basilisk-engine 0.1.13__py3-none-any.whl → 0.1.14__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of basilisk-engine might be problematic. Click here for more details.
- basilisk/__init__.py +14 -14
- basilisk/audio/sound.py +27 -27
- basilisk/bsk_assets/cube.obj +48 -48
- basilisk/collisions/broad/broad_aabb.py +102 -102
- basilisk/collisions/broad/broad_bvh.py +137 -137
- basilisk/collisions/collider.py +95 -95
- basilisk/collisions/collider_handler.py +224 -224
- basilisk/collisions/narrow/contact_manifold.py +95 -95
- basilisk/collisions/narrow/dataclasses.py +34 -34
- basilisk/collisions/narrow/deprecated.py +46 -46
- basilisk/collisions/narrow/epa.py +91 -91
- basilisk/collisions/narrow/gjk.py +66 -66
- basilisk/collisions/narrow/graham_scan.py +24 -24
- basilisk/collisions/narrow/helper.py +29 -29
- basilisk/collisions/narrow/line_intersections.py +106 -106
- basilisk/collisions/narrow/sutherland_hodgman.py +75 -75
- basilisk/config.py +2 -2
- basilisk/draw/draw.py +100 -100
- basilisk/draw/draw_handler.py +179 -179
- basilisk/draw/font_renderer.py +28 -28
- basilisk/engine.py +206 -206
- basilisk/generic/abstract_bvh.py +15 -15
- basilisk/generic/abstract_custom.py +133 -133
- basilisk/generic/collisions.py +72 -72
- basilisk/generic/input_validation.py +66 -66
- basilisk/generic/math.py +6 -6
- basilisk/generic/matrices.py +35 -35
- basilisk/generic/meshes.py +72 -72
- basilisk/generic/quat.py +142 -142
- basilisk/generic/quat_methods.py +7 -7
- basilisk/generic/raycast_result.py +27 -24
- basilisk/generic/vec3.py +143 -143
- basilisk/input/mouse.py +61 -61
- basilisk/input/path.py +14 -14
- basilisk/mesh/cube.py +33 -33
- basilisk/mesh/mesh.py +230 -230
- basilisk/mesh/mesh_from_data.py +130 -130
- basilisk/mesh/model.py +271 -271
- basilisk/mesh/narrow_aabb.py +89 -89
- basilisk/mesh/narrow_bvh.py +91 -91
- basilisk/mesh/narrow_primative.py +23 -23
- basilisk/nodes/helper.py +28 -28
- basilisk/nodes/node.py +684 -684
- basilisk/nodes/node_handler.py +95 -95
- basilisk/particles/particle_handler.py +63 -63
- basilisk/particles/particle_renderer.py +87 -87
- basilisk/physics/impulse.py +112 -112
- basilisk/physics/physics_body.py +43 -43
- basilisk/physics/physics_engine.py +35 -35
- basilisk/render/batch.py +105 -105
- basilisk/render/camera.py +211 -211
- basilisk/render/chunk.py +106 -106
- basilisk/render/chunk_handler.py +165 -165
- basilisk/render/frame.py +101 -101
- basilisk/render/framebuffer.py +130 -130
- basilisk/render/image.py +87 -87
- basilisk/render/image_handler.py +122 -122
- basilisk/render/light.py +96 -96
- basilisk/render/light_handler.py +58 -58
- basilisk/render/material.py +219 -219
- basilisk/render/material_handler.py +135 -135
- basilisk/render/post_process.py +132 -132
- basilisk/render/shader.py +110 -110
- basilisk/render/shader_handler.py +79 -79
- basilisk/render/sky.py +120 -120
- basilisk/scene.py +276 -270
- basilisk/shaders/batch.frag +276 -276
- basilisk/shaders/batch.vert +115 -115
- basilisk/shaders/crt.frag +31 -31
- basilisk/shaders/draw.frag +21 -21
- basilisk/shaders/draw.vert +21 -21
- basilisk/shaders/filter.frag +22 -22
- basilisk/shaders/frame.frag +12 -12
- basilisk/shaders/frame.vert +13 -13
- basilisk/shaders/geometry.frag +8 -8
- basilisk/shaders/geometry.vert +41 -41
- basilisk/shaders/normal.frag +59 -59
- basilisk/shaders/normal.vert +96 -96
- basilisk/shaders/particle.frag +71 -71
- basilisk/shaders/particle.vert +84 -84
- basilisk/shaders/sky.frag +9 -9
- basilisk/shaders/sky.vert +13 -13
- {basilisk_engine-0.1.13.dist-info → basilisk_engine-0.1.14.dist-info}/METADATA +45 -38
- basilisk_engine-0.1.14.dist-info/RECORD +103 -0
- {basilisk_engine-0.1.13.dist-info → basilisk_engine-0.1.14.dist-info}/WHEEL +1 -1
- basilisk_engine-0.1.13.dist-info/RECORD +0 -103
- {basilisk_engine-0.1.13.dist-info → basilisk_engine-0.1.14.dist-info}/top_level.txt +0 -0
|
@@ -1,67 +1,67 @@
|
|
|
1
|
-
import glm
|
|
2
|
-
from .helper import get_support_point
|
|
3
|
-
from .dataclasses import SupportPoint
|
|
4
|
-
from ...nodes.node import Node
|
|
5
|
-
from ...generic.math import triple_product
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
def collide_gjk(node1: Node, node2: Node, iterations: int=20) -> tuple: # TODO figure out return data type
|
|
9
|
-
"""
|
|
10
|
-
Determines if two convex polyhedra collide, returns the polytope if there is a collision.
|
|
11
|
-
"""
|
|
12
|
-
# generate starting values
|
|
13
|
-
dir_vec = node1.position.data - node2.position.data
|
|
14
|
-
simplex = [get_support_point(node1, node2, dir_vec)]
|
|
15
|
-
dir_vec = -simplex[0].support_point # set direction to point away from starting simplex point
|
|
16
|
-
|
|
17
|
-
for _ in range(iterations):
|
|
18
|
-
# gets support point and checks if its across the origin
|
|
19
|
-
test_point = get_support_point(node1, node2, dir_vec)
|
|
20
|
-
if glm.dot(test_point.support_point, dir_vec) < -1e-7: return False, simplex
|
|
21
|
-
|
|
22
|
-
# add point and find new direction vector
|
|
23
|
-
simplex.append(test_point)
|
|
24
|
-
check, dir_vec, simplex = handle_simplex(simplex)
|
|
25
|
-
|
|
26
|
-
if check: return True, simplex
|
|
27
|
-
return False, simplex # timeout due to too many checks, usually float errors
|
|
28
|
-
|
|
29
|
-
def handle_simplex(simplex: list[SupportPoint]) -> tuple[bool, glm.vec3, list[tuple[glm.vec3, glm.vec3, glm.vec3]]]:
|
|
30
|
-
"""
|
|
31
|
-
Call proper function based on number of support points
|
|
32
|
-
"""
|
|
33
|
-
num = len(simplex) # not using match case to support Python < 3.10
|
|
34
|
-
if num == 2: return handle_simplex_line(simplex)
|
|
35
|
-
if num == 3: return handle_simplex_triangle(simplex)
|
|
36
|
-
return handle_simplex_tetrahedron(simplex) # simplex must be 4 points
|
|
37
|
-
|
|
38
|
-
def handle_simplex_line(simplex: list[SupportPoint]) -> tuple[bool, glm.vec3, list[tuple[glm.vec3, glm.vec3, glm.vec3]]]:
|
|
39
|
-
"""
|
|
40
|
-
Returns the perpendicular vector to the simplex line
|
|
41
|
-
"""
|
|
42
|
-
vec_ab = simplex[1].support_point - simplex[0].support_point
|
|
43
|
-
return False, triple_product(vec_ab, -simplex[0].support_point, vec_ab), simplex
|
|
44
|
-
|
|
45
|
-
def handle_simplex_triangle(simplex: list[SupportPoint]) -> tuple[bool, glm.vec3, list[tuple[glm.vec3, glm.vec3, glm.vec3]]]:
|
|
46
|
-
"""
|
|
47
|
-
Returns the normal vector of the triangoe pointed towards the origin
|
|
48
|
-
"""
|
|
49
|
-
dir_vec = glm.cross(simplex[1].support_point - simplex[0].support_point, simplex[2].support_point - simplex[0].support_point)
|
|
50
|
-
return False, -dir_vec if glm.dot(dir_vec, -simplex[0].support_point) < 0 else dir_vec, simplex
|
|
51
|
-
|
|
52
|
-
def handle_simplex_tetrahedron(simplex: list[SupportPoint], epsilon: float=0) -> tuple[bool, glm.vec3, list[tuple[glm.vec3, glm.vec3, glm.vec3]]]:
|
|
53
|
-
"""
|
|
54
|
-
Perform collision check and remove support point if no collision is found
|
|
55
|
-
"""
|
|
56
|
-
vec_da = simplex[3].support_point - simplex[0].support_point
|
|
57
|
-
vec_db = simplex[3].support_point - simplex[1].support_point
|
|
58
|
-
vec_dc = simplex[3].support_point - simplex[2].support_point
|
|
59
|
-
vec_do = -simplex[3].support_point
|
|
60
|
-
|
|
61
|
-
vectors = [(glm.cross(vec_da, vec_db), 2), (glm.cross(vec_dc, vec_da), 1), (glm.cross(vec_db, vec_dc), 0)] # TODO determine if this is the best way to do this
|
|
62
|
-
for normal_vec, index in vectors:
|
|
63
|
-
dot_product = glm.dot(normal_vec, vec_do)
|
|
64
|
-
if dot_product > epsilon:
|
|
65
|
-
simplex.pop(index)
|
|
66
|
-
return False, normal_vec, simplex
|
|
1
|
+
import glm
|
|
2
|
+
from .helper import get_support_point
|
|
3
|
+
from .dataclasses import SupportPoint
|
|
4
|
+
from ...nodes.node import Node
|
|
5
|
+
from ...generic.math import triple_product
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def collide_gjk(node1: Node, node2: Node, iterations: int=20) -> tuple: # TODO figure out return data type
|
|
9
|
+
"""
|
|
10
|
+
Determines if two convex polyhedra collide, returns the polytope if there is a collision.
|
|
11
|
+
"""
|
|
12
|
+
# generate starting values
|
|
13
|
+
dir_vec = node1.position.data - node2.position.data
|
|
14
|
+
simplex = [get_support_point(node1, node2, dir_vec)]
|
|
15
|
+
dir_vec = -simplex[0].support_point # set direction to point away from starting simplex point
|
|
16
|
+
|
|
17
|
+
for _ in range(iterations):
|
|
18
|
+
# gets support point and checks if its across the origin
|
|
19
|
+
test_point = get_support_point(node1, node2, dir_vec)
|
|
20
|
+
if glm.dot(test_point.support_point, dir_vec) < -1e-7: return False, simplex
|
|
21
|
+
|
|
22
|
+
# add point and find new direction vector
|
|
23
|
+
simplex.append(test_point)
|
|
24
|
+
check, dir_vec, simplex = handle_simplex(simplex)
|
|
25
|
+
|
|
26
|
+
if check: return True, simplex
|
|
27
|
+
return False, simplex # timeout due to too many checks, usually float errors
|
|
28
|
+
|
|
29
|
+
def handle_simplex(simplex: list[SupportPoint]) -> tuple[bool, glm.vec3, list[tuple[glm.vec3, glm.vec3, glm.vec3]]]:
|
|
30
|
+
"""
|
|
31
|
+
Call proper function based on number of support points
|
|
32
|
+
"""
|
|
33
|
+
num = len(simplex) # not using match case to support Python < 3.10
|
|
34
|
+
if num == 2: return handle_simplex_line(simplex)
|
|
35
|
+
if num == 3: return handle_simplex_triangle(simplex)
|
|
36
|
+
return handle_simplex_tetrahedron(simplex) # simplex must be 4 points
|
|
37
|
+
|
|
38
|
+
def handle_simplex_line(simplex: list[SupportPoint]) -> tuple[bool, glm.vec3, list[tuple[glm.vec3, glm.vec3, glm.vec3]]]:
|
|
39
|
+
"""
|
|
40
|
+
Returns the perpendicular vector to the simplex line
|
|
41
|
+
"""
|
|
42
|
+
vec_ab = simplex[1].support_point - simplex[0].support_point
|
|
43
|
+
return False, triple_product(vec_ab, -simplex[0].support_point, vec_ab), simplex
|
|
44
|
+
|
|
45
|
+
def handle_simplex_triangle(simplex: list[SupportPoint]) -> tuple[bool, glm.vec3, list[tuple[glm.vec3, glm.vec3, glm.vec3]]]:
|
|
46
|
+
"""
|
|
47
|
+
Returns the normal vector of the triangoe pointed towards the origin
|
|
48
|
+
"""
|
|
49
|
+
dir_vec = glm.cross(simplex[1].support_point - simplex[0].support_point, simplex[2].support_point - simplex[0].support_point)
|
|
50
|
+
return False, -dir_vec if glm.dot(dir_vec, -simplex[0].support_point) < 0 else dir_vec, simplex
|
|
51
|
+
|
|
52
|
+
def handle_simplex_tetrahedron(simplex: list[SupportPoint], epsilon: float=0) -> tuple[bool, glm.vec3, list[tuple[glm.vec3, glm.vec3, glm.vec3]]]:
|
|
53
|
+
"""
|
|
54
|
+
Perform collision check and remove support point if no collision is found
|
|
55
|
+
"""
|
|
56
|
+
vec_da = simplex[3].support_point - simplex[0].support_point
|
|
57
|
+
vec_db = simplex[3].support_point - simplex[1].support_point
|
|
58
|
+
vec_dc = simplex[3].support_point - simplex[2].support_point
|
|
59
|
+
vec_do = -simplex[3].support_point
|
|
60
|
+
|
|
61
|
+
vectors = [(glm.cross(vec_da, vec_db), 2), (glm.cross(vec_dc, vec_da), 1), (glm.cross(vec_db, vec_dc), 0)] # TODO determine if this is the best way to do this
|
|
62
|
+
for normal_vec, index in vectors:
|
|
63
|
+
dot_product = glm.dot(normal_vec, vec_do)
|
|
64
|
+
if dot_product > epsilon:
|
|
65
|
+
simplex.pop(index)
|
|
66
|
+
return False, normal_vec, simplex
|
|
67
67
|
return True, None, simplex
|
|
@@ -1,25 +1,25 @@
|
|
|
1
|
-
import glm
|
|
2
|
-
from math import atan2
|
|
3
|
-
from .helper import is_ccw_turn
|
|
4
|
-
|
|
5
|
-
def graham_scan(points:list[glm.vec2]) -> None:
|
|
6
|
-
"""converts list of arbitrary points into polygon sorted ccw"""
|
|
7
|
-
# get pivot point
|
|
8
|
-
pivot = min(points, key=lambda p: (p.y, p.x))
|
|
9
|
-
points.remove(pivot)
|
|
10
|
-
|
|
11
|
-
# sort points by polar angle and start hull
|
|
12
|
-
points = sorted(points, key=lambda p: (get_polar_angle(pivot, p), glm.length(pivot - p)))
|
|
13
|
-
hull = [pivot, points.pop(0)]
|
|
14
|
-
|
|
15
|
-
for point in points:
|
|
16
|
-
while len(hull) > 1 and not is_ccw_turn(hull[-2], hull[-1], point):
|
|
17
|
-
hull.pop()
|
|
18
|
-
hull.append(point)
|
|
19
|
-
|
|
20
|
-
return hull
|
|
21
|
-
|
|
22
|
-
def get_polar_angle(pivot:glm.vec2, point:glm.vec2) -> float:
|
|
23
|
-
"""gets the polar angle between two points from the horizontal"""
|
|
24
|
-
vector = point - pivot
|
|
1
|
+
import glm
|
|
2
|
+
from math import atan2
|
|
3
|
+
from .helper import is_ccw_turn
|
|
4
|
+
|
|
5
|
+
def graham_scan(points:list[glm.vec2]) -> None:
|
|
6
|
+
"""converts list of arbitrary points into polygon sorted ccw"""
|
|
7
|
+
# get pivot point
|
|
8
|
+
pivot = min(points, key=lambda p: (p.y, p.x))
|
|
9
|
+
points.remove(pivot)
|
|
10
|
+
|
|
11
|
+
# sort points by polar angle and start hull
|
|
12
|
+
points = sorted(points, key=lambda p: (get_polar_angle(pivot, p), glm.length(pivot - p)))
|
|
13
|
+
hull = [pivot, points.pop(0)]
|
|
14
|
+
|
|
15
|
+
for point in points:
|
|
16
|
+
while len(hull) > 1 and not is_ccw_turn(hull[-2], hull[-1], point):
|
|
17
|
+
hull.pop()
|
|
18
|
+
hull.append(point)
|
|
19
|
+
|
|
20
|
+
return hull
|
|
21
|
+
|
|
22
|
+
def get_polar_angle(pivot:glm.vec2, point:glm.vec2) -> float:
|
|
23
|
+
"""gets the polar angle between two points from the horizontal"""
|
|
24
|
+
vector = point - pivot
|
|
25
25
|
return atan2(vector.y, vector.x)
|
|
@@ -1,30 +1,30 @@
|
|
|
1
|
-
import glm
|
|
2
|
-
from ...nodes.node import Node
|
|
3
|
-
from .dataclasses import SupportPoint
|
|
4
|
-
|
|
5
|
-
def get_support_point(node1: Node, node2: Node, dir_vec: glm.vec3) -> SupportPoint:
|
|
6
|
-
"""
|
|
7
|
-
Outputs the best support point to be added to the polytop based on the direction vector.
|
|
8
|
-
"""
|
|
9
|
-
vertex1, index1 = get_furthest_point(node1, dir_vec)
|
|
10
|
-
vertex2, index2 = get_furthest_point(node2, -dir_vec)
|
|
11
|
-
return SupportPoint(vertex1 - vertex2, index1, vertex1, index2, vertex2)
|
|
12
|
-
|
|
13
|
-
def get_furthest_point(node: Node, dir_vec: glm.vec3) -> glm.vec3:
|
|
14
|
-
"""
|
|
15
|
-
Determines the furthest point in a given direction
|
|
16
|
-
"""
|
|
17
|
-
# determine furthest point by using untransformed mesh
|
|
18
|
-
node_dir_vec = node.rotation.data * dir_vec # rotate the world space vector to node space
|
|
19
|
-
index = node.collider.mesh.get_best_dot(node_dir_vec)
|
|
20
|
-
vertex = node.collider.mesh.points[index]
|
|
21
|
-
vertex = node.model_matrix * glm.vec4(vertex, 1.0)
|
|
22
|
-
|
|
23
|
-
# transform point to world space
|
|
24
|
-
return glm.vec3(vertex), index
|
|
25
|
-
|
|
26
|
-
def is_ccw_turn(a:glm.vec2, b:glm.vec2, c:glm.vec2) -> bool:
|
|
27
|
-
"""
|
|
28
|
-
Determines if the series of points results in a left hand turn
|
|
29
|
-
"""
|
|
1
|
+
import glm
|
|
2
|
+
from ...nodes.node import Node
|
|
3
|
+
from .dataclasses import SupportPoint
|
|
4
|
+
|
|
5
|
+
def get_support_point(node1: Node, node2: Node, dir_vec: glm.vec3) -> SupportPoint:
|
|
6
|
+
"""
|
|
7
|
+
Outputs the best support point to be added to the polytop based on the direction vector.
|
|
8
|
+
"""
|
|
9
|
+
vertex1, index1 = get_furthest_point(node1, dir_vec)
|
|
10
|
+
vertex2, index2 = get_furthest_point(node2, -dir_vec)
|
|
11
|
+
return SupportPoint(vertex1 - vertex2, index1, vertex1, index2, vertex2)
|
|
12
|
+
|
|
13
|
+
def get_furthest_point(node: Node, dir_vec: glm.vec3) -> glm.vec3:
|
|
14
|
+
"""
|
|
15
|
+
Determines the furthest point in a given direction
|
|
16
|
+
"""
|
|
17
|
+
# determine furthest point by using untransformed mesh
|
|
18
|
+
node_dir_vec = node.rotation.data * dir_vec # rotate the world space vector to node space
|
|
19
|
+
index = node.collider.mesh.get_best_dot(node_dir_vec)
|
|
20
|
+
vertex = node.collider.mesh.points[index]
|
|
21
|
+
vertex = node.model_matrix * glm.vec4(vertex, 1.0)
|
|
22
|
+
|
|
23
|
+
# transform point to world space
|
|
24
|
+
return glm.vec3(vertex), index
|
|
25
|
+
|
|
26
|
+
def is_ccw_turn(a:glm.vec2, b:glm.vec2, c:glm.vec2) -> bool:
|
|
27
|
+
"""
|
|
28
|
+
Determines if the series of points results in a left hand turn
|
|
29
|
+
"""
|
|
30
30
|
return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x) > 0 # TODO check formula
|
|
@@ -1,107 +1,107 @@
|
|
|
1
|
-
import glm
|
|
2
|
-
from .helper import is_ccw_turn
|
|
3
|
-
|
|
4
|
-
# intersectionn algorithms for lines
|
|
5
|
-
def line_line_intersect(points1:list[glm.vec2], points2:list[glm.vec2]) -> list[glm.vec2]:
|
|
6
|
-
"""gets the intersection of 2 2d lines. if the lines are parallel, returns the second line"""
|
|
7
|
-
# orders points from smallest x to greatest x
|
|
8
|
-
points1 = sorted(points1, key=lambda p: (p.x, p.y))
|
|
9
|
-
points2 = sorted(points2, key=lambda p: (p.x, p.y))
|
|
10
|
-
vec1, vec2 = points1[1] - points1[0], points2[1] - points2[0]
|
|
11
|
-
|
|
12
|
-
# if vectors have the same slope return the smallest line
|
|
13
|
-
if have_same_slope(vec1, vec2): return sorted(points1 + points2, key=lambda p: (p.x, p.y))[1:3]
|
|
14
|
-
|
|
15
|
-
# line - line intersection
|
|
16
|
-
det = vec1.x * vec2.y - vec1.y * vec2.x
|
|
17
|
-
if det == 0: return []
|
|
18
|
-
t = (points2[0].x - points1[0].x) * vec2.y - (points2[0].y - points1[0].y) * vec2.x
|
|
19
|
-
t /= det
|
|
20
|
-
return [points1[0] + t * vec1]
|
|
21
|
-
|
|
22
|
-
def have_same_slope(vec1:glm.vec2, vec2:glm.vec2, epsilon:float=1e-5) -> bool:
|
|
23
|
-
"""determines if two vectors moving in the positive x direction have the same slope"""
|
|
24
|
-
return abs(vec1.y * vec2.x - vec2.y * vec1.x) < epsilon
|
|
25
|
-
|
|
26
|
-
def line_poly_intersect(line:list[glm.vec2], polygon:list[glm.vec2]) -> list[glm.vec2]: #TODO Reseach into faster algorithm < O(2n)
|
|
27
|
-
"""computes which parts of the line clip with the polygon"""
|
|
28
|
-
# calculate the center of the polygon
|
|
29
|
-
assert len(polygon) > 2, 'polygon is does not contain engough points'
|
|
30
|
-
center = glm.vec2(0,0)
|
|
31
|
-
for point in polygon: center += point
|
|
32
|
-
center /= len(polygon)
|
|
33
|
-
orig_line = line[:]
|
|
34
|
-
# determine which points are in or out of the polygon
|
|
35
|
-
exterior_points = []
|
|
36
|
-
for i in range(len(polygon)): # nearest even number below n
|
|
37
|
-
for line_point in line[:]:
|
|
38
|
-
if not is_ccw_turn(polygon[i], polygon[(i + 1) % len(polygon)], line_point): # if point is on the outside
|
|
39
|
-
exterior_points.append((polygon[i], polygon[(i + 1) % len(polygon)], line_point)) # polypoint1, polypoint2, linepoint
|
|
40
|
-
line.remove(line_point) # removes line point if it is confirmed to be outside
|
|
41
|
-
|
|
42
|
-
# determine what to with line based on number of points found outside
|
|
43
|
-
if len(exterior_points) == 0:
|
|
44
|
-
return line
|
|
45
|
-
if len(exterior_points) == 1:
|
|
46
|
-
return line_line_intersect(line + [exterior_points[0][2]], exterior_points[0][0:2]) + [line[0]] # [intersecting point, exterior point]
|
|
47
|
-
if len(exterior_points) == 2: # line must intersect with two edges
|
|
48
|
-
points = []
|
|
49
|
-
for i in range(len(polygon)):
|
|
50
|
-
intersection = line_line_intersect(orig_line, [polygon[i], polygon[(i + 1) % len(polygon)]])
|
|
51
|
-
if len(intersection) > 0: points += intersection
|
|
52
|
-
if len(points) > 1: break # exit if two intersections have been found
|
|
53
|
-
else: return [] # fallback if 0 or one intersections found
|
|
54
|
-
return points
|
|
55
|
-
|
|
56
|
-
def closest_two_lines(p1: glm.vec3, q1: glm.vec3, p2: glm.vec3, q2: glm.vec3, epsilon: float=1e-7) -> tuple[glm.vec3, glm.vec3]:
|
|
57
|
-
"""
|
|
58
|
-
Determines the closest point on each line segment to the other line segment.
|
|
59
|
-
"""
|
|
60
|
-
# create direction vector
|
|
61
|
-
d1 = q1 - p1
|
|
62
|
-
d2 = q2 - p2
|
|
63
|
-
r = p1 - p2
|
|
64
|
-
|
|
65
|
-
# get lengths of line segments
|
|
66
|
-
a = glm.dot(d1, d1)
|
|
67
|
-
e = glm.dot(d2, d2)
|
|
68
|
-
f = glm.dot(d2, r)
|
|
69
|
-
|
|
70
|
-
# check if either or both line segment degenerate into points
|
|
71
|
-
if a <= epsilon and e <= epsilon:
|
|
72
|
-
# both segments degenerate
|
|
73
|
-
return p1, p2
|
|
74
|
-
|
|
75
|
-
if a <= epsilon:
|
|
76
|
-
s = 0
|
|
77
|
-
t = glm.clamp(f / e, 0, 1)
|
|
78
|
-
else:
|
|
79
|
-
c = glm.dot(d1, r)
|
|
80
|
-
if e <= epsilon:
|
|
81
|
-
# the second line degenerates to a point
|
|
82
|
-
t = 0
|
|
83
|
-
s = glm.clamp(-c / a, 0, 1)
|
|
84
|
-
else:
|
|
85
|
-
# if neither of them degenerate to a point
|
|
86
|
-
b = glm.dot(d1, d2)
|
|
87
|
-
denom = a * e - b ** 2 # this will always be non-negative
|
|
88
|
-
|
|
89
|
-
# if segments are not parallel, compute closest point from l1 to l2
|
|
90
|
-
s = glm.clamp((b * f - c * e) / denom, 0, 1) if denom else 0
|
|
91
|
-
|
|
92
|
-
# compute closest point from l2 on s1(s)
|
|
93
|
-
t = (b * s + f) / e
|
|
94
|
-
|
|
95
|
-
# if t is not in [0, 1], clamp and recompute s
|
|
96
|
-
if t < 0:
|
|
97
|
-
t = 0
|
|
98
|
-
s = glm.clamp(-c / a, 0, 1)
|
|
99
|
-
elif t > 1:
|
|
100
|
-
t = 1
|
|
101
|
-
s = glm.clamp((b - c) / a, 0, 1)
|
|
102
|
-
|
|
103
|
-
c1 = p1 + d1 * s
|
|
104
|
-
c2 = p2 + d2 * t
|
|
105
|
-
return c1, c2
|
|
106
|
-
|
|
1
|
+
import glm
|
|
2
|
+
from .helper import is_ccw_turn
|
|
3
|
+
|
|
4
|
+
# intersectionn algorithms for lines
|
|
5
|
+
def line_line_intersect(points1:list[glm.vec2], points2:list[glm.vec2]) -> list[glm.vec2]:
|
|
6
|
+
"""gets the intersection of 2 2d lines. if the lines are parallel, returns the second line"""
|
|
7
|
+
# orders points from smallest x to greatest x
|
|
8
|
+
points1 = sorted(points1, key=lambda p: (p.x, p.y))
|
|
9
|
+
points2 = sorted(points2, key=lambda p: (p.x, p.y))
|
|
10
|
+
vec1, vec2 = points1[1] - points1[0], points2[1] - points2[0]
|
|
11
|
+
|
|
12
|
+
# if vectors have the same slope return the smallest line
|
|
13
|
+
if have_same_slope(vec1, vec2): return sorted(points1 + points2, key=lambda p: (p.x, p.y))[1:3]
|
|
14
|
+
|
|
15
|
+
# line - line intersection
|
|
16
|
+
det = vec1.x * vec2.y - vec1.y * vec2.x
|
|
17
|
+
if det == 0: return []
|
|
18
|
+
t = (points2[0].x - points1[0].x) * vec2.y - (points2[0].y - points1[0].y) * vec2.x
|
|
19
|
+
t /= det
|
|
20
|
+
return [points1[0] + t * vec1]
|
|
21
|
+
|
|
22
|
+
def have_same_slope(vec1:glm.vec2, vec2:glm.vec2, epsilon:float=1e-5) -> bool:
|
|
23
|
+
"""determines if two vectors moving in the positive x direction have the same slope"""
|
|
24
|
+
return abs(vec1.y * vec2.x - vec2.y * vec1.x) < epsilon
|
|
25
|
+
|
|
26
|
+
def line_poly_intersect(line:list[glm.vec2], polygon:list[glm.vec2]) -> list[glm.vec2]: #TODO Reseach into faster algorithm < O(2n)
|
|
27
|
+
"""computes which parts of the line clip with the polygon"""
|
|
28
|
+
# calculate the center of the polygon
|
|
29
|
+
assert len(polygon) > 2, 'polygon is does not contain engough points'
|
|
30
|
+
center = glm.vec2(0,0)
|
|
31
|
+
for point in polygon: center += point
|
|
32
|
+
center /= len(polygon)
|
|
33
|
+
orig_line = line[:]
|
|
34
|
+
# determine which points are in or out of the polygon
|
|
35
|
+
exterior_points = []
|
|
36
|
+
for i in range(len(polygon)): # nearest even number below n
|
|
37
|
+
for line_point in line[:]:
|
|
38
|
+
if not is_ccw_turn(polygon[i], polygon[(i + 1) % len(polygon)], line_point): # if point is on the outside
|
|
39
|
+
exterior_points.append((polygon[i], polygon[(i + 1) % len(polygon)], line_point)) # polypoint1, polypoint2, linepoint
|
|
40
|
+
line.remove(line_point) # removes line point if it is confirmed to be outside
|
|
41
|
+
|
|
42
|
+
# determine what to with line based on number of points found outside
|
|
43
|
+
if len(exterior_points) == 0:
|
|
44
|
+
return line
|
|
45
|
+
if len(exterior_points) == 1:
|
|
46
|
+
return line_line_intersect(line + [exterior_points[0][2]], exterior_points[0][0:2]) + [line[0]] # [intersecting point, exterior point]
|
|
47
|
+
if len(exterior_points) == 2: # line must intersect with two edges
|
|
48
|
+
points = []
|
|
49
|
+
for i in range(len(polygon)):
|
|
50
|
+
intersection = line_line_intersect(orig_line, [polygon[i], polygon[(i + 1) % len(polygon)]])
|
|
51
|
+
if len(intersection) > 0: points += intersection
|
|
52
|
+
if len(points) > 1: break # exit if two intersections have been found
|
|
53
|
+
else: return [] # fallback if 0 or one intersections found
|
|
54
|
+
return points
|
|
55
|
+
|
|
56
|
+
def closest_two_lines(p1: glm.vec3, q1: glm.vec3, p2: glm.vec3, q2: glm.vec3, epsilon: float=1e-7) -> tuple[glm.vec3, glm.vec3]:
|
|
57
|
+
"""
|
|
58
|
+
Determines the closest point on each line segment to the other line segment.
|
|
59
|
+
"""
|
|
60
|
+
# create direction vector
|
|
61
|
+
d1 = q1 - p1
|
|
62
|
+
d2 = q2 - p2
|
|
63
|
+
r = p1 - p2
|
|
64
|
+
|
|
65
|
+
# get lengths of line segments
|
|
66
|
+
a = glm.dot(d1, d1)
|
|
67
|
+
e = glm.dot(d2, d2)
|
|
68
|
+
f = glm.dot(d2, r)
|
|
69
|
+
|
|
70
|
+
# check if either or both line segment degenerate into points
|
|
71
|
+
if a <= epsilon and e <= epsilon:
|
|
72
|
+
# both segments degenerate
|
|
73
|
+
return p1, p2
|
|
74
|
+
|
|
75
|
+
if a <= epsilon:
|
|
76
|
+
s = 0
|
|
77
|
+
t = glm.clamp(f / e, 0, 1)
|
|
78
|
+
else:
|
|
79
|
+
c = glm.dot(d1, r)
|
|
80
|
+
if e <= epsilon:
|
|
81
|
+
# the second line degenerates to a point
|
|
82
|
+
t = 0
|
|
83
|
+
s = glm.clamp(-c / a, 0, 1)
|
|
84
|
+
else:
|
|
85
|
+
# if neither of them degenerate to a point
|
|
86
|
+
b = glm.dot(d1, d2)
|
|
87
|
+
denom = a * e - b ** 2 # this will always be non-negative
|
|
88
|
+
|
|
89
|
+
# if segments are not parallel, compute closest point from l1 to l2
|
|
90
|
+
s = glm.clamp((b * f - c * e) / denom, 0, 1) if denom else 0
|
|
91
|
+
|
|
92
|
+
# compute closest point from l2 on s1(s)
|
|
93
|
+
t = (b * s + f) / e
|
|
94
|
+
|
|
95
|
+
# if t is not in [0, 1], clamp and recompute s
|
|
96
|
+
if t < 0:
|
|
97
|
+
t = 0
|
|
98
|
+
s = glm.clamp(-c / a, 0, 1)
|
|
99
|
+
elif t > 1:
|
|
100
|
+
t = 1
|
|
101
|
+
s = glm.clamp((b - c) / a, 0, 1)
|
|
102
|
+
|
|
103
|
+
c1 = p1 + d1 * s
|
|
104
|
+
c2 = p2 + d2 * t
|
|
105
|
+
return c1, c2
|
|
106
|
+
|
|
107
107
|
|
|
@@ -1,76 +1,76 @@
|
|
|
1
|
-
import glm
|
|
2
|
-
from .helper import is_ccw_turn
|
|
3
|
-
from .line_intersections import line_line_intersect
|
|
4
|
-
|
|
5
|
-
def sutherland_hodgman(subject:list[glm.vec2], clip:list[glm.vec2]) -> list[glm.vec2]:
|
|
6
|
-
"""determines the clipped polygon vertices from ccw oriented polygons"""
|
|
7
|
-
output_poly = subject
|
|
8
|
-
|
|
9
|
-
for i in range(len(clip)):
|
|
10
|
-
input_poly = output_poly
|
|
11
|
-
output_poly = []
|
|
12
|
-
|
|
13
|
-
edge_start, edge_end = clip[i], clip[(i + 1) % len(clip)]
|
|
14
|
-
for j in range(len(input_poly)):
|
|
15
|
-
prev_point, curr_point = input_poly[j - 1], input_poly[j]
|
|
16
|
-
|
|
17
|
-
if is_ccw_turn(curr_point, edge_start, edge_end):
|
|
18
|
-
if not is_ccw_turn(prev_point, edge_start, edge_end):
|
|
19
|
-
output_poly += line_line_intersect([edge_end, edge_start], [prev_point, curr_point])
|
|
20
|
-
output_poly.append(curr_point)
|
|
21
|
-
elif is_ccw_turn(prev_point, edge_start, edge_end):
|
|
22
|
-
output_poly += line_line_intersect([edge_end, edge_start], [prev_point, curr_point])
|
|
23
|
-
|
|
24
|
-
return output_poly
|
|
25
|
-
|
|
26
|
-
# def get_intersect(one: glm.vec2, two: glm.vec2, thr: glm.vec2, fou: glm.vec2) -> glm.vec2:
|
|
27
|
-
# """
|
|
28
|
-
# Gets the intersection point between two lines
|
|
29
|
-
# """
|
|
30
|
-
# deno = (one.x - two.x) * (thr.y - fou.y) - (one.y - two.y) * (thr.x - fou.x)
|
|
31
|
-
# if deno == 0: # TODO determine if this happens
|
|
32
|
-
# print('sutherland-hodgman line intersection had zero denominator')
|
|
33
|
-
# return None
|
|
34
|
-
# x_num = (one.x * two.y - one.y * two.x) * (thr.x - fou.x) - (one.x - two.x) * (thr.x * fou.y - thr.y * fou.x)
|
|
35
|
-
# y_num = (one.x * two.y - one.y * two.x) * (thr.y - fou.y) - (one.y - two.y) * (thr.x * fou.y - thr.y * fou.x)
|
|
36
|
-
# return glm.vec2(x_num / deno, y_num / deno)
|
|
37
|
-
|
|
38
|
-
# def clip(poly: list[glm.vec2], one: glm.vec2, two: glm.vec2) -> list[glm.vec2]:
|
|
39
|
-
# """
|
|
40
|
-
# Clip all edges of polygon with one of the clipping edges
|
|
41
|
-
# """
|
|
42
|
-
# num_points = len(poly)
|
|
43
|
-
# new_points = []
|
|
44
|
-
|
|
45
|
-
# for i in range(num_points):
|
|
46
|
-
# k = (i + 1) % num_points
|
|
47
|
-
# veci = poly[i]
|
|
48
|
-
# veck = poly[k]
|
|
49
|
-
|
|
50
|
-
# posi = (two.x - one.x) * (veci.y - one.y) - (two.y - one.y) * (veci.x - one.x)
|
|
51
|
-
# posk = (two.x - one.x) * (veck.y - one.y) - (two.y - one.y) * (veck.x - one.x)
|
|
52
|
-
|
|
53
|
-
# if posi < 0 and posk < 0: new_points.append(veck)
|
|
54
|
-
# elif posi >= 0 and posk < 0:
|
|
55
|
-
|
|
56
|
-
# new_points.append(get_intersect(one, two, veci, veck))
|
|
57
|
-
# new_points.append(veck)
|
|
58
|
-
|
|
59
|
-
# elif posi < 0 and posk >= 0:
|
|
60
|
-
|
|
61
|
-
# new_points.append(get_intersect(one, two, veci, veck))
|
|
62
|
-
|
|
63
|
-
# return new_points
|
|
64
|
-
|
|
65
|
-
# def sutherland_hodgman(subj_poly:list[glm.vec2], clip_poly:list[glm.vec2]) -> list[glm.vec2]:
|
|
66
|
-
# """
|
|
67
|
-
# Determines the clipped polygon vertices from ccw oriented polygons.
|
|
68
|
-
# """
|
|
69
|
-
# num_clip = len(clip_poly)
|
|
70
|
-
|
|
71
|
-
# for i in range(num_clip):
|
|
72
|
-
# k = (i + 1) % num_clip
|
|
73
|
-
|
|
74
|
-
# subj_poly = clip(subj_poly, clip_poly[i], clip_poly[k])
|
|
75
|
-
|
|
1
|
+
import glm
|
|
2
|
+
from .helper import is_ccw_turn
|
|
3
|
+
from .line_intersections import line_line_intersect
|
|
4
|
+
|
|
5
|
+
def sutherland_hodgman(subject:list[glm.vec2], clip:list[glm.vec2]) -> list[glm.vec2]:
|
|
6
|
+
"""determines the clipped polygon vertices from ccw oriented polygons"""
|
|
7
|
+
output_poly = subject
|
|
8
|
+
|
|
9
|
+
for i in range(len(clip)):
|
|
10
|
+
input_poly = output_poly
|
|
11
|
+
output_poly = []
|
|
12
|
+
|
|
13
|
+
edge_start, edge_end = clip[i], clip[(i + 1) % len(clip)]
|
|
14
|
+
for j in range(len(input_poly)):
|
|
15
|
+
prev_point, curr_point = input_poly[j - 1], input_poly[j]
|
|
16
|
+
|
|
17
|
+
if is_ccw_turn(curr_point, edge_start, edge_end):
|
|
18
|
+
if not is_ccw_turn(prev_point, edge_start, edge_end):
|
|
19
|
+
output_poly += line_line_intersect([edge_end, edge_start], [prev_point, curr_point])
|
|
20
|
+
output_poly.append(curr_point)
|
|
21
|
+
elif is_ccw_turn(prev_point, edge_start, edge_end):
|
|
22
|
+
output_poly += line_line_intersect([edge_end, edge_start], [prev_point, curr_point])
|
|
23
|
+
|
|
24
|
+
return output_poly
|
|
25
|
+
|
|
26
|
+
# def get_intersect(one: glm.vec2, two: glm.vec2, thr: glm.vec2, fou: glm.vec2) -> glm.vec2:
|
|
27
|
+
# """
|
|
28
|
+
# Gets the intersection point between two lines
|
|
29
|
+
# """
|
|
30
|
+
# deno = (one.x - two.x) * (thr.y - fou.y) - (one.y - two.y) * (thr.x - fou.x)
|
|
31
|
+
# if deno == 0: # TODO determine if this happens
|
|
32
|
+
# print('sutherland-hodgman line intersection had zero denominator')
|
|
33
|
+
# return None
|
|
34
|
+
# x_num = (one.x * two.y - one.y * two.x) * (thr.x - fou.x) - (one.x - two.x) * (thr.x * fou.y - thr.y * fou.x)
|
|
35
|
+
# y_num = (one.x * two.y - one.y * two.x) * (thr.y - fou.y) - (one.y - two.y) * (thr.x * fou.y - thr.y * fou.x)
|
|
36
|
+
# return glm.vec2(x_num / deno, y_num / deno)
|
|
37
|
+
|
|
38
|
+
# def clip(poly: list[glm.vec2], one: glm.vec2, two: glm.vec2) -> list[glm.vec2]:
|
|
39
|
+
# """
|
|
40
|
+
# Clip all edges of polygon with one of the clipping edges
|
|
41
|
+
# """
|
|
42
|
+
# num_points = len(poly)
|
|
43
|
+
# new_points = []
|
|
44
|
+
|
|
45
|
+
# for i in range(num_points):
|
|
46
|
+
# k = (i + 1) % num_points
|
|
47
|
+
# veci = poly[i]
|
|
48
|
+
# veck = poly[k]
|
|
49
|
+
|
|
50
|
+
# posi = (two.x - one.x) * (veci.y - one.y) - (two.y - one.y) * (veci.x - one.x)
|
|
51
|
+
# posk = (two.x - one.x) * (veck.y - one.y) - (two.y - one.y) * (veck.x - one.x)
|
|
52
|
+
|
|
53
|
+
# if posi < 0 and posk < 0: new_points.append(veck)
|
|
54
|
+
# elif posi >= 0 and posk < 0:
|
|
55
|
+
|
|
56
|
+
# new_points.append(get_intersect(one, two, veci, veck))
|
|
57
|
+
# new_points.append(veck)
|
|
58
|
+
|
|
59
|
+
# elif posi < 0 and posk >= 0:
|
|
60
|
+
|
|
61
|
+
# new_points.append(get_intersect(one, two, veci, veck))
|
|
62
|
+
|
|
63
|
+
# return new_points
|
|
64
|
+
|
|
65
|
+
# def sutherland_hodgman(subj_poly:list[glm.vec2], clip_poly:list[glm.vec2]) -> list[glm.vec2]:
|
|
66
|
+
# """
|
|
67
|
+
# Determines the clipped polygon vertices from ccw oriented polygons.
|
|
68
|
+
# """
|
|
69
|
+
# num_clip = len(clip_poly)
|
|
70
|
+
|
|
71
|
+
# for i in range(num_clip):
|
|
72
|
+
# k = (i + 1) % num_clip
|
|
73
|
+
|
|
74
|
+
# subj_poly = clip(subj_poly, clip_poly[i], clip_poly[k])
|
|
75
|
+
|
|
76
76
|
# return subj_poly
|
basilisk/config.py
CHANGED
|
@@ -1,3 +1,3 @@
|
|
|
1
|
-
class Config():
|
|
2
|
-
def __init__(self) -> None:
|
|
1
|
+
class Config():
|
|
2
|
+
def __init__(self) -> None:
|
|
3
3
|
...
|