bbstrader 0.1.9__py3-none-any.whl → 0.1.91__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of bbstrader might be problematic. Click here for more details.

@@ -3,13 +3,66 @@ import MetaTrader5 as Mt5
3
3
  from datetime import datetime
4
4
  from typing import Union, Optional
5
5
  from bbstrader.metatrader.utils import (
6
- raise_mt5_error, TimeFrame, TIMEFRAMES)
6
+ raise_mt5_error,
7
+ TimeFrame,
8
+ TIMEFRAMES
9
+ )
10
+ from bbstrader.metatrader.account import Account
11
+ from bbstrader.metatrader.account import AMG_EXCHANGES
7
12
  from bbstrader.metatrader.account import check_mt5_connection
8
13
  from pandas.tseries.offsets import CustomBusinessDay
9
14
  from pandas.tseries.holiday import USFederalHolidayCalendar
15
+ from exchange_calendars import(
16
+ get_calendar,
17
+ get_calendar_names
18
+ )
19
+
20
+ __all__ = [
21
+ 'Rates',
22
+ 'download_historical_data',
23
+ 'get_data_from_pos'
24
+ ]
10
25
 
11
26
  MAX_BARS = 10_000_000
12
27
 
28
+ IDX_CALENDARS = {
29
+ "CAD": "XTSE",
30
+ "AUD": "XASX",
31
+ "GBP": "XLON",
32
+ "HKD": "XSHG",
33
+ "ZAR": "XJSE",
34
+ "CHF": "XSWX",
35
+ "NOK": "XOSL",
36
+ "EUR": "XETR",
37
+ "SGD": "XSES",
38
+ "USD": "us_futures",
39
+ "JPY": "us_futures",
40
+ }
41
+
42
+ COMD_CALENDARS = {
43
+ "Energies" : "us_futures",
44
+ "Metals" : "us_futures",
45
+ "Agricultures" : "CBOT",
46
+ "Bonds": {"USD" : "CBOT", "EUR": "EUREX"},
47
+ }
48
+
49
+ CALENDARS = {
50
+ "FX" : "us_futures",
51
+ "STK" : AMG_EXCHANGES,
52
+ "ETF" : AMG_EXCHANGES,
53
+ "IDX" : IDX_CALENDARS,
54
+ "COMD" : COMD_CALENDARS,
55
+ "CRYPTO": "24/7",
56
+ "FUT" : None,
57
+ }
58
+
59
+ SESSION_TIMEFRAMES = [
60
+ Mt5.TIMEFRAME_D1,
61
+ Mt5.TIMEFRAME_W1,
62
+ Mt5.TIMEFRAME_H12,
63
+ Mt5.TIMEFRAME_MN1
64
+ ]
65
+
13
66
 
14
67
  class Rates(object):
15
68
  """
@@ -26,8 +79,8 @@ class Rates(object):
26
79
  or just set it to Unlimited.
27
80
  In your MT5 terminal, go to `Tools` -> `Options` -> `Charts` -> `Max bars in chart`.
28
81
 
29
- 2. The `get_open, get_high, get_low, get_close, get_adj_close, get_returns,
30
- get_volume` properties returns data in Broker's timezone.
82
+ 2. The `open, high, low, close, adjclose, returns,
83
+ volume` properties returns data in Broker's timezone by default.
31
84
 
32
85
  Example:
33
86
  >>> rates = Rates("EURUSD", "1h")
@@ -70,9 +123,9 @@ class Rates(object):
70
123
  self.start_pos = self._get_start_pos(start_pos, time_frame)
71
124
  self.count = count
72
125
  self._mt5_initialized()
126
+ self.__account = Account()
73
127
  self.__data = self.get_rates_from_pos()
74
128
 
75
-
76
129
  def _mt5_initialized(self):
77
130
  check_mt5_connection()
78
131
 
@@ -125,8 +178,8 @@ class Rates(object):
125
178
  return TIMEFRAMES[time_frame]
126
179
 
127
180
  def _fetch_data(
128
- self, start: Union[int, datetime],
129
- count: Union[int, datetime]
181
+ self, start: Union[int, datetime , pd.Timestamp],
182
+ count: Union[int, datetime, pd.Timestamp], lower_colnames=False, utc=False,
130
183
  ) -> Union[pd.DataFrame, None]:
131
184
  """Fetches data from MT5 and returns a DataFrame or None."""
132
185
  try:
@@ -134,7 +187,10 @@ class Rates(object):
134
187
  rates = Mt5.copy_rates_from_pos(
135
188
  self.symbol, self.time_frame, start, count
136
189
  )
137
- elif isinstance(start, datetime) and isinstance(count, datetime):
190
+ elif (
191
+ isinstance(start, (datetime, pd.Timestamp)) and
192
+ isinstance(count, (datetime, pd.Timestamp))
193
+ ):
138
194
  rates = Mt5.copy_rates_range(
139
195
  self.symbol, self.time_frame, start, count
140
196
  )
@@ -142,28 +198,103 @@ class Rates(object):
142
198
  return None
143
199
 
144
200
  df = pd.DataFrame(rates)
145
- return self._format_dataframe(df)
201
+ return self._format_dataframe(df, lower_colnames=lower_colnames, utc=utc)
146
202
  except Exception as e:
147
203
  raise_mt5_error(e)
148
204
 
149
- def _format_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
205
+ def _format_dataframe(self, df: pd.DataFrame,
206
+ lower_colnames=False, utc=False) -> pd.DataFrame:
150
207
  """Formats the raw MT5 data into a standardized DataFrame."""
151
208
  df = df.copy()
152
209
  df = df[['time', 'open', 'high', 'low', 'close', 'tick_volume']]
153
210
  df.columns = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume']
154
211
  df['Adj Close'] = df['Close']
155
212
  df = df[['Date', 'Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']]
156
- df['Date'] = pd.to_datetime(df['Date'], unit='s')
213
+ #df = df.columns.rename(str.lower).str.replace(' ', '_')
214
+ df['Date'] = pd.to_datetime(df['Date'], unit='s', utc=utc)
157
215
  df.set_index('Date', inplace=True)
216
+ if lower_colnames:
217
+ df.columns = df.columns.str.lower().str.replace(' ', '_')
218
+ df.index.name = df.index.name.lower().replace(' ', '_')
158
219
  return df
159
220
 
160
- def get_rates_from_pos(self) -> Union[pd.DataFrame, None]:
221
+ def _filter_data(self, df: pd.DataFrame, date_from=None, date_to=None, fill_na=False) -> pd.DataFrame:
222
+ df = df.copy()
223
+ symbol_type = self.__account.get_symbol_type(self.symbol)
224
+ currencies = self.__account.get_currency_rates(self.symbol)
225
+ s_info = self.__account.get_symbol_info(self.symbol)
226
+ if symbol_type in CALENDARS:
227
+ if symbol_type == 'STK' or symbol_type == 'ETF':
228
+ for exchange in CALENDARS[symbol_type]:
229
+ if exchange in get_calendar_names():
230
+ symbols = self.__account.get_stocks_from_exchange(
231
+ exchange_code=exchange)
232
+ if self.symbol in symbols:
233
+ calendar = get_calendar(exchange, side='right')
234
+ break
235
+ elif symbol_type == 'IDX':
236
+ calendar = get_calendar(CALENDARS[symbol_type][currencies['mc']], side='right')
237
+ elif symbol_type == 'COMD':
238
+ for commodity in CALENDARS[symbol_type]:
239
+ if commodity in s_info.path:
240
+ calendar = get_calendar(CALENDARS[symbol_type][commodity], side='right')
241
+ elif symbol_type == 'FUT':
242
+ if 'Index' in s_info.path:
243
+ calendar = get_calendar(CALENDARS['IDX'][currencies['mc']], side='right')
244
+ else:
245
+ for commodity, cal in COMD_CALENDARS.items():
246
+ if self.symbol in self.__account.get_future_symbols(category=commodity):
247
+ if commodity == 'Bonds':
248
+ calendar = get_calendar(cal[currencies['mc']], side='right')
249
+ else:
250
+ calendar = get_calendar(cal, side='right')
251
+ else:
252
+ calendar = get_calendar(CALENDARS[symbol_type], side='right')
253
+ date_from = date_from or df.index[0]
254
+ date_to = date_to or df.index[-1]
255
+ if self.time_frame in SESSION_TIMEFRAMES:
256
+ valid_sessions = calendar.sessions_in_range(date_from, date_to)
257
+ else:
258
+ valid_sessions = calendar.minutes_in_range(date_from, date_to)
259
+ if self.time_frame in [Mt5.TIMEFRAME_M1, Mt5.TIMEFRAME_D1]:
260
+ # save the index name of the dataframe
261
+ index_name = df.index.name
262
+ if fill_na:
263
+ if isinstance(fill_na, bool):
264
+ method = 'nearest'
265
+ if isinstance(fill_na, str):
266
+ method = fill_na
267
+ df = df.reindex(valid_sessions, method=method)
268
+ else:
269
+ df.reindex(valid_sessions, method=None)
270
+ df.index = df.index.rename(index_name)
271
+ else:
272
+ df = df[df.index.isin(valid_sessions)]
273
+ return df
274
+
275
+ def _check_filter(self, filter, utc):
276
+ if filter and self.time_frame not in SESSION_TIMEFRAMES and not utc:
277
+ utc = True
278
+ elif filter and self.time_frame in SESSION_TIMEFRAMES and utc:
279
+ utc = False
280
+ return utc
281
+
282
+ def get_rates_from_pos(self, filter=False, fill_na=False,
283
+ lower_colnames=False, utc=False
284
+ ) -> Union[pd.DataFrame, None]:
161
285
  """
162
286
  Retrieves historical data starting from a specific position.
163
287
 
164
288
  Uses the `start_pos` and `count` attributes specified during
165
289
  initialization to fetch data.
166
290
 
291
+ Args:
292
+ filter : See `Rates.get_historical_data` for more details.
293
+ fill_na : See `Rates.get_historical_data` for more details.
294
+ lower_colnames : If True, the column names will be converted to lowercase.
295
+ utc (bool, optional): If True, the data will be in UTC timezone.
296
+ Defaults to False.
297
+
167
298
  Returns:
168
299
  Union[pd.DataFrame, None]: A DataFrame containing historical
169
300
  data if successful, otherwise None.
@@ -180,31 +311,37 @@ class Rates(object):
180
311
  "Both 'start_pos' and 'count' must be provided "
181
312
  "when calling 'get_rates_from_pos'."
182
313
  )
183
- df = self._fetch_data(self.start_pos, self.count)
314
+ utc = self._check_filter(filter, utc)
315
+ df = self._fetch_data(self.start_pos, self.count,
316
+ lower_colnames=lower_colnames, utc=utc)
317
+ if df is None:
318
+ return None
319
+ if filter:
320
+ return self._filter_data(df, fill_na=fill_na)
184
321
  return df
185
322
 
186
323
  @property
187
- def get_open(self):
324
+ def open(self):
188
325
  return self.__data['Open']
189
326
 
190
327
  @property
191
- def get_high(self):
328
+ def high(self):
192
329
  return self.__data['High']
193
330
 
194
331
  @property
195
- def get_low(self):
332
+ def low(self):
196
333
  return self.__data['Low']
197
334
 
198
335
  @property
199
- def get_close(self):
336
+ def close(self):
200
337
  return self.__data['Close']
201
338
 
202
339
  @property
203
- def get_adj_close(self):
340
+ def adjclose(self):
204
341
  return self.__data['Adj Close']
205
342
 
206
343
  @property
207
- def get_returns(self):
344
+ def returns(self):
208
345
  """
209
346
  Fractional change between the current and a prior element.
210
347
 
@@ -222,23 +359,52 @@ class Rates(object):
222
359
  return data['Returns']
223
360
 
224
361
  @property
225
- def get_volume(self):
362
+ def volume(self):
226
363
  return self.__data['Volume']
227
364
 
228
365
  def get_historical_data(
229
366
  self,
230
- date_from: datetime,
231
- date_to: datetime = datetime.now(),
367
+ date_from: datetime | pd.Timestamp,
368
+ date_to: datetime | pd.Timestamp = pd.Timestamp.now(),
369
+ utc: bool = False,
370
+ filter: Optional[bool] = False,
371
+ fill_na: Optional[bool | str] = False,
372
+ lower_colnames: Optional[bool] = True,
232
373
  save_csv: Optional[bool] = False,
233
374
  ) -> Union[pd.DataFrame, None]:
234
375
  """
235
376
  Retrieves historical data within a specified date range.
236
377
 
237
378
  Args:
238
- date_from (datetime): Starting date for data retrieval.
239
- date_to (datetime, optional): Ending date for data retrieval.
379
+ date_from : Starting date for data retrieval.
380
+
381
+ date_to : Ending date for data retrieval.
240
382
  Defaults to the current time.
241
- save_csv (str, optional): File path to save the data as a CSV.
383
+
384
+ utc : If True, the data will be in UTC timezone.
385
+ Defaults to False.
386
+
387
+ filter : If True, the data will be filtered based
388
+ on the trading sessions for the symbol.
389
+ This is use when we want to use the data for backtesting using Zipline.
390
+
391
+ fill_na : If True, the data will be filled with the nearest value.
392
+ This is use only when `filter` is True and time frame is "1m" or "D1",
393
+ this is because we use ``calendar.minutes_in_range`` or ``calendar.sessions_in_range``
394
+ where calendar is the ``ExchangeCalendar`` from `exchange_calendars` package.
395
+ So, for "1m" or "D1" time frame, the data will be filled with the nearest value
396
+ because the data from MT5 will have approximately the same number of rows as the
397
+ number of trading days or minute in the exchange calendar, so we can fill the missing
398
+ data with the nearest value.
399
+
400
+ But for other time frames, the data will be reindexed with the exchange calendar
401
+ because the data from MT5 will have more rows than the number of trading days or minute
402
+ in the exchange calendar. So we only take the data that is in the range of the exchange
403
+ calendar sessions or minutes.
404
+
405
+ lower_colnames : If True, the column names will be converted to lowercase.
406
+
407
+ save_csv : File path to save the data as a CSV.
242
408
  If None, the data won't be saved.
243
409
 
244
410
  Returns:
@@ -249,9 +415,48 @@ class Rates(object):
249
415
  ValueError: If the starting date is greater than the ending date.
250
416
 
251
417
  Notes:
252
- The Datetime for this method is in Local timezone.
418
+ The `filter` for this method can be use only for Admira Markets Group (AMG) symbols.
419
+ The Datetime for this method is in Local timezone by default.
420
+ All STK symbols are filtered based on the the exchange calendar.
421
+ All FX symbols are filtered based on the ``us_futures`` calendar.
422
+ All IDX symbols are filtered based on the exchange calendar of margin currency.
423
+ All COMD symbols are filtered based on the exchange calendar of the commodity.
253
424
  """
254
- df = self._fetch_data(date_from, date_to)
255
- if save_csv and df is not None:
425
+ utc = self._check_filter(filter, utc)
426
+ df = self._fetch_data(date_from, date_to,
427
+ lower_colnames=lower_colnames, utc=utc)
428
+ if df is None:
429
+ return None
430
+ if filter:
431
+ df = self._filter_data(df, date_from=date_from, date_to=date_to, fill_na=fill_na)
432
+ if save_csv:
256
433
  df.to_csv(f"{self.symbol}.csv")
257
434
  return df
435
+
436
+ def download_historical_data(symbol, time_frame, date_from,
437
+ date_to=pd.Timestamp.now(),lower_colnames=True,
438
+ utc=False, filter=False, fill_na=False, save_csv=False):
439
+ """Download historical data from MetaTrader 5 terminal.
440
+ See `Rates.get_historical_data` for more details.
441
+ """
442
+ rates = Rates(symbol, time_frame)
443
+ data = rates.get_historical_data(
444
+ date_from=date_from,
445
+ date_to=date_to,
446
+ save_csv=save_csv,
447
+ utc=utc,
448
+ filter=filter,
449
+ lower_colnames=lower_colnames
450
+ )
451
+ return data
452
+
453
+ def get_data_from_pos(symbol, time_frame, start_pos=0, fill_na=False,
454
+ count=MAX_BARS, lower_colnames=False, utc=False, filter=False,
455
+ session_duration=23.0):
456
+ """Get historical data from a specific position.
457
+ See `Rates.get_rates_from_pos` for more details.
458
+ """
459
+ rates = Rates(symbol, time_frame, start_pos, count, session_duration)
460
+ data = rates.get_rates_from_pos(filter=filter, fill_na=fill_na,
461
+ lower_colnames=lower_colnames, utc=utc)
462
+ return data
@@ -7,8 +7,18 @@ import MetaTrader5 as Mt5
7
7
  from bbstrader.metatrader.account import Account
8
8
  from bbstrader.metatrader.rates import Rates
9
9
  from bbstrader.metatrader.utils import (
10
- TIMEFRAMES, raise_mt5_error, TimeFrame)
11
- from typing import List, Dict, Optional, Literal, Union, Any
10
+ TIMEFRAMES,
11
+ raise_mt5_error,
12
+ TimeFrame
13
+ )
14
+ from typing import (
15
+ List,
16
+ Dict,
17
+ Optional,
18
+ Literal,
19
+ Union,
20
+ Any
21
+ )
12
22
 
13
23
 
14
24
  _COMMD_SUPPORTED_ = [
@@ -16,7 +26,6 @@ _COMMD_SUPPORTED_ = [
16
26
  'XAGEUR', 'XAGUSD', 'XAUAUD', 'XAUEUR', 'XAUUSD', 'XAUGBP', 'USOIL'
17
27
  ]
18
28
 
19
-
20
29
  _ADMIRAL_MARKETS_FUTURES_ = [
21
30
  '#USTNote_', '#Bund_', '#USDX_', '_AUS200_', '_Canada60_', '_SouthAfrica40_',
22
31
  '_STXE600_', '_EURO50_', '_GER40_', '_GermanyTech30_', '_MidCapGER50_',
@@ -25,6 +34,7 @@ _ADMIRAL_MARKETS_FUTURES_ = [
25
34
  '_XAU_', '_HK50_', '_HSCEI50_'
26
35
  ]
27
36
 
37
+ __all__ = ['RiskManagement']
28
38
 
29
39
  class RiskManagement(Account):
30
40
  """
@@ -135,7 +145,7 @@ class RiskManagement(Account):
135
145
  self.pchange = pchange_sl
136
146
  self.var_level = var_level
137
147
  self.var_tf = var_time_frame
138
- self.daily_dd = daily_risk
148
+ self.daily_dd = round(daily_risk, 5)
139
149
  self.max_risk = max_risk
140
150
  self.rr = rr
141
151
  self.sl = sl
@@ -193,7 +203,7 @@ class RiskManagement(Account):
193
203
  volume_step = s_info.volume_step
194
204
  lot = self.currency_risk()['lot']
195
205
  steps = self._volume_step(volume_step)
196
- if steps >= 2:
206
+ if float(steps) >= float(1):
197
207
  return round(lot, steps)
198
208
  else:
199
209
  return round(lot)
@@ -203,13 +213,13 @@ class RiskManagement(Account):
203
213
 
204
214
  value_str = str(value)
205
215
 
206
- if '.' in value_str:
216
+ if '.' in value_str and value_str != '1.0':
207
217
  decimal_index = value_str.index('.')
208
218
  num_digits = len(value_str) - decimal_index - 1
209
-
210
219
  return num_digits
211
- elif value_str == '1':
212
- return 1
220
+
221
+ elif value_str == '1.0':
222
+ return 0
213
223
  else:
214
224
  return 0
215
225
 
@@ -254,7 +264,7 @@ class RiskManagement(Account):
254
264
  interval = round((minutes / tf_int) * 252)
255
265
 
256
266
  rate = Rates(self.symbol, self._tf, 0, interval)
257
- returns = rate.get_returns*100
267
+ returns = rate.returns*100
258
268
  std = returns.std()
259
269
  point = self.get_symbol_info(self.symbol).point
260
270
  av_price = (self.symbol_info.bid + self.symbol_info.ask)/2
@@ -308,7 +318,7 @@ class RiskManagement(Account):
308
318
  interval = round((minutes / tf_int) * 252)
309
319
 
310
320
  rate = Rates(self.symbol, tf, 0, interval)
311
- returns = rate.get_returns*100
321
+ returns = rate.returns*100
312
322
  p = self.get_account_info().margin_free
313
323
  mu = returns.mean()
314
324
  sigma = returns.std()
@@ -405,10 +415,11 @@ class RiskManagement(Account):
405
415
 
406
416
  av_price = (s_info.bid + s_info.ask)/2
407
417
  trade_risk = self.get_trade_risk()
408
- FX = self.get_symbol_type(self.symbol) == 'FX'
409
- COMD = self.get_symbol_type(self.symbol) == 'COMD'
410
- FUT = self.get_symbol_type(self.symbol) == 'FUT'
411
- CRYPTO = self.get_symbol_type(self.symbol) == 'CRYPTO'
418
+ symbol_type = self.get_symbol_type(self.symbol)
419
+ FX = symbol_type == 'FX'
420
+ COMD = symbol_type == 'COMD'
421
+ FUT = symbol_type == 'FUT'
422
+ CRYPTO = symbol_type == 'CRYPTO'
412
423
  if COMD:
413
424
  supported = _COMMD_SUPPORTED_
414
425
  if self.symbol.split('.')[0] not in supported:
@@ -503,14 +514,14 @@ class RiskManagement(Account):
503
514
  trade_loss = (lot * contract_size) * tick_value_loss
504
515
  trade_profit = (lot * contract_size) * tick_value_profit
505
516
 
506
- if self.get_symbol_type(self.symbol) == 'IDX':
507
- rates = self.get_currency_rates(self.symbol)
508
- if rates['mc'] == rates['pc'] == 'JPY':
509
- lot = lot * contract_size
510
- lot = self._check_lot(lot)
511
- volume = round(lot * av_price * contract_size)
512
- if contract_size == 1:
513
- volume = round(lot * av_price)
517
+ # if self.get_symbol_type(self.symbol) == 'IDX':
518
+ # rates = self.get_currency_rates(self.symbol)
519
+ # if rates['mc'] == rates['pc'] == 'JPY':
520
+ # lot = lot * contract_size
521
+ # lot = self._check_lot(lot)
522
+ # volume = round(lot * av_price * contract_size)
523
+ # if contract_size == 1:
524
+ # volume = round(lot * av_price)
514
525
 
515
526
  return {
516
527
  'currency_risk': currency_risk,