bayinx 0.3.8__py3-none-any.whl → 0.3.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- bayinx/core/_variational.py +3 -3
- bayinx/dists/censored/posnormal/r.py +39 -1
- {bayinx-0.3.8.dist-info → bayinx-0.3.10.dist-info}/METADATA +1 -1
- {bayinx-0.3.8.dist-info → bayinx-0.3.10.dist-info}/RECORD +6 -6
- {bayinx-0.3.8.dist-info → bayinx-0.3.10.dist-info}/WHEEL +0 -0
- {bayinx-0.3.8.dist-info → bayinx-0.3.10.dist-info}/licenses/LICENSE +0 -0
bayinx/core/_variational.py
CHANGED
@@ -163,7 +163,7 @@ class Variational(eqx.Module, Generic[M]):
|
|
163
163
|
|
164
164
|
@eqx.filter_jit
|
165
165
|
def posterior_predictive(
|
166
|
-
self, func: Callable[[M], Array], n: int, data: Any = None, key: Key = jr.PRNGKey(0)
|
166
|
+
self, func: Callable[[M, Any], Array], n: int, data: Any = None, key: Key = jr.PRNGKey(0)
|
167
167
|
) -> Array:
|
168
168
|
# Sample draws from the variational approximation
|
169
169
|
draws: Array = self.sample(n, key)
|
@@ -176,6 +176,6 @@ class Variational(eqx.Module, Generic[M]):
|
|
176
176
|
model: M = self._unflatten(draw)
|
177
177
|
|
178
178
|
# Evaluate
|
179
|
-
return func(model)
|
179
|
+
return func(model, data)
|
180
180
|
|
181
|
-
return evaluate(draws)
|
181
|
+
return evaluate(draws, data)
|
@@ -1,5 +1,6 @@
|
|
1
1
|
import jax.numpy as jnp
|
2
|
-
|
2
|
+
import jax.random as jr
|
3
|
+
from jaxtyping import Array, ArrayLike, Float, Key
|
3
4
|
|
4
5
|
from bayinx.dists import posnormal
|
5
6
|
|
@@ -76,3 +77,40 @@ def logprob(
|
|
76
77
|
evals = jnp.where(censored, posnormal.logccdf(x, mu, sigma), evals)
|
77
78
|
|
78
79
|
return evals
|
80
|
+
|
81
|
+
def sample(
|
82
|
+
n: int,
|
83
|
+
mu: Float[ArrayLike, "..."],
|
84
|
+
sigma: Float[ArrayLike, "..."],
|
85
|
+
censor: Float[ArrayLike, "..."] = jnp.inf,
|
86
|
+
key: Key = jr.PRNGKey(0)
|
87
|
+
) -> Float[Array, "..."]:
|
88
|
+
"""
|
89
|
+
Sample from a right-censored positive Normal distribution.
|
90
|
+
|
91
|
+
# Parameters
|
92
|
+
- `n`: Number of draws to sample per-parameter.
|
93
|
+
- `mu`: The mean.
|
94
|
+
- `sigma`: The standard deviation.
|
95
|
+
- `censor`: The censor.
|
96
|
+
|
97
|
+
# Returns
|
98
|
+
Draws from a right-censored positive Normal distribution. The output will have the shape of (n,) + the broadcasted shapes of `mu`, `sigma`, and `censor`.
|
99
|
+
"""
|
100
|
+
# Cast to Array
|
101
|
+
mu, sigma, censor = (
|
102
|
+
jnp.asarray(mu),
|
103
|
+
jnp.asarray(sigma),
|
104
|
+
jnp.asarray(censor),
|
105
|
+
)
|
106
|
+
|
107
|
+
# Derive shape
|
108
|
+
shape = (n,) + jnp.broadcast_shapes(mu.shape, sigma.shape, censor.shape)
|
109
|
+
|
110
|
+
# Draw from positive normal
|
111
|
+
draws = jr.truncated_normal(key, 0.0, jnp.inf, shape) * sigma + mu
|
112
|
+
|
113
|
+
# Censor values
|
114
|
+
draws = jnp.where(censor <= draws, censor, draws)
|
115
|
+
|
116
|
+
return draws
|
@@ -7,7 +7,7 @@ bayinx/core/_constraint.py,sha256=Gx07ZT66VE2y-qZCmBDm3_y0wO4xQyslZW10Lec1_lM,76
|
|
7
7
|
bayinx/core/_flow.py,sha256=3q4rKvATnbUpuj4ICUd4lIxu_3z7GRDuNujVhAku1X0,2342
|
8
8
|
bayinx/core/_model.py,sha256=FJUyYVE9e2uTFamxtSMKY_VV2stiU2QF68Wl_7EAKEU,2895
|
9
9
|
bayinx/core/_parameter.py,sha256=r20JedTW2lY0miNNh9y6LeIVAsGX1kP_rlGxphW_jZg,1080
|
10
|
-
bayinx/core/_variational.py,sha256=
|
10
|
+
bayinx/core/_variational.py,sha256=X8o81b8vyU7vJxw8pZYH_nxc3u990tRUZgRhMNodNI4,5484
|
11
11
|
bayinx/dists/__init__.py,sha256=9DdPea7HAnBOzaV_4gM5noPX8YCb_p06d8PJvGfFy3Y,118
|
12
12
|
bayinx/dists/bernoulli.py,sha256=xMV9BgtVX_1XkPdZ43q0meMIEkgMyuUPx--dyo6_DKs,1006
|
13
13
|
bayinx/dists/gamma2.py,sha256=MuFudL2UTfk8HgWVofNaR36JTmUpmtxvg1Mifu98MvM,1567
|
@@ -18,7 +18,7 @@ bayinx/dists/censored/__init__.py,sha256=UVihMbQgAzCoOk_Zt5wrumPv5-acuTzV3TYMB-U
|
|
18
18
|
bayinx/dists/censored/gamma2/__init__.py,sha256=GO3jIF1En0ZxYF5JqvC0helLAL6yv8-LG6Ih2NOUYQc,33
|
19
19
|
bayinx/dists/censored/gamma2/r.py,sha256=dKAOYstufwgDwibQZHrJxA1d2gawj-7K3IkaCRCzNTg,2446
|
20
20
|
bayinx/dists/censored/posnormal/__init__.py,sha256=GO3jIF1En0ZxYF5JqvC0helLAL6yv8-LG6Ih2NOUYQc,33
|
21
|
-
bayinx/dists/censored/posnormal/r.py,sha256=
|
21
|
+
bayinx/dists/censored/posnormal/r.py,sha256=Ypi6w_t53pAzRVzjcStx2RhozkAlCDLnQmgKykhpQQ4,3426
|
22
22
|
bayinx/mhx/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
23
23
|
bayinx/mhx/vi/__init__.py,sha256=2woNB5oZxfs8pZCkOfzriGahRFLzkLdkTj8_keTN0I0,205
|
24
24
|
bayinx/mhx/vi/meanfield.py,sha256=Z7kGQAyp5iB8rEdjbwAbVTFH4GwxlTKDZFbdJ-FN5Vs,3739
|
@@ -29,7 +29,7 @@ bayinx/mhx/vi/flows/fullaffine.py,sha256=11y_A0oO3bkKDSz-EQ6Sf4Ec2M7vHZxw94EdvAD
|
|
29
29
|
bayinx/mhx/vi/flows/planar.py,sha256=2I2WzIskl8MRpJkK13FQE3vSF-077qo8gRed_EL1Pn8,1920
|
30
30
|
bayinx/mhx/vi/flows/radial.py,sha256=e0GfuO-CL8SVr3YnEfsxStpyKcJlFpzMyjMp3sa38hg,2503
|
31
31
|
bayinx/mhx/vi/flows/sylvester.py,sha256=ppK0BmS_ThvrCEhJiP_-p-kj67TQHSlU_RUZpDbIhsQ,469
|
32
|
-
bayinx-0.3.
|
33
|
-
bayinx-0.3.
|
34
|
-
bayinx-0.3.
|
35
|
-
bayinx-0.3.
|
32
|
+
bayinx-0.3.10.dist-info/METADATA,sha256=y99n8rNP62ezyDKJSmBQvUQx52WKUEgyHtw3QnnVrvs,3080
|
33
|
+
bayinx-0.3.10.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
34
|
+
bayinx-0.3.10.dist-info/licenses/LICENSE,sha256=VMhLhj5hx6VAENZBaNfXrmsNl7ov9uRh0jZ6D3ltgv4,1070
|
35
|
+
bayinx-0.3.10.dist-info/RECORD,,
|
File without changes
|
File without changes
|