bbstrader 0.1.8__py3-none-any.whl → 0.1.91__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of bbstrader might be problematic. Click here for more details.
- bbstrader/__ini__.py +4 -2
- bbstrader/btengine/__init__.py +5 -5
- bbstrader/btengine/backtest.py +51 -10
- bbstrader/btengine/data.py +147 -55
- bbstrader/btengine/event.py +4 -1
- bbstrader/btengine/execution.py +125 -23
- bbstrader/btengine/performance.py +4 -7
- bbstrader/btengine/portfolio.py +34 -13
- bbstrader/btengine/strategy.py +466 -6
- bbstrader/config.py +111 -0
- bbstrader/metatrader/__init__.py +4 -4
- bbstrader/metatrader/account.py +357 -55
- bbstrader/metatrader/rates.py +234 -31
- bbstrader/metatrader/risk.py +35 -24
- bbstrader/metatrader/trade.py +361 -173
- bbstrader/metatrader/utils.py +2 -53
- bbstrader/models/factors.py +0 -0
- bbstrader/models/ml.py +0 -0
- bbstrader/models/optimization.py +0 -0
- bbstrader/trading/__init__.py +1 -1
- bbstrader/trading/execution.py +329 -215
- bbstrader/trading/scripts.py +57 -0
- bbstrader/trading/strategies.py +49 -71
- bbstrader/tseries.py +274 -39
- {bbstrader-0.1.8.dist-info → bbstrader-0.1.91.dist-info}/METADATA +11 -3
- bbstrader-0.1.91.dist-info/RECORD +31 -0
- {bbstrader-0.1.8.dist-info → bbstrader-0.1.91.dist-info}/WHEEL +1 -1
- bbstrader-0.1.8.dist-info/RECORD +0 -26
- {bbstrader-0.1.8.dist-info → bbstrader-0.1.91.dist-info}/LICENSE +0 -0
- {bbstrader-0.1.8.dist-info → bbstrader-0.1.91.dist-info}/top_level.txt +0 -0
bbstrader/metatrader/rates.py
CHANGED
|
@@ -3,13 +3,66 @@ import MetaTrader5 as Mt5
|
|
|
3
3
|
from datetime import datetime
|
|
4
4
|
from typing import Union, Optional
|
|
5
5
|
from bbstrader.metatrader.utils import (
|
|
6
|
-
raise_mt5_error,
|
|
7
|
-
|
|
6
|
+
raise_mt5_error,
|
|
7
|
+
TimeFrame,
|
|
8
|
+
TIMEFRAMES
|
|
9
|
+
)
|
|
10
|
+
from bbstrader.metatrader.account import Account
|
|
11
|
+
from bbstrader.metatrader.account import AMG_EXCHANGES
|
|
12
|
+
from bbstrader.metatrader.account import check_mt5_connection
|
|
8
13
|
from pandas.tseries.offsets import CustomBusinessDay
|
|
9
14
|
from pandas.tseries.holiday import USFederalHolidayCalendar
|
|
15
|
+
from exchange_calendars import(
|
|
16
|
+
get_calendar,
|
|
17
|
+
get_calendar_names
|
|
18
|
+
)
|
|
19
|
+
|
|
20
|
+
__all__ = [
|
|
21
|
+
'Rates',
|
|
22
|
+
'download_historical_data',
|
|
23
|
+
'get_data_from_pos'
|
|
24
|
+
]
|
|
10
25
|
|
|
11
26
|
MAX_BARS = 10_000_000
|
|
12
27
|
|
|
28
|
+
IDX_CALENDARS = {
|
|
29
|
+
"CAD": "XTSE",
|
|
30
|
+
"AUD": "XASX",
|
|
31
|
+
"GBP": "XLON",
|
|
32
|
+
"HKD": "XSHG",
|
|
33
|
+
"ZAR": "XJSE",
|
|
34
|
+
"CHF": "XSWX",
|
|
35
|
+
"NOK": "XOSL",
|
|
36
|
+
"EUR": "XETR",
|
|
37
|
+
"SGD": "XSES",
|
|
38
|
+
"USD": "us_futures",
|
|
39
|
+
"JPY": "us_futures",
|
|
40
|
+
}
|
|
41
|
+
|
|
42
|
+
COMD_CALENDARS = {
|
|
43
|
+
"Energies" : "us_futures",
|
|
44
|
+
"Metals" : "us_futures",
|
|
45
|
+
"Agricultures" : "CBOT",
|
|
46
|
+
"Bonds": {"USD" : "CBOT", "EUR": "EUREX"},
|
|
47
|
+
}
|
|
48
|
+
|
|
49
|
+
CALENDARS = {
|
|
50
|
+
"FX" : "us_futures",
|
|
51
|
+
"STK" : AMG_EXCHANGES,
|
|
52
|
+
"ETF" : AMG_EXCHANGES,
|
|
53
|
+
"IDX" : IDX_CALENDARS,
|
|
54
|
+
"COMD" : COMD_CALENDARS,
|
|
55
|
+
"CRYPTO": "24/7",
|
|
56
|
+
"FUT" : None,
|
|
57
|
+
}
|
|
58
|
+
|
|
59
|
+
SESSION_TIMEFRAMES = [
|
|
60
|
+
Mt5.TIMEFRAME_D1,
|
|
61
|
+
Mt5.TIMEFRAME_W1,
|
|
62
|
+
Mt5.TIMEFRAME_H12,
|
|
63
|
+
Mt5.TIMEFRAME_MN1
|
|
64
|
+
]
|
|
65
|
+
|
|
13
66
|
|
|
14
67
|
class Rates(object):
|
|
15
68
|
"""
|
|
@@ -26,8 +79,8 @@ class Rates(object):
|
|
|
26
79
|
or just set it to Unlimited.
|
|
27
80
|
In your MT5 terminal, go to `Tools` -> `Options` -> `Charts` -> `Max bars in chart`.
|
|
28
81
|
|
|
29
|
-
2. The `
|
|
30
|
-
|
|
82
|
+
2. The `open, high, low, close, adjclose, returns,
|
|
83
|
+
volume` properties returns data in Broker's timezone by default.
|
|
31
84
|
|
|
32
85
|
Example:
|
|
33
86
|
>>> rates = Rates("EURUSD", "1h")
|
|
@@ -70,13 +123,11 @@ class Rates(object):
|
|
|
70
123
|
self.start_pos = self._get_start_pos(start_pos, time_frame)
|
|
71
124
|
self.count = count
|
|
72
125
|
self._mt5_initialized()
|
|
126
|
+
self.__account = Account()
|
|
73
127
|
self.__data = self.get_rates_from_pos()
|
|
74
128
|
|
|
75
|
-
|
|
76
129
|
def _mt5_initialized(self):
|
|
77
|
-
|
|
78
|
-
if not Mt5.initialize():
|
|
79
|
-
raise_mt5_error(message=INIT_MSG)
|
|
130
|
+
check_mt5_connection()
|
|
80
131
|
|
|
81
132
|
def _get_start_pos(self, index, time_frame):
|
|
82
133
|
if isinstance(index, int):
|
|
@@ -127,8 +178,8 @@ class Rates(object):
|
|
|
127
178
|
return TIMEFRAMES[time_frame]
|
|
128
179
|
|
|
129
180
|
def _fetch_data(
|
|
130
|
-
self, start: Union[int, datetime],
|
|
131
|
-
count: Union[int, datetime]
|
|
181
|
+
self, start: Union[int, datetime , pd.Timestamp],
|
|
182
|
+
count: Union[int, datetime, pd.Timestamp], lower_colnames=False, utc=False,
|
|
132
183
|
) -> Union[pd.DataFrame, None]:
|
|
133
184
|
"""Fetches data from MT5 and returns a DataFrame or None."""
|
|
134
185
|
try:
|
|
@@ -136,7 +187,10 @@ class Rates(object):
|
|
|
136
187
|
rates = Mt5.copy_rates_from_pos(
|
|
137
188
|
self.symbol, self.time_frame, start, count
|
|
138
189
|
)
|
|
139
|
-
elif
|
|
190
|
+
elif (
|
|
191
|
+
isinstance(start, (datetime, pd.Timestamp)) and
|
|
192
|
+
isinstance(count, (datetime, pd.Timestamp))
|
|
193
|
+
):
|
|
140
194
|
rates = Mt5.copy_rates_range(
|
|
141
195
|
self.symbol, self.time_frame, start, count
|
|
142
196
|
)
|
|
@@ -144,28 +198,103 @@ class Rates(object):
|
|
|
144
198
|
return None
|
|
145
199
|
|
|
146
200
|
df = pd.DataFrame(rates)
|
|
147
|
-
return self._format_dataframe(df)
|
|
201
|
+
return self._format_dataframe(df, lower_colnames=lower_colnames, utc=utc)
|
|
148
202
|
except Exception as e:
|
|
149
203
|
raise_mt5_error(e)
|
|
150
204
|
|
|
151
|
-
def _format_dataframe(self, df: pd.DataFrame
|
|
205
|
+
def _format_dataframe(self, df: pd.DataFrame,
|
|
206
|
+
lower_colnames=False, utc=False) -> pd.DataFrame:
|
|
152
207
|
"""Formats the raw MT5 data into a standardized DataFrame."""
|
|
153
208
|
df = df.copy()
|
|
154
209
|
df = df[['time', 'open', 'high', 'low', 'close', 'tick_volume']]
|
|
155
210
|
df.columns = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume']
|
|
156
211
|
df['Adj Close'] = df['Close']
|
|
157
212
|
df = df[['Date', 'Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']]
|
|
158
|
-
df
|
|
213
|
+
#df = df.columns.rename(str.lower).str.replace(' ', '_')
|
|
214
|
+
df['Date'] = pd.to_datetime(df['Date'], unit='s', utc=utc)
|
|
159
215
|
df.set_index('Date', inplace=True)
|
|
216
|
+
if lower_colnames:
|
|
217
|
+
df.columns = df.columns.str.lower().str.replace(' ', '_')
|
|
218
|
+
df.index.name = df.index.name.lower().replace(' ', '_')
|
|
160
219
|
return df
|
|
161
220
|
|
|
162
|
-
def
|
|
221
|
+
def _filter_data(self, df: pd.DataFrame, date_from=None, date_to=None, fill_na=False) -> pd.DataFrame:
|
|
222
|
+
df = df.copy()
|
|
223
|
+
symbol_type = self.__account.get_symbol_type(self.symbol)
|
|
224
|
+
currencies = self.__account.get_currency_rates(self.symbol)
|
|
225
|
+
s_info = self.__account.get_symbol_info(self.symbol)
|
|
226
|
+
if symbol_type in CALENDARS:
|
|
227
|
+
if symbol_type == 'STK' or symbol_type == 'ETF':
|
|
228
|
+
for exchange in CALENDARS[symbol_type]:
|
|
229
|
+
if exchange in get_calendar_names():
|
|
230
|
+
symbols = self.__account.get_stocks_from_exchange(
|
|
231
|
+
exchange_code=exchange)
|
|
232
|
+
if self.symbol in symbols:
|
|
233
|
+
calendar = get_calendar(exchange, side='right')
|
|
234
|
+
break
|
|
235
|
+
elif symbol_type == 'IDX':
|
|
236
|
+
calendar = get_calendar(CALENDARS[symbol_type][currencies['mc']], side='right')
|
|
237
|
+
elif symbol_type == 'COMD':
|
|
238
|
+
for commodity in CALENDARS[symbol_type]:
|
|
239
|
+
if commodity in s_info.path:
|
|
240
|
+
calendar = get_calendar(CALENDARS[symbol_type][commodity], side='right')
|
|
241
|
+
elif symbol_type == 'FUT':
|
|
242
|
+
if 'Index' in s_info.path:
|
|
243
|
+
calendar = get_calendar(CALENDARS['IDX'][currencies['mc']], side='right')
|
|
244
|
+
else:
|
|
245
|
+
for commodity, cal in COMD_CALENDARS.items():
|
|
246
|
+
if self.symbol in self.__account.get_future_symbols(category=commodity):
|
|
247
|
+
if commodity == 'Bonds':
|
|
248
|
+
calendar = get_calendar(cal[currencies['mc']], side='right')
|
|
249
|
+
else:
|
|
250
|
+
calendar = get_calendar(cal, side='right')
|
|
251
|
+
else:
|
|
252
|
+
calendar = get_calendar(CALENDARS[symbol_type], side='right')
|
|
253
|
+
date_from = date_from or df.index[0]
|
|
254
|
+
date_to = date_to or df.index[-1]
|
|
255
|
+
if self.time_frame in SESSION_TIMEFRAMES:
|
|
256
|
+
valid_sessions = calendar.sessions_in_range(date_from, date_to)
|
|
257
|
+
else:
|
|
258
|
+
valid_sessions = calendar.minutes_in_range(date_from, date_to)
|
|
259
|
+
if self.time_frame in [Mt5.TIMEFRAME_M1, Mt5.TIMEFRAME_D1]:
|
|
260
|
+
# save the index name of the dataframe
|
|
261
|
+
index_name = df.index.name
|
|
262
|
+
if fill_na:
|
|
263
|
+
if isinstance(fill_na, bool):
|
|
264
|
+
method = 'nearest'
|
|
265
|
+
if isinstance(fill_na, str):
|
|
266
|
+
method = fill_na
|
|
267
|
+
df = df.reindex(valid_sessions, method=method)
|
|
268
|
+
else:
|
|
269
|
+
df.reindex(valid_sessions, method=None)
|
|
270
|
+
df.index = df.index.rename(index_name)
|
|
271
|
+
else:
|
|
272
|
+
df = df[df.index.isin(valid_sessions)]
|
|
273
|
+
return df
|
|
274
|
+
|
|
275
|
+
def _check_filter(self, filter, utc):
|
|
276
|
+
if filter and self.time_frame not in SESSION_TIMEFRAMES and not utc:
|
|
277
|
+
utc = True
|
|
278
|
+
elif filter and self.time_frame in SESSION_TIMEFRAMES and utc:
|
|
279
|
+
utc = False
|
|
280
|
+
return utc
|
|
281
|
+
|
|
282
|
+
def get_rates_from_pos(self, filter=False, fill_na=False,
|
|
283
|
+
lower_colnames=False, utc=False
|
|
284
|
+
) -> Union[pd.DataFrame, None]:
|
|
163
285
|
"""
|
|
164
286
|
Retrieves historical data starting from a specific position.
|
|
165
287
|
|
|
166
288
|
Uses the `start_pos` and `count` attributes specified during
|
|
167
289
|
initialization to fetch data.
|
|
168
290
|
|
|
291
|
+
Args:
|
|
292
|
+
filter : See `Rates.get_historical_data` for more details.
|
|
293
|
+
fill_na : See `Rates.get_historical_data` for more details.
|
|
294
|
+
lower_colnames : If True, the column names will be converted to lowercase.
|
|
295
|
+
utc (bool, optional): If True, the data will be in UTC timezone.
|
|
296
|
+
Defaults to False.
|
|
297
|
+
|
|
169
298
|
Returns:
|
|
170
299
|
Union[pd.DataFrame, None]: A DataFrame containing historical
|
|
171
300
|
data if successful, otherwise None.
|
|
@@ -182,31 +311,37 @@ class Rates(object):
|
|
|
182
311
|
"Both 'start_pos' and 'count' must be provided "
|
|
183
312
|
"when calling 'get_rates_from_pos'."
|
|
184
313
|
)
|
|
185
|
-
|
|
314
|
+
utc = self._check_filter(filter, utc)
|
|
315
|
+
df = self._fetch_data(self.start_pos, self.count,
|
|
316
|
+
lower_colnames=lower_colnames, utc=utc)
|
|
317
|
+
if df is None:
|
|
318
|
+
return None
|
|
319
|
+
if filter:
|
|
320
|
+
return self._filter_data(df, fill_na=fill_na)
|
|
186
321
|
return df
|
|
187
322
|
|
|
188
323
|
@property
|
|
189
|
-
def
|
|
324
|
+
def open(self):
|
|
190
325
|
return self.__data['Open']
|
|
191
326
|
|
|
192
327
|
@property
|
|
193
|
-
def
|
|
328
|
+
def high(self):
|
|
194
329
|
return self.__data['High']
|
|
195
330
|
|
|
196
331
|
@property
|
|
197
|
-
def
|
|
332
|
+
def low(self):
|
|
198
333
|
return self.__data['Low']
|
|
199
334
|
|
|
200
335
|
@property
|
|
201
|
-
def
|
|
336
|
+
def close(self):
|
|
202
337
|
return self.__data['Close']
|
|
203
338
|
|
|
204
339
|
@property
|
|
205
|
-
def
|
|
340
|
+
def adjclose(self):
|
|
206
341
|
return self.__data['Adj Close']
|
|
207
342
|
|
|
208
343
|
@property
|
|
209
|
-
def
|
|
344
|
+
def returns(self):
|
|
210
345
|
"""
|
|
211
346
|
Fractional change between the current and a prior element.
|
|
212
347
|
|
|
@@ -224,23 +359,52 @@ class Rates(object):
|
|
|
224
359
|
return data['Returns']
|
|
225
360
|
|
|
226
361
|
@property
|
|
227
|
-
def
|
|
362
|
+
def volume(self):
|
|
228
363
|
return self.__data['Volume']
|
|
229
364
|
|
|
230
365
|
def get_historical_data(
|
|
231
366
|
self,
|
|
232
|
-
date_from: datetime,
|
|
233
|
-
date_to: datetime =
|
|
367
|
+
date_from: datetime | pd.Timestamp,
|
|
368
|
+
date_to: datetime | pd.Timestamp = pd.Timestamp.now(),
|
|
369
|
+
utc: bool = False,
|
|
370
|
+
filter: Optional[bool] = False,
|
|
371
|
+
fill_na: Optional[bool | str] = False,
|
|
372
|
+
lower_colnames: Optional[bool] = True,
|
|
234
373
|
save_csv: Optional[bool] = False,
|
|
235
374
|
) -> Union[pd.DataFrame, None]:
|
|
236
375
|
"""
|
|
237
376
|
Retrieves historical data within a specified date range.
|
|
238
377
|
|
|
239
378
|
Args:
|
|
240
|
-
date_from
|
|
241
|
-
|
|
379
|
+
date_from : Starting date for data retrieval.
|
|
380
|
+
|
|
381
|
+
date_to : Ending date for data retrieval.
|
|
242
382
|
Defaults to the current time.
|
|
243
|
-
|
|
383
|
+
|
|
384
|
+
utc : If True, the data will be in UTC timezone.
|
|
385
|
+
Defaults to False.
|
|
386
|
+
|
|
387
|
+
filter : If True, the data will be filtered based
|
|
388
|
+
on the trading sessions for the symbol.
|
|
389
|
+
This is use when we want to use the data for backtesting using Zipline.
|
|
390
|
+
|
|
391
|
+
fill_na : If True, the data will be filled with the nearest value.
|
|
392
|
+
This is use only when `filter` is True and time frame is "1m" or "D1",
|
|
393
|
+
this is because we use ``calendar.minutes_in_range`` or ``calendar.sessions_in_range``
|
|
394
|
+
where calendar is the ``ExchangeCalendar`` from `exchange_calendars` package.
|
|
395
|
+
So, for "1m" or "D1" time frame, the data will be filled with the nearest value
|
|
396
|
+
because the data from MT5 will have approximately the same number of rows as the
|
|
397
|
+
number of trading days or minute in the exchange calendar, so we can fill the missing
|
|
398
|
+
data with the nearest value.
|
|
399
|
+
|
|
400
|
+
But for other time frames, the data will be reindexed with the exchange calendar
|
|
401
|
+
because the data from MT5 will have more rows than the number of trading days or minute
|
|
402
|
+
in the exchange calendar. So we only take the data that is in the range of the exchange
|
|
403
|
+
calendar sessions or minutes.
|
|
404
|
+
|
|
405
|
+
lower_colnames : If True, the column names will be converted to lowercase.
|
|
406
|
+
|
|
407
|
+
save_csv : File path to save the data as a CSV.
|
|
244
408
|
If None, the data won't be saved.
|
|
245
409
|
|
|
246
410
|
Returns:
|
|
@@ -251,9 +415,48 @@ class Rates(object):
|
|
|
251
415
|
ValueError: If the starting date is greater than the ending date.
|
|
252
416
|
|
|
253
417
|
Notes:
|
|
254
|
-
The
|
|
418
|
+
The `filter` for this method can be use only for Admira Markets Group (AMG) symbols.
|
|
419
|
+
The Datetime for this method is in Local timezone by default.
|
|
420
|
+
All STK symbols are filtered based on the the exchange calendar.
|
|
421
|
+
All FX symbols are filtered based on the ``us_futures`` calendar.
|
|
422
|
+
All IDX symbols are filtered based on the exchange calendar of margin currency.
|
|
423
|
+
All COMD symbols are filtered based on the exchange calendar of the commodity.
|
|
255
424
|
"""
|
|
256
|
-
|
|
257
|
-
|
|
425
|
+
utc = self._check_filter(filter, utc)
|
|
426
|
+
df = self._fetch_data(date_from, date_to,
|
|
427
|
+
lower_colnames=lower_colnames, utc=utc)
|
|
428
|
+
if df is None:
|
|
429
|
+
return None
|
|
430
|
+
if filter:
|
|
431
|
+
df = self._filter_data(df, date_from=date_from, date_to=date_to, fill_na=fill_na)
|
|
432
|
+
if save_csv:
|
|
258
433
|
df.to_csv(f"{self.symbol}.csv")
|
|
259
434
|
return df
|
|
435
|
+
|
|
436
|
+
def download_historical_data(symbol, time_frame, date_from,
|
|
437
|
+
date_to=pd.Timestamp.now(),lower_colnames=True,
|
|
438
|
+
utc=False, filter=False, fill_na=False, save_csv=False):
|
|
439
|
+
"""Download historical data from MetaTrader 5 terminal.
|
|
440
|
+
See `Rates.get_historical_data` for more details.
|
|
441
|
+
"""
|
|
442
|
+
rates = Rates(symbol, time_frame)
|
|
443
|
+
data = rates.get_historical_data(
|
|
444
|
+
date_from=date_from,
|
|
445
|
+
date_to=date_to,
|
|
446
|
+
save_csv=save_csv,
|
|
447
|
+
utc=utc,
|
|
448
|
+
filter=filter,
|
|
449
|
+
lower_colnames=lower_colnames
|
|
450
|
+
)
|
|
451
|
+
return data
|
|
452
|
+
|
|
453
|
+
def get_data_from_pos(symbol, time_frame, start_pos=0, fill_na=False,
|
|
454
|
+
count=MAX_BARS, lower_colnames=False, utc=False, filter=False,
|
|
455
|
+
session_duration=23.0):
|
|
456
|
+
"""Get historical data from a specific position.
|
|
457
|
+
See `Rates.get_rates_from_pos` for more details.
|
|
458
|
+
"""
|
|
459
|
+
rates = Rates(symbol, time_frame, start_pos, count, session_duration)
|
|
460
|
+
data = rates.get_rates_from_pos(filter=filter, fill_na=fill_na,
|
|
461
|
+
lower_colnames=lower_colnames, utc=utc)
|
|
462
|
+
return data
|
bbstrader/metatrader/risk.py
CHANGED
|
@@ -7,8 +7,18 @@ import MetaTrader5 as Mt5
|
|
|
7
7
|
from bbstrader.metatrader.account import Account
|
|
8
8
|
from bbstrader.metatrader.rates import Rates
|
|
9
9
|
from bbstrader.metatrader.utils import (
|
|
10
|
-
TIMEFRAMES,
|
|
11
|
-
|
|
10
|
+
TIMEFRAMES,
|
|
11
|
+
raise_mt5_error,
|
|
12
|
+
TimeFrame
|
|
13
|
+
)
|
|
14
|
+
from typing import (
|
|
15
|
+
List,
|
|
16
|
+
Dict,
|
|
17
|
+
Optional,
|
|
18
|
+
Literal,
|
|
19
|
+
Union,
|
|
20
|
+
Any
|
|
21
|
+
)
|
|
12
22
|
|
|
13
23
|
|
|
14
24
|
_COMMD_SUPPORTED_ = [
|
|
@@ -16,7 +26,6 @@ _COMMD_SUPPORTED_ = [
|
|
|
16
26
|
'XAGEUR', 'XAGUSD', 'XAUAUD', 'XAUEUR', 'XAUUSD', 'XAUGBP', 'USOIL'
|
|
17
27
|
]
|
|
18
28
|
|
|
19
|
-
|
|
20
29
|
_ADMIRAL_MARKETS_FUTURES_ = [
|
|
21
30
|
'#USTNote_', '#Bund_', '#USDX_', '_AUS200_', '_Canada60_', '_SouthAfrica40_',
|
|
22
31
|
'_STXE600_', '_EURO50_', '_GER40_', '_GermanyTech30_', '_MidCapGER50_',
|
|
@@ -25,6 +34,7 @@ _ADMIRAL_MARKETS_FUTURES_ = [
|
|
|
25
34
|
'_XAU_', '_HK50_', '_HSCEI50_'
|
|
26
35
|
]
|
|
27
36
|
|
|
37
|
+
__all__ = ['RiskManagement']
|
|
28
38
|
|
|
29
39
|
class RiskManagement(Account):
|
|
30
40
|
"""
|
|
@@ -135,7 +145,7 @@ class RiskManagement(Account):
|
|
|
135
145
|
self.pchange = pchange_sl
|
|
136
146
|
self.var_level = var_level
|
|
137
147
|
self.var_tf = var_time_frame
|
|
138
|
-
self.daily_dd = daily_risk
|
|
148
|
+
self.daily_dd = round(daily_risk, 5)
|
|
139
149
|
self.max_risk = max_risk
|
|
140
150
|
self.rr = rr
|
|
141
151
|
self.sl = sl
|
|
@@ -193,7 +203,7 @@ class RiskManagement(Account):
|
|
|
193
203
|
volume_step = s_info.volume_step
|
|
194
204
|
lot = self.currency_risk()['lot']
|
|
195
205
|
steps = self._volume_step(volume_step)
|
|
196
|
-
if steps >=
|
|
206
|
+
if float(steps) >= float(1):
|
|
197
207
|
return round(lot, steps)
|
|
198
208
|
else:
|
|
199
209
|
return round(lot)
|
|
@@ -203,13 +213,13 @@ class RiskManagement(Account):
|
|
|
203
213
|
|
|
204
214
|
value_str = str(value)
|
|
205
215
|
|
|
206
|
-
if '.' in value_str:
|
|
216
|
+
if '.' in value_str and value_str != '1.0':
|
|
207
217
|
decimal_index = value_str.index('.')
|
|
208
218
|
num_digits = len(value_str) - decimal_index - 1
|
|
209
|
-
|
|
210
219
|
return num_digits
|
|
211
|
-
|
|
212
|
-
|
|
220
|
+
|
|
221
|
+
elif value_str == '1.0':
|
|
222
|
+
return 0
|
|
213
223
|
else:
|
|
214
224
|
return 0
|
|
215
225
|
|
|
@@ -254,7 +264,7 @@ class RiskManagement(Account):
|
|
|
254
264
|
interval = round((minutes / tf_int) * 252)
|
|
255
265
|
|
|
256
266
|
rate = Rates(self.symbol, self._tf, 0, interval)
|
|
257
|
-
returns = rate.
|
|
267
|
+
returns = rate.returns*100
|
|
258
268
|
std = returns.std()
|
|
259
269
|
point = self.get_symbol_info(self.symbol).point
|
|
260
270
|
av_price = (self.symbol_info.bid + self.symbol_info.ask)/2
|
|
@@ -308,7 +318,7 @@ class RiskManagement(Account):
|
|
|
308
318
|
interval = round((minutes / tf_int) * 252)
|
|
309
319
|
|
|
310
320
|
rate = Rates(self.symbol, tf, 0, interval)
|
|
311
|
-
returns = rate.
|
|
321
|
+
returns = rate.returns*100
|
|
312
322
|
p = self.get_account_info().margin_free
|
|
313
323
|
mu = returns.mean()
|
|
314
324
|
sigma = returns.std()
|
|
@@ -341,7 +351,7 @@ class RiskManagement(Account):
|
|
|
341
351
|
"""
|
|
342
352
|
P = self.get_account_info().margin_free
|
|
343
353
|
trade_risk = self.get_trade_risk()
|
|
344
|
-
loss_allowed = P * trade_risk
|
|
354
|
+
loss_allowed = P * trade_risk / 100
|
|
345
355
|
var = self.calculate_var(c=self.var_level, tf=self.var_tf)
|
|
346
356
|
return min(var, loss_allowed)
|
|
347
357
|
|
|
@@ -405,10 +415,11 @@ class RiskManagement(Account):
|
|
|
405
415
|
|
|
406
416
|
av_price = (s_info.bid + s_info.ask)/2
|
|
407
417
|
trade_risk = self.get_trade_risk()
|
|
408
|
-
|
|
409
|
-
|
|
410
|
-
|
|
411
|
-
|
|
418
|
+
symbol_type = self.get_symbol_type(self.symbol)
|
|
419
|
+
FX = symbol_type == 'FX'
|
|
420
|
+
COMD = symbol_type == 'COMD'
|
|
421
|
+
FUT = symbol_type == 'FUT'
|
|
422
|
+
CRYPTO = symbol_type == 'CRYPTO'
|
|
412
423
|
if COMD:
|
|
413
424
|
supported = _COMMD_SUPPORTED_
|
|
414
425
|
if self.symbol.split('.')[0] not in supported:
|
|
@@ -503,14 +514,14 @@ class RiskManagement(Account):
|
|
|
503
514
|
trade_loss = (lot * contract_size) * tick_value_loss
|
|
504
515
|
trade_profit = (lot * contract_size) * tick_value_profit
|
|
505
516
|
|
|
506
|
-
if self.get_symbol_type(self.symbol) == 'IDX':
|
|
507
|
-
|
|
508
|
-
|
|
509
|
-
|
|
510
|
-
|
|
511
|
-
|
|
512
|
-
if contract_size == 1:
|
|
513
|
-
|
|
517
|
+
# if self.get_symbol_type(self.symbol) == 'IDX':
|
|
518
|
+
# rates = self.get_currency_rates(self.symbol)
|
|
519
|
+
# if rates['mc'] == rates['pc'] == 'JPY':
|
|
520
|
+
# lot = lot * contract_size
|
|
521
|
+
# lot = self._check_lot(lot)
|
|
522
|
+
# volume = round(lot * av_price * contract_size)
|
|
523
|
+
# if contract_size == 1:
|
|
524
|
+
# volume = round(lot * av_price)
|
|
514
525
|
|
|
515
526
|
return {
|
|
516
527
|
'currency_risk': currency_risk,
|