bbstrader 0.1.6__py3-none-any.whl → 0.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of bbstrader might be problematic. Click here for more details.

@@ -0,0 +1,840 @@
1
+ """
2
+ Strategies module for trading strategies backtesting and execution.
3
+ """
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+ from queue import Queue
8
+ import yfinance as yf
9
+ from datetime import datetime
10
+ from typing import List, Literal, Dict, Union, Optional
11
+ from bbstrader.metatrader.rates import Rates
12
+ from bbstrader.metatrader.account import Account
13
+ from bbstrader.btengine.event import SignalEvent
14
+ from bbstrader.btengine.data import DataHandler
15
+ from bbstrader.models.risk import HMMRiskManager
16
+ from bbstrader.models.risk import build_hmm_models
17
+ from bbstrader.btengine.backtest import BacktestEngine
18
+ from bbstrader.btengine.strategy import Strategy
19
+ from bbstrader.btengine.execution import *
20
+ from bbstrader.btengine.data import *
21
+ from bbstrader.tseries import (
22
+ KalmanFilterModel, ArimaGarchModel)
23
+
24
+ __all__ = [
25
+ 'SMAStrategy',
26
+ 'ArimaGarchStrategy',
27
+ 'KalmanFilterStrategy',
28
+ 'StockIndexSTBOTrading',
29
+ 'test_strategy'
30
+ ]
31
+
32
+
33
+ def _get_quantities(quantities, symbol_list):
34
+ if isinstance(quantities, dict):
35
+ return quantities
36
+ elif isinstance(quantities, int):
37
+ return {symbol: quantities for symbol in symbol_list}
38
+
39
+ class SMAStrategy(Strategy):
40
+ """
41
+ Carries out a basic Moving Average Crossover strategy bactesting with a
42
+ short/long simple weighted moving average. Default short/long
43
+ windows are 50/200 periods respectively and uses Hiden Markov Model
44
+ as risk Managment system for filteering signals.
45
+
46
+ The trading strategy for this class is exceedingly simple and is used to bettter
47
+ understood. The important issue is the risk management aspect (the Hmm model)
48
+
49
+ The Long-term trend following strategy is of the classic moving average crossover type.
50
+ The rules are simple:
51
+ - At every bar calculate the 50-day and 200-day simple moving averages (SMA)
52
+ - If the 50-day SMA exceeds the 200-day SMA and the strategy is not invested, then go long
53
+ - If the 200-day SMA exceeds the 50-day SMA and the strategy is invested, then close the position
54
+ """
55
+
56
+ def __init__(
57
+ self, bars: DataHandler = None,
58
+ events: Queue = None,
59
+ symbol_list: List[str] = None,
60
+ mode: Literal['backtest', 'live'] = 'backtest',
61
+ **kwargs
62
+ ):
63
+ """
64
+ Args:
65
+ bars (DataHandler): A data handler object that provides market data.
66
+ events (Queue): An event queue object where generated signals are placed.
67
+ symbol_list (List[str]): A list of symbols to consider for trading.
68
+ mode (Literal['backtest', 'live']): The mode of operation for the strategy.
69
+ short_window (int, optional): The period for the short moving average.
70
+ long_window (int, optional): The period for the long moving average.
71
+ time_frame (str, optional): The time frame for the data.
72
+ session_duration (float, optional): The duration of the trading session.
73
+ risk_window (int, optional): The window size for the risk model.
74
+ quantities (int, dict | optional): The default quantities of each asset to trade.
75
+ """
76
+ self.bars = bars
77
+ self.events = events
78
+ if symbol_list is not None:
79
+ self.symbol_list = symbol_list
80
+ else:
81
+ self.symbol_list = self.bars.symbol_list
82
+ self.mode = mode
83
+
84
+ self.short_window = kwargs.get("short_window", 50)
85
+ self.long_window = kwargs.get("long_window", 200)
86
+ self.tf = kwargs.get("time_frame", 'D1')
87
+ self.qty = _get_quantities(
88
+ kwargs.get('quantities', 100), self.symbol_list)
89
+ self.sd = kwargs.get("session_duration", 23.0)
90
+ self.risk_models = build_hmm_models(self.symbol_list, **kwargs)
91
+ self.risk_window = kwargs.get("risk_window", self.long_window)
92
+ self.bought = self._calculate_initial_bought()
93
+
94
+
95
+ def _calculate_initial_bought(self):
96
+ bought = {}
97
+ for s in self.symbol_list:
98
+ bought[s] = 'OUT'
99
+ return bought
100
+
101
+ def get_backtest_data(self):
102
+ symbol_data = {symbol: None for symbol in self.symbol_list}
103
+ for s in self.symbol_list:
104
+ bar_date = self.bars.get_latest_bar_datetime(s)
105
+ bars = self.bars.get_latest_bars_values(
106
+ s, "Adj Close", N=self.long_window
107
+ )
108
+ returns_val = self.bars.get_latest_bars_values(
109
+ s, "Returns", N=self.risk_window
110
+ )
111
+ if len(bars) >= self.long_window and len(returns_val) >= self.risk_window:
112
+ regime = self.risk_models[s].which_trade_allowed(returns_val)
113
+
114
+ short_sma = np.mean(bars[-self.short_window:])
115
+ long_sma = np.mean(bars[-self.long_window:])
116
+
117
+ symbol_data[s] = (short_sma, long_sma, regime, bar_date)
118
+ return symbol_data
119
+
120
+ def create_backtest_signals(self):
121
+ signals = {symbol: None for symbol in self.symbol_list}
122
+ symbol_data = self.get_backtest_data()
123
+ for s, data in symbol_data.items():
124
+ signal = None
125
+ if data is not None:
126
+ price = self.bars.get_latest_bar_value(s, "Adj Close")
127
+ short_sma, long_sma, regime, bar_date = data
128
+ dt = bar_date
129
+ if regime == "LONG":
130
+ # Bulliqh regime
131
+ if short_sma < long_sma and self.bought[s] == "LONG":
132
+ print(f"EXIT: {bar_date}")
133
+ signal = SignalEvent(1, s, dt, 'EXIT', price=price)
134
+ self.bought[s] = 'OUT'
135
+
136
+ elif short_sma > long_sma and self.bought[s] == "OUT":
137
+ print(f"LONG: {bar_date}")
138
+ signal = SignalEvent(
139
+ 1, s, dt, 'LONG', quantity=self.qty[s], price=price)
140
+ self.bought[s] = 'LONG'
141
+
142
+ elif regime == "SHORT":
143
+ # Bearish regime
144
+ if short_sma > long_sma and self.bought[s] == "SHORT":
145
+ print(f"EXIT: {bar_date}")
146
+ signal = SignalEvent(1, s, dt, 'EXIT', price=price)
147
+ self.bought[s] = 'OUT'
148
+
149
+ elif short_sma < long_sma and self.bought[s] == "OUT":
150
+ print(f"SHORT: {bar_date}")
151
+ signal = SignalEvent(
152
+ 1, s, dt, 'SHORT', quantity=self.qty[s], price=price)
153
+ self.bought[s] = 'SHORT'
154
+ signals[s] = signal
155
+ return signals
156
+
157
+ def get_live_data(self):
158
+ symbol_data = {symbol: None for symbol in self.symbol_list}
159
+ for symbol in self.symbol_list:
160
+ sig_rate = Rates(symbol, self.tf, 0, self.risk_window)
161
+ hmm_data = sig_rate.get_returns.values
162
+ prices = sig_rate.get_close.values
163
+ current_regime = self.risk_models[symbol].which_trade_allowed(hmm_data)
164
+ assert len(prices) >= self.long_window and len(hmm_data) >= self.risk_window
165
+ short_sma = np.mean(prices[-self.short_window:])
166
+ long_sma = np.mean(prices[-self.long_window:])
167
+ short_sma, long_sma, current_regime
168
+ symbol_data[symbol] = (short_sma, long_sma, current_regime)
169
+ return symbol_data
170
+
171
+ def create_live_signals(self):
172
+ signals = {symbol: None for symbol in self.symbol_list}
173
+ symbol_data = self.get_live_data()
174
+ for symbol, data in symbol_data.items():
175
+ signal = None
176
+ short_sma, long_sma, regime = data
177
+ if regime == "LONG":
178
+ if short_sma > long_sma:
179
+ signal = 'LONG'
180
+ elif regime == "SHORT":
181
+ if short_sma < long_sma:
182
+ signal = 'SHORT'
183
+ signals[symbol] = signal
184
+ return signals
185
+
186
+ def calculate_signals(self, event=None):
187
+ if self.mode == 'backtest' and event is not None:
188
+ if event.type == 'MARKET':
189
+ signals = self.create_backtest_signals()
190
+ for signal in signals.values():
191
+ if signal is not None:
192
+ self.events.put(signal)
193
+ elif self.mode == 'live':
194
+ signals = self.create_live_signals()
195
+ return signals
196
+
197
+
198
+ class ArimaGarchStrategy(Strategy):
199
+ """
200
+ The `ArimaGarchStrategy` class extends the `Strategy`
201
+ class to implement a backtesting framework for trading strategies based on
202
+ ARIMA-GARCH models, incorporating a Hidden Markov Model (HMM) for risk management.
203
+
204
+ Features
205
+ ========
206
+ - **ARIMA-GARCH Model**: Utilizes ARIMA for time series forecasting and GARCH for volatility forecasting, aimed at predicting market movements.
207
+
208
+ - **HMM Risk Management**: Employs a Hidden Markov Model to manage risks, determining safe trading regimes.
209
+
210
+ - **Event-Driven Backtesting**: Capable of simulating real-time trading conditions by processing market data and signals sequentially.
211
+
212
+ - **Live Trading**: Supports real-time trading by generating signals based on live ARIMA-GARCH predictions and HMM risk management.
213
+
214
+ Key Methods
215
+ ===========
216
+ - `get_backtest_data()`: Retrieves historical data for backtesting.
217
+ - `create_backtest_signal()`: Generates trading signals based on ARIMA-GARCH predictions and HMM risk management.
218
+ - `get_live_data()`: Retrieves live data for real-time trading.
219
+ - `create_live_signals()`: Generates trading signals based on live ARIMA-GARCH predictions and HMM risk management.
220
+ - `calculate_signals()`: Determines the trading signals based on the mode of operation (backtest or live).
221
+
222
+ """
223
+
224
+ def __init__(self,
225
+ bars: DataHandler = None,
226
+ events: Queue = None,
227
+ symbol_list: List[str] = None,
228
+ mode: Literal['backtest', 'live'] = 'backtest',
229
+ **kwargs):
230
+ """
231
+ Args:
232
+ `bars`: A data handler object that provides market data.
233
+ `events`: An event queue object where generated signals are placed.
234
+ `symbol_list`: A list of symbols to consider for trading.
235
+ `mode`: The mode of operation for the strategy.
236
+ `arima_window`: The window size for rolling prediction in backtesting.
237
+ `time_frame`: The time frame for the data.
238
+ `quantities`: Quantity of each assets to trade.
239
+ `hmm_window`: Lookback period for HMM.
240
+ """
241
+ self.bars = bars
242
+ self.events = events
243
+ if symbol_list is not None:
244
+ self.symbol_list = symbol_list
245
+ else:
246
+ self.symbol_list = self.bars.symbol_list
247
+ self.mode = mode
248
+
249
+ self.qty = _get_quantities(
250
+ kwargs.get('quantities', 100), self.symbol_list)
251
+ self.arima_window = kwargs.get('arima_window', 252)
252
+ self.tf = kwargs.get('time_frame', 'D1')
253
+ self.sd = kwargs.get('session_duration', 23.0)
254
+ self.risk_window = kwargs.get("hmm_window", 50)
255
+ self.risk_models = build_hmm_models(self.symbol_list, **kwargs)
256
+ self.arima_models = self._build_arch_models(**kwargs)
257
+
258
+ self.long_market = {s : False for s in self.symbol_list}
259
+ self.short_market = {s : False for s in self.symbol_list}
260
+
261
+
262
+ def _build_arch_models(self, **kwargs) -> Dict[str, ArimaGarchModel]:
263
+ arch_models = {symbol: None for symbol in self.symbol_list}
264
+ for symbol in self.symbol_list:
265
+ try:
266
+ rates = Rates(symbol, self.tf, 0)
267
+ data = rates.get_rates_from_pos()
268
+ assert data is not None, f"No data for {symbol}"
269
+ except AssertionError:
270
+ data = yf.download(symbol, start=kwargs.get('yf_start'))
271
+ arch = ArimaGarchModel(symbol, data, k=self.arima_window)
272
+ arch_models[symbol] = arch
273
+ return arch_models
274
+
275
+ def get_backtest_data(self):
276
+ symbol_data = {symbol: None for symbol in self.symbol_list}
277
+ for symbol in self.symbol_list:
278
+ M = self.arima_window
279
+ N = self.risk_window
280
+ dt = self.bars.get_latest_bar_datetime(symbol)
281
+ bars = self.bars.get_latest_bars_values(
282
+ symbol, "Close", N=self.arima_window
283
+ )
284
+ returns = self.bars.get_latest_bars_values(
285
+ symbol, 'Returns', N=self.risk_window
286
+ )
287
+ df = pd.DataFrame()
288
+ df['Close'] = bars[-M:]
289
+ df = df.dropna()
290
+ arch_returns = self.arima_models[symbol].load_and_prepare_data(df)
291
+ data = arch_returns['diff_log_return'].iloc[-self.arima_window:]
292
+ if len(data) >= M and len(returns) >= N:
293
+ symbol_data[symbol] = (data, returns[-N:], dt)
294
+ return symbol_data
295
+
296
+ def create_backtest_signal(self):
297
+ signals = {symbol: None for symbol in self.symbol_list}
298
+ for symbol in self.symbol_list:
299
+ symbol_data = self.get_backtest_data()[symbol]
300
+ if symbol_data is not None:
301
+ data, returns, dt = symbol_data
302
+ signal = None
303
+ prediction = self.arima_models[symbol].get_prediction(data)
304
+ regime = self.risk_models[symbol].which_trade_allowed(returns)
305
+ price = self.bars.get_latest_bar_value(symbol, "Adj Close")
306
+
307
+ # If we are short the market, check for an exit
308
+ if prediction > 0 and self.short_market[symbol]:
309
+ signal = SignalEvent(1, symbol, dt, "EXIT", price=price)
310
+ print(f"{dt}: EXIT SHORT")
311
+ self.short_market[symbol] = False
312
+
313
+ # If we are long the market, check for an exit
314
+ elif prediction < 0 and self.long_market[symbol]:
315
+ signal = SignalEvent(1, symbol, dt, "EXIT", price=price)
316
+ print(f"{dt}: EXIT LONG")
317
+ self.long_market[symbol] = False
318
+
319
+ if regime == "LONG":
320
+ # If we are not in the market, go long
321
+ if prediction > 0 and not self.long_market[symbol]:
322
+ signal = SignalEvent(
323
+ 1, symbol, dt, "LONG", quantity=self.qty[symbol], price=price)
324
+ print(f"{dt}: LONG")
325
+ self.long_market[symbol] = True
326
+
327
+ elif regime == "SHORT":
328
+ # If we are not in the market, go short
329
+ if prediction < 0 and not self.short_market[symbol]:
330
+ signal = SignalEvent(
331
+ 1, symbol, dt, "SHORT", quantity=self.qty[symbol], price=price)
332
+ print(f"{dt}: SHORT")
333
+ self.short_market[symbol] = True
334
+ signals[symbol] = signal
335
+ return signals
336
+
337
+ def get_live_data(self):
338
+ symbol_data = {symbol: None for symbol in self.symbol_list}
339
+ for symbol in self.symbol_list:
340
+ arch_data = Rates(symbol, self.tf, 0, self.arima_window)
341
+ rates = arch_data.get_rates_from_pos()
342
+ arch_returns = self.arima_models[symbol].load_and_prepare_data(rates)
343
+ window_data = arch_returns['diff_log_return'].iloc[-self.arima_window:]
344
+ hmm_returns = arch_data.get_returns.values[-self.risk_window:]
345
+ symbol_data[symbol] = (window_data, hmm_returns)
346
+ return symbol_data
347
+
348
+ def create_live_signals(self):
349
+ signals = {symbol: None for symbol in self.symbol_list}
350
+ for symbol in self.symbol_list:
351
+ symbol_data = self.get_live_data()[symbol]
352
+ if symbol_data is not None:
353
+ window_data, hmm_returns = symbol_data
354
+ prediction = self.arima_models[symbol].get_prediction(window_data)
355
+ regime = self.risk_models[symbol].which_trade_allowed(hmm_returns)
356
+ if regime == "LONG":
357
+ if prediction > 0:
358
+ signals[symbol] = "LONG"
359
+ elif regime == "SHORT":
360
+ if prediction < 0:
361
+ signals[symbol] = "SHORT"
362
+ return signals
363
+
364
+ def calculate_signals(self, event=None):
365
+ if self.mode == 'backtest' and event is not None:
366
+ if event.type == 'MARKET':
367
+ signals = self.create_backtest_signal()
368
+ for signal in signals.values():
369
+ if signal is not None:
370
+ self.events.put(signal)
371
+ elif self.mode == 'live':
372
+ return self.create_live_signals()
373
+
374
+
375
+ class KalmanFilterStrategy(Strategy):
376
+ """
377
+ The `KalmanFilterStrategy` class implements a backtesting framework for a
378
+ [pairs trading](https://en.wikipedia.org/wiki/Pairs_trade) strategy using
379
+ Kalman Filter for signals and Hidden Markov Models (HMM) for risk management.
380
+ This document outlines the structure and usage of the `KalmanFilterStrategy`,
381
+ including initialization parameters, main functions, and an example of how to run a backtest.
382
+ """
383
+
384
+ def __init__(self,
385
+ bars: DataHandler = None,
386
+ events: Queue = None,
387
+ symbol_list: List[str] = None,
388
+ mode: Literal['backtest', 'live'] = 'backtest',
389
+ **kwargs):
390
+ """
391
+ Args:
392
+ `bars`: `DataHandler` for market data handling.
393
+ `events`: A queue for managing events.
394
+ `symbol_list`: List of ticker symbols for the pairs trading strategy.
395
+ `mode`: Mode of operation for the strategy.
396
+ kwargs : Additional keyword arguments including
397
+ - `quantity`: Quantity of assets to trade. Default is 100.
398
+ - `hmm_window`: Window size for calculating returns for the HMM. Default is 50.
399
+ - `hmm_tiker`: Ticker symbol used by the HMM for risk management.
400
+ - `time_frame`: Time frame for the data. Default is 'D1'.
401
+ - `session_duration`: Duration of the trading session. Default is 6.5.
402
+ """
403
+ self.bars = bars
404
+ self.events_queue = events
405
+ if symbol_list is not None:
406
+ self.symbol_list = symbol_list
407
+ else:
408
+ self.symbol_list = self.bars.symbol_list
409
+ self.mode = mode
410
+
411
+ self.hmm_tiker = kwargs.get("hmm_tiker")
412
+ self._assert_tikers()
413
+ self.hmm_window = kwargs.get("hmm_window", 50)
414
+ self.qty = kwargs.get("quantity", 100)
415
+ self.tf = kwargs.get("time_frame", "D1")
416
+ self.sd = kwargs.get("session_duration", 6.5)
417
+
418
+ self.risk_model = build_hmm_models(self.symbol_list, **kwargs)
419
+ self.kl_model = KalmanFilterModel(self.tickers, **kwargs)
420
+
421
+ self.long_market = False
422
+ self.short_market = False
423
+
424
+ def _assert_tikers(self):
425
+ if self.symbol_list is None or len(self.symbol_list) != 2:
426
+ raise ValueError(
427
+ "A list of 2 Tickers must be provide for this strategy")
428
+ self.tickers = self.symbol_list
429
+ if self.hmm_tiker is None:
430
+ raise ValueError(
431
+ "You need to provide a ticker used by the HMM for risk management")
432
+
433
+ def calculate_btxy(self, etqt, regime, dt):
434
+ # Make sure there is no position open
435
+ if etqt is None:
436
+ return
437
+ et, sqrt_Qt = etqt
438
+ theta = self.kl_model.theta
439
+ p1 = self.bars.get_latest_bar_value(self.tickers[1], "Adj Close")
440
+ p0 = self.bars.get_latest_bar_value(self.tickers[0], "Adj Close")
441
+ if et >= -sqrt_Qt and self.long_market:
442
+ print("CLOSING LONG: %s" % dt)
443
+ y_signal = SignalEvent(1, self.tickers[1], dt, "EXIT", price=p1)
444
+ x_signal = SignalEvent(1, self.tickers[0], dt, "EXIT", price=p0)
445
+ self.events_queue.put(y_signal)
446
+ self.events_queue.put(x_signal)
447
+ self.long_market = False
448
+
449
+ elif et <= sqrt_Qt and self.short_market:
450
+ print("CLOSING SHORT: %s" % dt)
451
+ y_signal = SignalEvent(1, self.tickers[1], dt, "EXIT", price=p1)
452
+ x_signal = SignalEvent(1, self.tickers[0], dt, "EXIT", price=p0)
453
+ self.events_queue.put(y_signal)
454
+ self.events_queue.put(x_signal)
455
+ self.short_market = False
456
+
457
+ # Long Entry
458
+ if regime == "LONG":
459
+ if et <= -sqrt_Qt and not self.long_market:
460
+ print("LONG: %s" % dt)
461
+ y_signal = SignalEvent(
462
+ 1, self.tickers[1], dt, "LONG", self.qty, 1.0, price=p1)
463
+ x_signal = SignalEvent(
464
+ 1, self.tickers[0], dt, "SHORT", self.qty, theta[0], price=p0)
465
+ self.events_queue.put(y_signal)
466
+ self.events_queue.put(x_signal)
467
+ self.long_market = True
468
+
469
+ # Short Entry
470
+ elif regime == "SHORT":
471
+ if et >= sqrt_Qt and not self.short_market:
472
+ print("SHORT: %s" % dt)
473
+ y_signal = SignalEvent(
474
+ 1, self.tickers[1], dt, "SHORT", self.qty, 1.0, price=p1)
475
+ x_signal = SignalEvent(
476
+ 1, self.tickers[0], "LONG", self.qty, theta[0], price=p0)
477
+ self.events_queue.put(y_signal)
478
+ self.events_queue.put(x_signal)
479
+ self.short_market = True
480
+
481
+ def calculate_livexy(self):
482
+ signals = {symbol: None for symbol in self.symbol_list}
483
+ p0_ = Rates(self.tickers[0], self.tf, 0, 10)
484
+ p1_ = Rates(self.tickers[1], self.tf, 0, 10)
485
+
486
+ p0_data = p0_.get_close
487
+ p1_data = p1_.get_close
488
+ prices = np.array(
489
+ [p0_data.values[-1], p1_data.values[-1]]
490
+ )
491
+ et_std = self.kl_model.calculate_etqt(prices)
492
+ if et_std is not None:
493
+ et, std = et_std
494
+ y_signal = None
495
+ x_signal = None
496
+
497
+ if et >= -std or et <= std:
498
+ y_signal = "EXIT"
499
+ x_signal = "EXIT"
500
+
501
+ if et <= -std:
502
+ y_signal = "LONG"
503
+ x_signal = "SHORT"
504
+
505
+ if et >= std:
506
+ y_signal = "SHORT"
507
+ x_signal = "LONG"
508
+
509
+ signals[self.tickers[0]] = x_signal
510
+ signals[self.tickers[1]] = y_signal
511
+ return signals
512
+
513
+ def calculate_backtest_signals(self):
514
+ p0, p1 = self.tickers[0], self.tickers[1]
515
+ dt = self.bars.get_latest_bar_datetime(p0)
516
+ _x = self.bars.get_latest_bars_values(
517
+ p0, "Close", N=1
518
+ )
519
+ _y = self.bars.get_latest_bars_values(
520
+ p1, "Close", N=1
521
+ )
522
+ returns = self.bars.get_latest_bars_values(
523
+ self.hmm_tiker, "Returns", N=self.hmm_window
524
+ )
525
+ latest_prices = np.array([-1.0, -1.0])
526
+ if len(returns) >= self.hmm_window:
527
+ latest_prices[0] = _x[-1]
528
+ latest_prices[1] = _y[-1]
529
+ et_qt = self.kl_model.calculate_etqt(latest_prices)
530
+ regime = self.risk_model[
531
+ self.hmm_tiker].which_trade_allowed(returns)
532
+ self.calculate_btxy(et_qt, regime, dt)
533
+
534
+ def calculate_live_signals(self):
535
+ # Data Retrieval
536
+ signals = {symbol: None for symbol in self.symbol_list}
537
+ initial_signals = self.calculate_livexy()
538
+ hmm_data = Rates(self.hmm_ticker, self.tf, 0, self.hmm_window)
539
+ returns = hmm_data.get_returns.values
540
+ current_regime = self.risk_model[
541
+ self.hmm_tiker].which_trade_allowed(returns)
542
+ for symbol in self.symbol_list:
543
+ if symbol in initial_signals:
544
+ signal = initial_signals[symbol]
545
+ if signal == "LONG" and current_regime == "LONG":
546
+ signals[symbol] = "LONG"
547
+ elif signal == "SHORT" and current_regime == "SHORT":
548
+ signals[symbol] = "SHORT"
549
+ return signals
550
+
551
+ def calculate_signals(self, event=None):
552
+ """
553
+ Calculate the Kalman Filter strategy.
554
+ """
555
+ if self.mode == 'backtest' and event is not None:
556
+ if event.type == 'MARKET':
557
+ self.calculate_backtest_signals()
558
+ elif self.mode == 'live':
559
+ return self.calculate_live_signals()
560
+
561
+ class StockIndexSTBOTrading(Strategy):
562
+ """
563
+ The StockIndexSTBOTrading class implements a stock index Contract for Difference (CFD)
564
+ Buy-Only trading strategy. This strategy is based on the assumption that stock markets
565
+ typically follow a long-term uptrend. The strategy is designed to capitalize on market
566
+ corrections and price dips, where stocks or indices temporarily drop but are expected
567
+ to recover. It operates in two modes: backtest and live, and it is particularly
568
+ tailored to index trading.
569
+ """
570
+ def __init__(self,
571
+ bars: DataHandler = None,
572
+ events: Queue = None,
573
+ symbol_list: List[str] = None,
574
+ mode: Literal['backtest', 'live'] = 'backtest',
575
+ **kwargs):
576
+ """
577
+ Args:
578
+ `bars`: `DataHandler` for market data handling.
579
+ `events`: A queue for managing events.
580
+ `symbol_list`: List of ticker symbols for the pairs trading strategy.
581
+ `mode`: Mode of operation for the strategy.
582
+ kwargs : Additional keyword arguments including
583
+ - rr (float, default: 3.0): The risk-reward ratio used to determine exit points.
584
+ - epsilon (float, default: 0.1): The percentage threshold for price changes when considering new highs or lows.
585
+ - expected_returns (dict): Expected return percentages for each symbol in the symbol list.
586
+ - quantities (int, default: 100): The number of units to trade.
587
+ - max_trades (dict): The maximum number of trades allowed per symbol.
588
+ - logger: A logger object for tracking operations.
589
+ - expert_id (int, default: 5134): Unique identifier for trade positions created by this strategy.
590
+ """
591
+ self.bars = bars
592
+ self.events = events
593
+ if symbol_list is not None:
594
+ self.symbol_list = symbol_list
595
+ else:
596
+ self.symbol_list = self.bars.symbol_list
597
+ self.mode = mode
598
+
599
+ self.account = Account()
600
+
601
+ self.rr = kwargs.get('rr', 3.0)
602
+ self.epsilon = kwargs.get('epsilon', 0.1)
603
+ self._initialize(**kwargs)
604
+ self.logger = kwargs.get('logger')
605
+ self.ID = kwargs.get('expert_id', 5134)
606
+
607
+ def _initialize(self, **kwargs):
608
+ symbols = self.symbol_list.copy()
609
+ returns = kwargs.get('expected_returns')
610
+ quantities = kwargs.get('quantities', 100)
611
+ max_trades = kwargs.get('max_trades')
612
+
613
+ self.expeted_return = {index: returns[index] for index in symbols}
614
+ self.max_trades = {index: max_trades[index] for index in symbols}
615
+ self.last_price = {index: None for index in symbols}
616
+ self.heightest_price = {index: None for index in symbols}
617
+ self.lowerst_price = {index: None for index in symbols}
618
+
619
+ if self.mode == 'backtest':
620
+ self.qty = _get_quantities(quantities, symbols)
621
+ self.num_buys = {index: 0 for index in symbols}
622
+ self.buy_prices = {index: [] for index in symbols}
623
+
624
+ def _calculate_pct_change(self, current_price, lh_price):
625
+ return ((current_price - lh_price) / lh_price) * 100
626
+
627
+ def calculate_live_signals(self):
628
+ signals = {index: None for index in self.symbol_list}
629
+ for index in self.symbol_list:
630
+ current_price = self.account.get_tick_info(index).ask
631
+ if self.last_price[index] is None:
632
+ self.last_price[index] = current_price
633
+ self.heightest_price[index] = current_price
634
+ self.lowerst_price[index] = current_price
635
+ continue
636
+ else:
637
+ if self._calculate_pct_change(
638
+ current_price, self.heightest_price[index]) >= self.epsilon:
639
+ self.heightest_price[index] = current_price
640
+ elif self._calculate_pct_change(
641
+ current_price, self.lowerst_price[index]) <= -self.epsilon:
642
+ self.lowerst_price[index] = current_price
643
+
644
+ down_change = self._calculate_pct_change(
645
+ current_price, self.heightest_price[index])
646
+
647
+ if down_change <= - (self.expeted_return[index]/self.rr):
648
+ signals[index] = 'LONG'
649
+
650
+ positions = self.account.get_positions(symbol=index)
651
+ if positions is not None:
652
+ buy_prices = [
653
+ position.price_open for position in positions
654
+ if position.type == 0 and position.magic == self.ID
655
+ ]
656
+ if len(buy_prices) == 0:
657
+ continue
658
+ avg_price = sum(buy_prices) / len(buy_prices)
659
+ if self._calculate_pct_change(
660
+ current_price, avg_price) >= (self.expeted_return[index]):
661
+ signals[index] = 'EXIT'
662
+ self.logger.info(
663
+ f"SYMBOL={index} - Hp={self.heightest_price[index]} - "
664
+ f"Lp={self.lowerst_price[index]} - Cp={current_price} - %chg={round(down_change, 2)}"
665
+ )
666
+ return signals
667
+
668
+ def calculate_backtest_signals(self):
669
+ for index in self.symbol_list.copy():
670
+ dt = self.bars.get_latest_bar_datetime(index)
671
+ last_price = self.bars.get_latest_bars_values(index, 'Close', N=1)
672
+
673
+ current_price = last_price[-1]
674
+ if self.last_price[index] is None:
675
+ self.last_price[index] = current_price
676
+ self.heightest_price[index] = current_price
677
+ self.lowerst_price[index] = current_price
678
+ continue
679
+ else:
680
+ if self._calculate_pct_change(
681
+ current_price, self.heightest_price[index]) >= self.epsilon:
682
+ self.heightest_price[index] = current_price
683
+ elif self._calculate_pct_change(
684
+ current_price, self.lowerst_price[index]) <= -self.epsilon:
685
+ self.lowerst_price[index] = current_price
686
+
687
+ down_change = self._calculate_pct_change(
688
+ current_price, self.heightest_price[index])
689
+
690
+ if (down_change <= - (self.expeted_return[index]/self.rr)
691
+ and self.num_buys[index] <= self.max_trades[index]):
692
+ signal = SignalEvent(100, index, dt, 'LONG',
693
+ quantity=self.qty[index], price=current_price)
694
+ print(f'{dt}: LONG {self.qty[index]} units of {index} at {current_price}')
695
+ self.events.put(signal)
696
+ self.num_buys[index] += 1
697
+ self.buy_prices[index].append(current_price)
698
+
699
+ elif self.num_buys[index] > 0:
700
+ av_price = sum(self.buy_prices[index]) / \
701
+ len(self.buy_prices[index])
702
+ qty = self.qty[index] * self.num_buys[index]
703
+ if self._calculate_pct_change(
704
+ current_price, av_price) >= (self.expeted_return[index]):
705
+ signal = SignalEvent(100, index, dt, 'EXIT', quantity=qty, price=current_price)
706
+ print(f'{dt}: EXIT {qty} units of {index} at {current_price}')
707
+ self.events.put(signal)
708
+ self.num_buys[index] = 0
709
+ self.buy_prices[index] = []
710
+
711
+
712
+ def calculate_signals(self, event=None) -> Dict[str, Union[str, None]]:
713
+ if self.mode == 'backtest' and event is not None:
714
+ if event.type == 'MARKET':
715
+ self.calculate_backtest_signals()
716
+ elif self.mode == 'live':
717
+ return self.calculate_live_signals()
718
+
719
+
720
+ def _run_backtest(
721
+ strategy_name: str,
722
+ capital: float, symbol_list: list, kwargs: dict):
723
+ """
724
+ Executes a backtest of the specified strategy
725
+ integrating a Hidden Markov Model (HMM) for risk management.
726
+ """
727
+ kwargs["strategy_name"] = strategy_name
728
+ engine = BacktestEngine(
729
+ symbol_list, capital, 0.0, datetime.strptime(
730
+ kwargs['yf_start'], "%Y-%m-%d"),
731
+ kwargs.get("data_handler", YFHistoricDataHandler),
732
+ kwargs.get("exc_handler", SimulatedExecutionHandler),
733
+ kwargs.pop('backtester_class'), **kwargs
734
+ )
735
+ engine.simulate_trading()
736
+
737
+
738
+ def _run_arch_backtest(
739
+ capital: float = 100000.0,
740
+ quantity: int = 1000
741
+ ):
742
+ hmm_data = yf.download(
743
+ "^GSPC", start="1990-01-01", end="2009-12-31")
744
+ kwargs = {
745
+ 'quantity': quantity,
746
+ "yf_start": "2010-01-04",
747
+ "hmm_data": hmm_data,
748
+ 'backtester_class': ArimaGarchStrategy,
749
+ "data_handler": YFHistoricDataHandler,
750
+ }
751
+ _run_backtest("ARIMA+GARCH & HMM", capital, ["^GSPC"], kwargs)
752
+
753
+
754
+ def _run_kf_backtest(
755
+ capital: float = 100000.0,
756
+ quantity: int = 2000
757
+ ):
758
+ symbol_list = ["IEI", "TLT"]
759
+ tlt = yf.download("TLT", end="2008-07-09")
760
+ iei = yf.download("IEI", end="2008-07-09")
761
+ kwargs = {
762
+ "quantity": quantity,
763
+ "yf_start": "2009-08-03",
764
+ 'hmm_data': {"IEI": iei, "TLT": tlt},
765
+ "hmm_tiker": "TLT",
766
+ "session_duration": 6.5,
767
+ 'backtester_class': KalmanFilterStrategy,
768
+ "data_handler": YFHistoricDataHandler
769
+ }
770
+ _run_backtest("Kalman Filter & HMM", capital, symbol_list, kwargs)
771
+
772
+
773
+ def _run_sma_backtest(
774
+ capital: float = 100000.0,
775
+ quantity: int = 1
776
+ ):
777
+ spx_data = yf.download("^GSPC",start="1990-01-01", end="2009-12-31")
778
+ kwargs = {
779
+ "quantities": quantity,
780
+ "hmm_end": "2009-12-31",
781
+ "yf_start": "2010-01-04",
782
+ "hmm_data": spx_data,
783
+ "mt5_start": datetime(2010, 1, 4),
784
+ "mt5_end": datetime(2023, 1, 1),
785
+ "backtester_class": SMAStrategy,
786
+ "data_handler": MT5HistoricDataHandler,
787
+ "exc_handler": MT5ExecutionHandler
788
+ }
789
+ _run_backtest("SMA & HMM", capital, ["[SP500]"], kwargs)
790
+
791
+ def _run_sistbo_backtest(
792
+ capital: float = 100000.0,
793
+ quantity: int = None
794
+ ):
795
+ ndx = '[NQ100]'
796
+ spx = '[SP500]'
797
+ dji = '[DJI30]'
798
+ dax = 'GERMANY40'
799
+
800
+ symbol_list = [spx, dax, dji, ndx]
801
+ start = datetime(2010, 6, 1, 2, 0, 0)
802
+ quantity = {ndx: 15, spx: 30, dji: 5, dax: 10}
803
+ kwargs = {
804
+ 'expected_returns': {ndx: 1.5, spx: 1.5, dji: 1.0, dax: 1.0},
805
+ 'quantities': quantity,
806
+ 'max_trades': {ndx: 3, spx: 3, dji: 3, dax: 3},
807
+ 'mt5_start': start,
808
+ 'yf_start': start.strftime('%Y-%m-%d'),
809
+ 'time_frame': '15m',
810
+ "backtester_class": StockIndexSTBOTrading,
811
+ "data_handler": MT5HistoricDataHandler,
812
+ "exc_handler": MT5ExecutionHandler
813
+ }
814
+ _run_backtest("Stock Index Short Term Buy Only ", capital, symbol_list, kwargs)
815
+
816
+ _BACKTESTS = {
817
+ 'sma': _run_sma_backtest,
818
+ 'klf': _run_kf_backtest,
819
+ 'arch': _run_arch_backtest,
820
+ 'sistbo': _run_sistbo_backtest
821
+ }
822
+
823
+ def test_strategy(strategy: Literal['sma', 'klf', 'arch', 'sistbo'] = 'sma',
824
+ quantity: Optional[int] = 100):
825
+ """
826
+ Executes a backtest of the specified strategy
827
+
828
+ Args:
829
+ strategy : The strategy to use in test mode. Default is `sma`.
830
+ - `sma` Execute `SMAStrategy`, for more detail see this class documentation.
831
+ - `klf` Execute `KalmanFilterStrategy`, for more detail see this class documentation.
832
+ - `arch` Execute `ArimaGarchStrategy`, for more detail see this class documentation.
833
+ - `sistbo` Execute `StockIndexSTBOTrading`, for more detail see this class documentation.
834
+ quantity : The quantity of assets to be used in the test backtest. Default is 1000.
835
+
836
+ """
837
+ if strategy in _BACKTESTS:
838
+ _BACKTESTS[strategy](quantity=quantity)
839
+ else:
840
+ raise ValueError(f"Unknown strategy: {strategy}")