bayinx 0.3.10__py3-none-any.whl → 0.5.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- bayinx/__init__.py +3 -3
- bayinx/constraints/__init__.py +4 -3
- bayinx/constraints/identity.py +26 -0
- bayinx/constraints/interval.py +62 -0
- bayinx/constraints/lower.py +31 -24
- bayinx/constraints/upper.py +57 -0
- bayinx/core/__init__.py +0 -7
- bayinx/core/constraint.py +32 -0
- bayinx/core/context.py +42 -0
- bayinx/core/distribution.py +34 -0
- bayinx/core/flow.py +99 -0
- bayinx/core/model.py +228 -0
- bayinx/core/node.py +201 -0
- bayinx/core/types.py +17 -0
- bayinx/core/utils.py +109 -0
- bayinx/core/variational.py +170 -0
- bayinx/dists/__init__.py +5 -3
- bayinx/dists/bernoulli.py +180 -11
- bayinx/dists/binomial.py +215 -0
- bayinx/dists/exponential.py +211 -0
- bayinx/dists/normal.py +131 -59
- bayinx/dists/poisson.py +203 -0
- bayinx/flows/__init__.py +5 -0
- bayinx/flows/diagaffine.py +120 -0
- bayinx/flows/fullaffine.py +123 -0
- bayinx/flows/lowrankaffine.py +165 -0
- bayinx/flows/planar.py +155 -0
- bayinx/flows/radial.py +1 -0
- bayinx/flows/sylvester.py +225 -0
- bayinx/nodes/__init__.py +3 -0
- bayinx/nodes/continuous.py +64 -0
- bayinx/nodes/observed.py +36 -0
- bayinx/nodes/stochastic.py +25 -0
- bayinx/ops.py +104 -0
- bayinx/posterior.py +220 -0
- bayinx/vi/__init__.py +0 -0
- bayinx/{mhx/vi → vi}/meanfield.py +33 -29
- bayinx/vi/normalizing_flow.py +246 -0
- bayinx/vi/standard.py +95 -0
- bayinx-0.5.3.dist-info/METADATA +93 -0
- bayinx-0.5.3.dist-info/RECORD +44 -0
- {bayinx-0.3.10.dist-info → bayinx-0.5.3.dist-info}/WHEEL +1 -1
- bayinx/core/_constraint.py +0 -28
- bayinx/core/_flow.py +0 -80
- bayinx/core/_model.py +0 -98
- bayinx/core/_parameter.py +0 -44
- bayinx/core/_variational.py +0 -181
- bayinx/dists/censored/__init__.py +0 -3
- bayinx/dists/censored/gamma2/__init__.py +0 -3
- bayinx/dists/censored/gamma2/r.py +0 -68
- bayinx/dists/censored/posnormal/__init__.py +0 -3
- bayinx/dists/censored/posnormal/r.py +0 -116
- bayinx/dists/gamma2.py +0 -49
- bayinx/dists/posnormal.py +0 -260
- bayinx/dists/uniform.py +0 -75
- bayinx/mhx/__init__.py +0 -1
- bayinx/mhx/vi/__init__.py +0 -5
- bayinx/mhx/vi/flows/__init__.py +0 -3
- bayinx/mhx/vi/flows/fullaffine.py +0 -75
- bayinx/mhx/vi/flows/planar.py +0 -74
- bayinx/mhx/vi/flows/radial.py +0 -94
- bayinx/mhx/vi/flows/sylvester.py +0 -19
- bayinx/mhx/vi/normalizing_flow.py +0 -149
- bayinx/mhx/vi/standard.py +0 -63
- bayinx-0.3.10.dist-info/METADATA +0 -39
- bayinx-0.3.10.dist-info/RECORD +0 -35
- /bayinx/{py.typed → flows/otflow.py} +0 -0
- {bayinx-0.3.10.dist-info → bayinx-0.5.3.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,149 +0,0 @@
|
|
|
1
|
-
from typing import Any, Generic, Self, Tuple, TypeVar
|
|
2
|
-
|
|
3
|
-
import equinox as eqx
|
|
4
|
-
import jax.flatten_util as jfu
|
|
5
|
-
import jax.numpy as jnp
|
|
6
|
-
import jax.random as jr
|
|
7
|
-
import jax.tree_util as jtu
|
|
8
|
-
from jaxtyping import Array, Key, Scalar
|
|
9
|
-
|
|
10
|
-
from bayinx.core import Flow, Model, Variational
|
|
11
|
-
|
|
12
|
-
M = TypeVar('M', bound=Model)
|
|
13
|
-
class NormalizingFlow(Variational, Generic[M]):
|
|
14
|
-
"""
|
|
15
|
-
An ordered collection of diffeomorphisms that map a base distribution to a
|
|
16
|
-
normalized approximation of a posterior distribution.
|
|
17
|
-
|
|
18
|
-
# Attributes
|
|
19
|
-
- `base`: A base variational distribution.
|
|
20
|
-
- `flows`: An ordered collection of continuously parameterized diffeomorphisms.
|
|
21
|
-
"""
|
|
22
|
-
|
|
23
|
-
flows: list[Flow]
|
|
24
|
-
base: Variational
|
|
25
|
-
|
|
26
|
-
def __init__(self, base: Variational, flows: list[Flow], model: M):
|
|
27
|
-
"""
|
|
28
|
-
Constructs an unoptimized normalizing flow posterior approximation.
|
|
29
|
-
|
|
30
|
-
# Parameters
|
|
31
|
-
- `base`: The base variational distribution.
|
|
32
|
-
- `flows`: A list of diffeomorphisms.
|
|
33
|
-
- `model`: A probabilistic `Model` object.
|
|
34
|
-
"""
|
|
35
|
-
# Partition model
|
|
36
|
-
params, self._constraints = eqx.partition(model, model.filter_spec)
|
|
37
|
-
|
|
38
|
-
# Flatten params component
|
|
39
|
-
_, self._unflatten = jfu.ravel_pytree(params)
|
|
40
|
-
|
|
41
|
-
self.base = base
|
|
42
|
-
self.flows = flows
|
|
43
|
-
|
|
44
|
-
@property
|
|
45
|
-
@eqx.filter_jit
|
|
46
|
-
def filter_spec(self):
|
|
47
|
-
# Generate empty specification
|
|
48
|
-
filter_spec = jtu.tree_map(lambda _: False, self)
|
|
49
|
-
|
|
50
|
-
# Specify variational parameters based on each flow's filter spec.
|
|
51
|
-
filter_spec = eqx.tree_at(
|
|
52
|
-
lambda vari: vari.flows,
|
|
53
|
-
filter_spec,
|
|
54
|
-
replace=[flow.filter_spec for flow in self.flows],
|
|
55
|
-
)
|
|
56
|
-
|
|
57
|
-
return filter_spec
|
|
58
|
-
|
|
59
|
-
@eqx.filter_jit
|
|
60
|
-
def sample(self, n: int, key: Key = jr.PRNGKey(0)):
|
|
61
|
-
"""
|
|
62
|
-
Sample from the variational distribution `n` times.
|
|
63
|
-
"""
|
|
64
|
-
# Sample from the base distribution
|
|
65
|
-
draws: Array = self.base.sample(n, key)
|
|
66
|
-
|
|
67
|
-
# Apply forward transformations
|
|
68
|
-
for map in self.flows:
|
|
69
|
-
draws = map.forward(draws)
|
|
70
|
-
|
|
71
|
-
return draws
|
|
72
|
-
|
|
73
|
-
@eqx.filter_jit
|
|
74
|
-
def eval(self, draws: Array) -> Array:
|
|
75
|
-
# Evaluate base density
|
|
76
|
-
variational_evals: Array = self.base.eval(draws)
|
|
77
|
-
|
|
78
|
-
for map in self.flows:
|
|
79
|
-
# Compute adjustment
|
|
80
|
-
draws, laj = map.adjust_density(draws)
|
|
81
|
-
|
|
82
|
-
# Adjust variational density
|
|
83
|
-
variational_evals = variational_evals - laj
|
|
84
|
-
|
|
85
|
-
return variational_evals
|
|
86
|
-
|
|
87
|
-
@eqx.filter_jit
|
|
88
|
-
def __eval(self, draws: Array, data=None) -> Tuple[Array, Array]:
|
|
89
|
-
"""
|
|
90
|
-
Evaluate the posterior and variational densities together at the
|
|
91
|
-
transformed `draws` to avoid extra compute.
|
|
92
|
-
|
|
93
|
-
# Parameters
|
|
94
|
-
- `draws`: Draws from the base variational distribution.
|
|
95
|
-
- `data`: Any data required to evaluate the posterior density.
|
|
96
|
-
|
|
97
|
-
# Returns
|
|
98
|
-
The posterior and variational densities as JAX Arrays.
|
|
99
|
-
"""
|
|
100
|
-
# Evaluate base density
|
|
101
|
-
variational_evals: Array = self.base.eval(draws)
|
|
102
|
-
|
|
103
|
-
for map in self.flows:
|
|
104
|
-
# Compute adjustment
|
|
105
|
-
draws, laj = map.adjust_density(draws)
|
|
106
|
-
|
|
107
|
-
# Adjust variational density
|
|
108
|
-
variational_evals = variational_evals - laj
|
|
109
|
-
|
|
110
|
-
# Evaluate posterior at final variational draws
|
|
111
|
-
posterior_evals = self.eval_model(draws, data)
|
|
112
|
-
|
|
113
|
-
return posterior_evals, variational_evals
|
|
114
|
-
|
|
115
|
-
@eqx.filter_jit
|
|
116
|
-
def elbo(self, n: int, key: Key = jr.PRNGKey(0), data: Any = None) -> Scalar:
|
|
117
|
-
dyn, static = eqx.partition(self, self.filter_spec)
|
|
118
|
-
|
|
119
|
-
@eqx.filter_jit
|
|
120
|
-
def elbo(dyn: Self, n: int, key: Key, data: Any = None):
|
|
121
|
-
self = eqx.combine(dyn, static)
|
|
122
|
-
|
|
123
|
-
# Sample draws from variational distribution
|
|
124
|
-
draws: Array = self.base.sample(n, key)
|
|
125
|
-
|
|
126
|
-
posterior_evals, variational_evals = self.__eval(draws, data)
|
|
127
|
-
# Evaluate ELBO
|
|
128
|
-
return jnp.mean(posterior_evals - variational_evals)
|
|
129
|
-
|
|
130
|
-
return elbo(dyn, n, key, data)
|
|
131
|
-
|
|
132
|
-
@eqx.filter_jit
|
|
133
|
-
def elbo_grad(self, n: int, key: Key, data: Any = None) -> Self:
|
|
134
|
-
dyn, static = eqx.partition(self, self.filter_spec)
|
|
135
|
-
|
|
136
|
-
@eqx.filter_grad
|
|
137
|
-
@eqx.filter_jit
|
|
138
|
-
def elbo_grad(dyn: Self, n: int, key: Key, data: Any = None):
|
|
139
|
-
self = eqx.combine(dyn, static)
|
|
140
|
-
|
|
141
|
-
# Sample draws from variational distribution
|
|
142
|
-
draws: Array = self.base.sample(n, key)
|
|
143
|
-
|
|
144
|
-
posterior_evals, variational_evals = self.__eval(draws, data)
|
|
145
|
-
|
|
146
|
-
# Evaluate ELBO
|
|
147
|
-
return jnp.mean(posterior_evals - variational_evals)
|
|
148
|
-
|
|
149
|
-
return elbo_grad(dyn, n, key, data)
|
bayinx/mhx/vi/standard.py
DELETED
|
@@ -1,63 +0,0 @@
|
|
|
1
|
-
|
|
2
|
-
import equinox as eqx
|
|
3
|
-
import jax.numpy as jnp
|
|
4
|
-
import jax.random as jr
|
|
5
|
-
import jax.tree_util as jtu
|
|
6
|
-
from jax.flatten_util import ravel_pytree
|
|
7
|
-
from jaxtyping import Array, Key
|
|
8
|
-
|
|
9
|
-
from bayinx.core._variational import M, Variational
|
|
10
|
-
from bayinx.dists import normal
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
class Standard(Variational[M]):
|
|
14
|
-
"""
|
|
15
|
-
A standard normal approximation to a posterior distribution.
|
|
16
|
-
|
|
17
|
-
# Attributes
|
|
18
|
-
- `dim`: Dimension of the parameter space.
|
|
19
|
-
"""
|
|
20
|
-
dim: int
|
|
21
|
-
|
|
22
|
-
def __init__(self, model: M):
|
|
23
|
-
"""
|
|
24
|
-
Constructs a standard normal approximation to a posterior distribution.
|
|
25
|
-
|
|
26
|
-
# Parameters
|
|
27
|
-
- `model`: A probabilistic `Model` object.
|
|
28
|
-
"""
|
|
29
|
-
# Partition model
|
|
30
|
-
params, self._constraints = eqx.partition(model, model.filter_spec)
|
|
31
|
-
|
|
32
|
-
# Flatten params component
|
|
33
|
-
params, self._unflatten = ravel_pytree(params)
|
|
34
|
-
|
|
35
|
-
# Store dimension of parameter space
|
|
36
|
-
self.dim = jnp.size(params)
|
|
37
|
-
|
|
38
|
-
@eqx.filter_jit
|
|
39
|
-
def sample(self, n: int, key: Key = jr.PRNGKey(0)) -> Array:
|
|
40
|
-
# Sample variational draws
|
|
41
|
-
draws: Array = jr.normal(key=key, shape=(n, self.dim))
|
|
42
|
-
|
|
43
|
-
return draws
|
|
44
|
-
|
|
45
|
-
@eqx.filter_jit
|
|
46
|
-
def eval(self, draws: Array) -> Array:
|
|
47
|
-
return normal.logprob(
|
|
48
|
-
x=draws,
|
|
49
|
-
mu=jnp.array(0.0),
|
|
50
|
-
sigma=jnp.array(1.0),
|
|
51
|
-
).sum(axis=1, keepdims=True)
|
|
52
|
-
|
|
53
|
-
@property
|
|
54
|
-
def filter_spec(self):
|
|
55
|
-
filter_spec = jtu.tree_map(lambda _: False, self)
|
|
56
|
-
|
|
57
|
-
return filter_spec
|
|
58
|
-
|
|
59
|
-
def elbo(self):
|
|
60
|
-
return None
|
|
61
|
-
|
|
62
|
-
def elbo_grad(self):
|
|
63
|
-
return None
|
bayinx-0.3.10.dist-info/METADATA
DELETED
|
@@ -1,39 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: bayinx
|
|
3
|
-
Version: 0.3.10
|
|
4
|
-
Summary: Bayesian Inference with JAX
|
|
5
|
-
License-File: LICENSE
|
|
6
|
-
Requires-Python: >=3.12
|
|
7
|
-
Requires-Dist: equinox>=0.11.12
|
|
8
|
-
Requires-Dist: jax>=0.4.38
|
|
9
|
-
Requires-Dist: jaxtyping>=0.2.36
|
|
10
|
-
Requires-Dist: optax>=0.2.4
|
|
11
|
-
Description-Content-Type: text/markdown
|
|
12
|
-
|
|
13
|
-
# <ins>Bay</ins>esian <ins>In</ins>ference with JA<ins>X</ins>
|
|
14
|
-
|
|
15
|
-
The endgoal of this project is to build a Bayesian inference library that is similar in feel to `Stan`(where you can define a probabilistic model with syntax that is equivalent to how you would write it out on a chalkboard) but allows for arbitrary models(e.g., ones with discrete parameters) and offers a suite of "machinery" to fit the model; this means I want to expand upon `Stan`'s existing toolbox of methods for estimation(point optimization, variational methods, MCMC) while keeping everything performant(hence using `JAX`).
|
|
16
|
-
|
|
17
|
-
In the short-term, I'm going to focus on:
|
|
18
|
-
1) Implementing as much machinery as I feel is enough.
|
|
19
|
-
2) Figuring out how to design the `Model` superclass to have something like the `transformed pars {}` block but unifies transformations and constraints.
|
|
20
|
-
3) Figuring out how to design the library to automatically recognize what kind of machinery is amenable to a given probabilistic model.
|
|
21
|
-
|
|
22
|
-
In the long-term, I'm going to focus on:
|
|
23
|
-
1) How to get `Stan`-like declarative syntax in Python with minimal syntactic overhead(to get as close as possible to statements like `X ~ Normal(mu, 1)`), while also allowing users to work with `target` directly when needed(same as `Stan` does).
|
|
24
|
-
2) How to make working with the posterior as easy as possible.
|
|
25
|
-
- That's a vague goal but practically it means how to easily evaluate statements like $P(\theta \in [-1, 1] | \mathcal{D}, \mathcal{M})$, or set up contrasts and evaluate $P(\mu_1 - \mu_2 > 0 | \mathcal{D}, \mathcal{M})$, or simulate the posterior predictive to generate plots, etc.
|
|
26
|
-
|
|
27
|
-
Although this is somewhat separate from the goals of the project, if this does pan out how I'm invisioning it I'd like an R formula-like syntax to shorten model construction in scenarios where the model is just a GLMM or similar(think `brms`).
|
|
28
|
-
|
|
29
|
-
Additionally, when I get around to it I'd like the package documentation to also include theoretical and implementation details for all machinery implemented(with overthinking boxes because I do like that design from McElreath's book).
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
# TODO
|
|
33
|
-
- Find some way to discern between models with all floating-point parameters and weirder models with integer parameters. Useful for restricting variational methods like `MeanField` to `Model`s that only have floating-point parameters.
|
|
34
|
-
- Look into adaptively tuning ADAM hyperparameters.
|
|
35
|
-
- Control variates for meanfield VI? Look at https://proceedings.mlr.press/v33/ranganath14.html more closely.
|
|
36
|
-
- Low-rank affine flow?
|
|
37
|
-
- https://arxiv.org/pdf/1803.05649 implement sylvester flows.
|
|
38
|
-
- Learn how to generate documentation lol.
|
|
39
|
-
- Figure out how to make transform_pars for flows such that there is no performance loss. Noticing some weird behaviour when adding constraints.
|
bayinx-0.3.10.dist-info/RECORD
DELETED
|
@@ -1,35 +0,0 @@
|
|
|
1
|
-
bayinx/__init__.py,sha256=TM-aoRaPX6jSYtCM7Jv59TPV-H6bcDk1-VMttYP1KME,99
|
|
2
|
-
bayinx/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
|
-
bayinx/constraints/__init__.py,sha256=PiWXZKi7YdbTMKvw-OE5f-t87jJT893uAFrwWWBfOdg,64
|
|
4
|
-
bayinx/constraints/lower.py,sha256=30y0l6PF-tbS9LR_tto9AvwmsvXq1ExU-v8DLrJD4g4,1446
|
|
5
|
-
bayinx/core/__init__.py,sha256=bZvQITgW0DWuPKl3wCLKt6WHKogYKx8Zz36g8z9Aung,253
|
|
6
|
-
bayinx/core/_constraint.py,sha256=Gx07ZT66VE2y-qZCmBDm3_y0wO4xQyslZW10Lec1_lM,761
|
|
7
|
-
bayinx/core/_flow.py,sha256=3q4rKvATnbUpuj4ICUd4lIxu_3z7GRDuNujVhAku1X0,2342
|
|
8
|
-
bayinx/core/_model.py,sha256=FJUyYVE9e2uTFamxtSMKY_VV2stiU2QF68Wl_7EAKEU,2895
|
|
9
|
-
bayinx/core/_parameter.py,sha256=r20JedTW2lY0miNNh9y6LeIVAsGX1kP_rlGxphW_jZg,1080
|
|
10
|
-
bayinx/core/_variational.py,sha256=X8o81b8vyU7vJxw8pZYH_nxc3u990tRUZgRhMNodNI4,5484
|
|
11
|
-
bayinx/dists/__init__.py,sha256=9DdPea7HAnBOzaV_4gM5noPX8YCb_p06d8PJvGfFy3Y,118
|
|
12
|
-
bayinx/dists/bernoulli.py,sha256=xMV9BgtVX_1XkPdZ43q0meMIEkgMyuUPx--dyo6_DKs,1006
|
|
13
|
-
bayinx/dists/gamma2.py,sha256=MuFudL2UTfk8HgWVofNaR36JTmUpmtxvg1Mifu98MvM,1567
|
|
14
|
-
bayinx/dists/normal.py,sha256=Yc2X8F7JoLYwprtK8bA2BPva1tAY7MEs3oSk5pMortI,3822
|
|
15
|
-
bayinx/dists/posnormal.py,sha256=w9plA1EctXwXOiY0doc4ZndjnwptbEZBHHCGdc4gviY,7292
|
|
16
|
-
bayinx/dists/uniform.py,sha256=7XgVvOrzINEFA6HJTYUOFwlWhEtrQQQ1aPJ_ZLOzLEc,2365
|
|
17
|
-
bayinx/dists/censored/__init__.py,sha256=UVihMbQgAzCoOk_Zt5wrumPv5-acuTzV3TYMB-U1gOc,49
|
|
18
|
-
bayinx/dists/censored/gamma2/__init__.py,sha256=GO3jIF1En0ZxYF5JqvC0helLAL6yv8-LG6Ih2NOUYQc,33
|
|
19
|
-
bayinx/dists/censored/gamma2/r.py,sha256=dKAOYstufwgDwibQZHrJxA1d2gawj-7K3IkaCRCzNTg,2446
|
|
20
|
-
bayinx/dists/censored/posnormal/__init__.py,sha256=GO3jIF1En0ZxYF5JqvC0helLAL6yv8-LG6Ih2NOUYQc,33
|
|
21
|
-
bayinx/dists/censored/posnormal/r.py,sha256=Ypi6w_t53pAzRVzjcStx2RhozkAlCDLnQmgKykhpQQ4,3426
|
|
22
|
-
bayinx/mhx/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
23
|
-
bayinx/mhx/vi/__init__.py,sha256=2woNB5oZxfs8pZCkOfzriGahRFLzkLdkTj8_keTN0I0,205
|
|
24
|
-
bayinx/mhx/vi/meanfield.py,sha256=Z7kGQAyp5iB8rEdjbwAbVTFH4GwxlTKDZFbdJ-FN5Vs,3739
|
|
25
|
-
bayinx/mhx/vi/normalizing_flow.py,sha256=8pLMDdZPIt5wlgbhHWSFY1ChSWM9pvSD2bQx3zgz1F8,4710
|
|
26
|
-
bayinx/mhx/vi/standard.py,sha256=W-ZvigJkUpqVlREgiFm9io8ansT1XpZwq5AqSmdv--E,1578
|
|
27
|
-
bayinx/mhx/vi/flows/__init__.py,sha256=Hn0Wqvvyv8Vr-mFmimwgNKCByxj-fjrlIvdR7tUSolg,180
|
|
28
|
-
bayinx/mhx/vi/flows/fullaffine.py,sha256=11y_A0oO3bkKDSz-EQ6Sf4Ec2M7vHZxw94EdvADwVYQ,1954
|
|
29
|
-
bayinx/mhx/vi/flows/planar.py,sha256=2I2WzIskl8MRpJkK13FQE3vSF-077qo8gRed_EL1Pn8,1920
|
|
30
|
-
bayinx/mhx/vi/flows/radial.py,sha256=e0GfuO-CL8SVr3YnEfsxStpyKcJlFpzMyjMp3sa38hg,2503
|
|
31
|
-
bayinx/mhx/vi/flows/sylvester.py,sha256=ppK0BmS_ThvrCEhJiP_-p-kj67TQHSlU_RUZpDbIhsQ,469
|
|
32
|
-
bayinx-0.3.10.dist-info/METADATA,sha256=y99n8rNP62ezyDKJSmBQvUQx52WKUEgyHtw3QnnVrvs,3080
|
|
33
|
-
bayinx-0.3.10.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
34
|
-
bayinx-0.3.10.dist-info/licenses/LICENSE,sha256=VMhLhj5hx6VAENZBaNfXrmsNl7ov9uRh0jZ6D3ltgv4,1070
|
|
35
|
-
bayinx-0.3.10.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|