
-
113
- #### Basic usage in a command line
114
- If you installed __bdeissct_dl__ in a conda environment (here named _phyloenv_), do not forget to first activate it, e.g.
115
-
116
- ```bash
117
- conda activate phyloenv
118
- ```
119
-
120
- Run the following command to estimate the BDEISS_CT parameters and their 95% CIs for this tree, assuming the sampling probability of 0.25,
121
- and save the estimated parameters to a comma-separated file estimates.csv.
122
- ```bash
123
- bdeissct_infer --nwk Zurich.nwk --ci --p 0.25 --log estimates.csv
124
- ```
125
-
126
- #### Help
127
-
128
- To see detailed options, run:
129
- ```bash
130
- bdeissct_infer --help
131
- ```
132
-
133
-
134
- ### Run with docker
135
-
136
- #### Basic usage
137
- Once [docker](https://www.docker.com/community-edition) is installed,
138
- run the following command to estimate BDEISS-CT model parameters:
139
- ```bash
140
- docker run -v <path_to_the_folder_containing_the_tree>:/data:rw -t evolbioinfo/bdeissct --nwk /data/Zurich.nwk --ci --p 0.25 --log /data/estimates.csv
141
- ```
142
-
143
- This will produce a comma-separated file estimates.csv in the <path_to_the_folder_containing_the_tree> folder,
144
- containing the estimated parameter values and their 95% CIs (can be viewed with a text editor, Excel or Libre Office Calc).
145
-
146
- #### Help
147
-
148
- To see advanced options, run
149
- ```bash
150
- docker run -t evolbioinfo/bdeissct -h
151
- ```
152
-
153
-
154
-
155
- ### Run with apptainer
156
-
157
- #### Basic usage
158
- Once [apptainer](https://apptainer.org/docs/user/latest/quick_start.html#installation) is installed,
159
- run the following command to estimate BDEISS-CT model parameters (from the folder where the Zurich.nwk tree is contained):
160
-
161
- ```bash
162
- apptainer run docker://evolbioinfo/bdeissct --nwk Zurich.nwk --ci --p 0.25 --log estimates.csv
163
- ```
164
-
165
- This will produce a comma-separated file estimates.csv,
166
- containing the estimated parameter values and their 95% CIs (can be viewed with a text editor, Excel or Libre Office Calc).
167
-
168
-
169
- #### Help
170
-
171
- To see advanced options, run
172
- ```bash
173
- apptainer run docker://evolbioinfo/bdeissct -h
174
- ```
175
-
176
-
177
-
178
-
@@ -1,22 +0,0 @@
1
- README.md,sha256=Fk-VeZXo2zltZ9NXdFnnHS3ETwtiBPRiZ86ttUQUgTE,5894
2
- bdeissct_dl/__init__.py,sha256=glAW73vlD9Abbb_Fto-sKys078qVEn5iTcx2Mq3Z72s,361
3
- bdeissct_dl/bdeissct_model.py,sha256=JoimpolW2x6q29P4whDoQDyxmIDw_eDl03ZbUE4bl4Y,3503
4
- bdeissct_dl/dl_model.py,sha256=q8RFbbd2n52Y0_HMKSEHdIgBouE4LbHL5CZO3M_3G3E,7364
5
- bdeissct_dl/estimator.py,sha256=UIQAy62I0_2HKagfck9WBGbbHU6l_WfRypP9CyeHrFE,7313
6
- bdeissct_dl/estimator_ct.py,sha256=P5Up-NnAYS2Nen5_KPEYP04VXr5hm1Dtjq5TuW5OHjM,2604
7
- bdeissct_dl/main_covid.py,sha256=wCeJgc4XzEPjcVCaQt_-zGiVX0wdpQhFq2qh9xQzc7w,2882
8
- bdeissct_dl/model_finder.py,sha256=TC6EcIE6rBO6PefaYfn2reEl6HPkORbIgTzQGsDoXcU,1763
9
- bdeissct_dl/model_serializer.py,sha256=Ojhy-fUElc4NClhJaF0EWnrAJGK0omk8e7cwwrBk3Yk,3768
10
- bdeissct_dl/pinball_loss.py,sha256=Xg2jFDlwPOt0AhBY574lWB0yRyuA0bQRiyOYHGL6P54,1602
11
- bdeissct_dl/scaler_fitting.py,sha256=ekaokmRFmZIInNylaCV5oQznpLKnRwNVAvaSyud3iSk,1925
12
- bdeissct_dl/sumstat_checker.py,sha256=BHMgoqjymHc3Ic-Sv7m-zuvCeLlCt4OCDVaKDltSII0,1867
13
- bdeissct_dl/train_ct.py,sha256=nog5l_VN1hUfMxma8U4faHcki4NdFYUXcbDxBvJVhOs,5361
14
- bdeissct_dl/training.py,sha256=QBjly8e_8yqvxDbHGPw0F4LeL8BbA6UQ8SANFc0NCYY,8990
15
- bdeissct_dl/tree_encoder.py,sha256=WrrSk_HXOF_rAKHpU7u9_i_gCmp5tz7Tk_Jvbwx0N_g,19193
16
- bdeissct_dl/tree_manager.py,sha256=UXxUVmEkxwUhKpJeACVgiXZ8Kp1o_hiv8Qb80b6qmVU,11814
17
- bdext-0.1.65.dist-info/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
18
- bdext-0.1.65.dist-info/METADATA,sha256=F2hZ8vFtl1FLUPeTZiKC97itDEF9T1Nmistd-twTKPo,6834
19
- bdext-0.1.65.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
20
- bdext-0.1.65.dist-info/entry_points.txt,sha256=En4b5js0-eCuBp0Jiqye0fte6svXbXSLiSJOW_KdzV4,286
21
- bdext-0.1.65.dist-info/top_level.txt,sha256=z4dadFfcLghr4lwROy7QR3zEICpa-eCPT6mmcoHeEJY,12
22
- bdext-0.1.65.dist-info/RECORD,,
File without changes