bartz 0.5.0__py3-none-any.whl → 0.7.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- bartz/BART.py +582 -279
- bartz/__init__.py +3 -3
- bartz/_version.py +1 -1
- bartz/debug.py +1259 -79
- bartz/grove.py +168 -81
- bartz/jaxext/__init__.py +213 -0
- bartz/jaxext/_autobatch.py +238 -0
- bartz/jaxext/scipy/__init__.py +25 -0
- bartz/jaxext/scipy/special.py +240 -0
- bartz/jaxext/scipy/stats.py +36 -0
- bartz/mcmcloop.py +568 -158
- bartz/mcmcstep.py +1722 -926
- bartz/prepcovars.py +142 -44
- {bartz-0.5.0.dist-info → bartz-0.7.0.dist-info}/METADATA +6 -5
- bartz-0.7.0.dist-info/RECORD +17 -0
- {bartz-0.5.0.dist-info → bartz-0.7.0.dist-info}/WHEEL +1 -1
- bartz/jaxext.py +0 -374
- bartz-0.5.0.dist-info/RECORD +0 -13
|
@@ -0,0 +1,238 @@
|
|
|
1
|
+
# bartz/src/bartz/jaxext/_autobatch.py
|
|
2
|
+
#
|
|
3
|
+
# Copyright (c) 2025, Giacomo Petrillo
|
|
4
|
+
#
|
|
5
|
+
# This file is part of bartz.
|
|
6
|
+
#
|
|
7
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
8
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
9
|
+
# in the Software without restriction, including without limitation the rights
|
|
10
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
11
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
12
|
+
# furnished to do so, subject to the following conditions:
|
|
13
|
+
#
|
|
14
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
15
|
+
# copies or substantial portions of the Software.
|
|
16
|
+
#
|
|
17
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
18
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
19
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
20
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
21
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
22
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
23
|
+
# SOFTWARE.
|
|
24
|
+
|
|
25
|
+
"""Implementation of `autobatch`."""
|
|
26
|
+
|
|
27
|
+
import math
|
|
28
|
+
from collections.abc import Callable
|
|
29
|
+
from functools import wraps
|
|
30
|
+
from warnings import warn
|
|
31
|
+
|
|
32
|
+
from jax import eval_shape, jit
|
|
33
|
+
from jax import numpy as jnp
|
|
34
|
+
from jax.lax import scan
|
|
35
|
+
from jax.tree import flatten as tree_flatten
|
|
36
|
+
from jax.tree import map as tree_map
|
|
37
|
+
from jax.tree import reduce as tree_reduce
|
|
38
|
+
from jaxtyping import PyTree
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def expand_axes(axes, tree):
|
|
42
|
+
"""Expand `axes` such that they match the pytreedef of `tree`."""
|
|
43
|
+
|
|
44
|
+
def expand_axis(axis, subtree):
|
|
45
|
+
return tree_map(lambda _: axis, subtree)
|
|
46
|
+
|
|
47
|
+
return tree_map(expand_axis, axes, tree, is_leaf=lambda x: x is None)
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
def check_no_nones(axes, tree):
|
|
51
|
+
def check_not_none(_, axis):
|
|
52
|
+
assert axis is not None
|
|
53
|
+
|
|
54
|
+
tree_map(check_not_none, tree, axes)
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def extract_size(axes, tree):
|
|
58
|
+
def get_size(x, axis):
|
|
59
|
+
if axis is None:
|
|
60
|
+
return None
|
|
61
|
+
else:
|
|
62
|
+
return x.shape[axis]
|
|
63
|
+
|
|
64
|
+
sizes = tree_map(get_size, tree, axes)
|
|
65
|
+
sizes, _ = tree_flatten(sizes)
|
|
66
|
+
assert all(s == sizes[0] for s in sizes)
|
|
67
|
+
return sizes[0]
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
def sum_nbytes(tree):
|
|
71
|
+
def nbytes(x):
|
|
72
|
+
return math.prod(x.shape) * x.dtype.itemsize
|
|
73
|
+
|
|
74
|
+
return tree_reduce(lambda size, x: size + nbytes(x), tree, 0)
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
def next_divisor_small(dividend, min_divisor):
|
|
78
|
+
for divisor in range(min_divisor, int(math.sqrt(dividend)) + 1):
|
|
79
|
+
if dividend % divisor == 0:
|
|
80
|
+
return divisor
|
|
81
|
+
return dividend
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def next_divisor_large(dividend, min_divisor):
|
|
85
|
+
max_inv_divisor = dividend // min_divisor
|
|
86
|
+
for inv_divisor in range(max_inv_divisor, 0, -1):
|
|
87
|
+
if dividend % inv_divisor == 0:
|
|
88
|
+
return dividend // inv_divisor
|
|
89
|
+
return dividend
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
def next_divisor(dividend, min_divisor):
|
|
93
|
+
if dividend == 0:
|
|
94
|
+
return min_divisor
|
|
95
|
+
if min_divisor * min_divisor <= dividend:
|
|
96
|
+
return next_divisor_small(dividend, min_divisor)
|
|
97
|
+
return next_divisor_large(dividend, min_divisor)
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
def pull_nonbatched(axes, tree):
|
|
101
|
+
def pull_nonbatched(x, axis):
|
|
102
|
+
if axis is None:
|
|
103
|
+
return None
|
|
104
|
+
else:
|
|
105
|
+
return x
|
|
106
|
+
|
|
107
|
+
return tree_map(pull_nonbatched, tree, axes), tree
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
def push_nonbatched(axes, tree, original_tree):
|
|
111
|
+
def push_nonbatched(original_x, x, axis):
|
|
112
|
+
if axis is None:
|
|
113
|
+
return original_x
|
|
114
|
+
else:
|
|
115
|
+
return x
|
|
116
|
+
|
|
117
|
+
return tree_map(push_nonbatched, original_tree, tree, axes)
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
def move_axes_out(axes, tree):
|
|
121
|
+
def move_axis_out(x, axis):
|
|
122
|
+
return jnp.moveaxis(x, axis, 0)
|
|
123
|
+
|
|
124
|
+
return tree_map(move_axis_out, tree, axes)
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
def move_axes_in(axes, tree):
|
|
128
|
+
def move_axis_in(x, axis):
|
|
129
|
+
return jnp.moveaxis(x, 0, axis)
|
|
130
|
+
|
|
131
|
+
return tree_map(move_axis_in, tree, axes)
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
def batch(tree, nbatches):
|
|
135
|
+
def batch(x):
|
|
136
|
+
return x.reshape((nbatches, x.shape[0] // nbatches) + x.shape[1:])
|
|
137
|
+
|
|
138
|
+
return tree_map(batch, tree)
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
def unbatch(tree):
|
|
142
|
+
def unbatch(x):
|
|
143
|
+
return x.reshape((x.shape[0] * x.shape[1],) + x.shape[2:])
|
|
144
|
+
|
|
145
|
+
return tree_map(unbatch, tree)
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
def check_same(tree1, tree2):
|
|
149
|
+
def check_same(x1, x2):
|
|
150
|
+
assert x1.shape == x2.shape
|
|
151
|
+
assert x1.dtype == x2.dtype
|
|
152
|
+
|
|
153
|
+
tree_map(check_same, tree1, tree2)
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
def autobatch(
|
|
157
|
+
func: Callable,
|
|
158
|
+
max_io_nbytes: int,
|
|
159
|
+
in_axes: PyTree[int | None] = 0,
|
|
160
|
+
out_axes: PyTree[int] = 0,
|
|
161
|
+
return_nbatches: bool = False,
|
|
162
|
+
) -> Callable:
|
|
163
|
+
"""
|
|
164
|
+
Batch a function such that each batch is smaller than a threshold.
|
|
165
|
+
|
|
166
|
+
Parameters
|
|
167
|
+
----------
|
|
168
|
+
func
|
|
169
|
+
A jittable function with positional arguments only, with inputs and
|
|
170
|
+
outputs pytrees of arrays.
|
|
171
|
+
max_io_nbytes
|
|
172
|
+
The maximum number of input + output bytes in each batch (excluding
|
|
173
|
+
unbatched arguments.)
|
|
174
|
+
in_axes
|
|
175
|
+
A tree matching (a prefix of) the structure of the function input,
|
|
176
|
+
indicating along which axes each array should be batched. A `None` axis
|
|
177
|
+
indicates to not batch an argument.
|
|
178
|
+
out_axes
|
|
179
|
+
The same for outputs (but non-batching is not allowed).
|
|
180
|
+
return_nbatches
|
|
181
|
+
If True, the number of batches is returned as a second output.
|
|
182
|
+
|
|
183
|
+
Returns
|
|
184
|
+
-------
|
|
185
|
+
A function with the same signature as `func`, save for the return value if `return_nbatches`.
|
|
186
|
+
"""
|
|
187
|
+
initial_in_axes = in_axes
|
|
188
|
+
initial_out_axes = out_axes
|
|
189
|
+
|
|
190
|
+
@jit
|
|
191
|
+
@wraps(func)
|
|
192
|
+
def batched_func(*args):
|
|
193
|
+
example_result = eval_shape(func, *args)
|
|
194
|
+
|
|
195
|
+
in_axes = expand_axes(initial_in_axes, args)
|
|
196
|
+
out_axes = expand_axes(initial_out_axes, example_result)
|
|
197
|
+
check_no_nones(out_axes, example_result)
|
|
198
|
+
|
|
199
|
+
size = extract_size((in_axes, out_axes), (args, example_result))
|
|
200
|
+
|
|
201
|
+
args, nonbatched_args = pull_nonbatched(in_axes, args)
|
|
202
|
+
|
|
203
|
+
total_nbytes = sum_nbytes((args, example_result))
|
|
204
|
+
min_nbatches = total_nbytes // max_io_nbytes + bool(
|
|
205
|
+
total_nbytes % max_io_nbytes
|
|
206
|
+
)
|
|
207
|
+
min_nbatches = max(1, min_nbatches)
|
|
208
|
+
nbatches = next_divisor(size, min_nbatches)
|
|
209
|
+
assert 1 <= nbatches <= max(1, size)
|
|
210
|
+
assert size % nbatches == 0
|
|
211
|
+
assert total_nbytes % nbatches == 0
|
|
212
|
+
|
|
213
|
+
batch_nbytes = total_nbytes // nbatches
|
|
214
|
+
if batch_nbytes > max_io_nbytes:
|
|
215
|
+
assert size == nbatches
|
|
216
|
+
msg = f'batch_nbytes = {batch_nbytes} > max_io_nbytes = {max_io_nbytes}'
|
|
217
|
+
warn(msg)
|
|
218
|
+
|
|
219
|
+
def loop(_, args):
|
|
220
|
+
args = move_axes_in(in_axes, args)
|
|
221
|
+
args = push_nonbatched(in_axes, args, nonbatched_args)
|
|
222
|
+
result = func(*args)
|
|
223
|
+
result = move_axes_out(out_axes, result)
|
|
224
|
+
return None, result
|
|
225
|
+
|
|
226
|
+
args = move_axes_out(in_axes, args)
|
|
227
|
+
args = batch(args, nbatches)
|
|
228
|
+
_, result = scan(loop, None, args)
|
|
229
|
+
result = unbatch(result)
|
|
230
|
+
result = move_axes_in(out_axes, result)
|
|
231
|
+
|
|
232
|
+
check_same(example_result, result)
|
|
233
|
+
|
|
234
|
+
if return_nbatches:
|
|
235
|
+
return result, nbatches
|
|
236
|
+
return result
|
|
237
|
+
|
|
238
|
+
return batched_func
|
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
# bartz/src/bartz/jaxext/scipy/__init__.py
|
|
2
|
+
#
|
|
3
|
+
# Copyright (c) 2025, Giacomo Petrillo
|
|
4
|
+
#
|
|
5
|
+
# This file is part of bartz.
|
|
6
|
+
#
|
|
7
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
8
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
9
|
+
# in the Software without restriction, including without limitation the rights
|
|
10
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
11
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
12
|
+
# furnished to do so, subject to the following conditions:
|
|
13
|
+
#
|
|
14
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
15
|
+
# copies or substantial portions of the Software.
|
|
16
|
+
#
|
|
17
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
18
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
19
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
20
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
21
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
22
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
23
|
+
# SOFTWARE.
|
|
24
|
+
|
|
25
|
+
"""Mockup of the :external:py:mod:`scipy` module."""
|
|
@@ -0,0 +1,240 @@
|
|
|
1
|
+
# bartz/src/bartz/jaxext/scipy/special.py
|
|
2
|
+
#
|
|
3
|
+
# Copyright (c) 2025, Giacomo Petrillo
|
|
4
|
+
#
|
|
5
|
+
# This file is part of bartz.
|
|
6
|
+
#
|
|
7
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
8
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
9
|
+
# in the Software without restriction, including without limitation the rights
|
|
10
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
11
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
12
|
+
# furnished to do so, subject to the following conditions:
|
|
13
|
+
#
|
|
14
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
15
|
+
# copies or substantial portions of the Software.
|
|
16
|
+
#
|
|
17
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
18
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
19
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
20
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
21
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
22
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
23
|
+
# SOFTWARE.
|
|
24
|
+
|
|
25
|
+
"""Mockup of the :external:py:mod:`scipy.special` module."""
|
|
26
|
+
|
|
27
|
+
from functools import wraps
|
|
28
|
+
|
|
29
|
+
from jax import ShapeDtypeStruct, pure_callback
|
|
30
|
+
from jax import numpy as jnp
|
|
31
|
+
from scipy.special import gammainccinv as scipy_gammainccinv
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def _float_type(*args):
|
|
35
|
+
"""Determine the jax floating point result type given operands/types."""
|
|
36
|
+
t = jnp.result_type(*args)
|
|
37
|
+
return jnp.sin(jnp.empty(0, t)).dtype
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def _castto(func, dtype):
|
|
41
|
+
@wraps(func)
|
|
42
|
+
def newfunc(*args, **kw):
|
|
43
|
+
return func(*args, **kw).astype(dtype)
|
|
44
|
+
|
|
45
|
+
return newfunc
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def gammainccinv(a, y):
|
|
49
|
+
"""Survival function inverse of the Gamma(a, 1) distribution."""
|
|
50
|
+
a = jnp.asarray(a)
|
|
51
|
+
y = jnp.asarray(y)
|
|
52
|
+
shape = jnp.broadcast_shapes(a.shape, y.shape)
|
|
53
|
+
dtype = _float_type(a.dtype, y.dtype)
|
|
54
|
+
dummy = ShapeDtypeStruct(shape, dtype)
|
|
55
|
+
ufunc = _castto(scipy_gammainccinv, dtype)
|
|
56
|
+
return pure_callback(ufunc, dummy, a, y, vmap_method='expand_dims')
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
################# COPIED AND ADAPTED FROM JAX ##################
|
|
60
|
+
# Copyright 2018 The JAX Authors.
|
|
61
|
+
#
|
|
62
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
63
|
+
# you may not use this file except in compliance with the License.
|
|
64
|
+
# You may obtain a copy of the License at
|
|
65
|
+
#
|
|
66
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
|
67
|
+
#
|
|
68
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
69
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
70
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
71
|
+
# See the License for the specific language governing permissions and
|
|
72
|
+
# limitations under the License.
|
|
73
|
+
|
|
74
|
+
import numpy as np
|
|
75
|
+
from jax import debug_infs, lax
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def ndtri(p):
|
|
79
|
+
"""Compute the inverse of the CDF of the Normal distribution function.
|
|
80
|
+
|
|
81
|
+
This is a patch of `jax.scipy.special.ndtri`.
|
|
82
|
+
"""
|
|
83
|
+
dtype = lax.dtype(p)
|
|
84
|
+
if dtype not in (jnp.float32, jnp.float64):
|
|
85
|
+
msg = f'x.dtype={dtype} is not supported, see docstring for supported types.'
|
|
86
|
+
raise TypeError(msg)
|
|
87
|
+
return _ndtri(p)
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
def _ndtri(p):
|
|
91
|
+
# Constants used in piece-wise rational approximations. Taken from the cephes
|
|
92
|
+
# library:
|
|
93
|
+
# https://root.cern.ch/doc/v608/SpecFuncCephesInv_8cxx_source.html
|
|
94
|
+
p0 = list(
|
|
95
|
+
reversed(
|
|
96
|
+
[
|
|
97
|
+
-5.99633501014107895267e1,
|
|
98
|
+
9.80010754185999661536e1,
|
|
99
|
+
-5.66762857469070293439e1,
|
|
100
|
+
1.39312609387279679503e1,
|
|
101
|
+
-1.23916583867381258016e0,
|
|
102
|
+
]
|
|
103
|
+
)
|
|
104
|
+
)
|
|
105
|
+
q0 = list(
|
|
106
|
+
reversed(
|
|
107
|
+
[
|
|
108
|
+
1.0,
|
|
109
|
+
1.95448858338141759834e0,
|
|
110
|
+
4.67627912898881538453e0,
|
|
111
|
+
8.63602421390890590575e1,
|
|
112
|
+
-2.25462687854119370527e2,
|
|
113
|
+
2.00260212380060660359e2,
|
|
114
|
+
-8.20372256168333339912e1,
|
|
115
|
+
1.59056225126211695515e1,
|
|
116
|
+
-1.18331621121330003142e0,
|
|
117
|
+
]
|
|
118
|
+
)
|
|
119
|
+
)
|
|
120
|
+
p1 = list(
|
|
121
|
+
reversed(
|
|
122
|
+
[
|
|
123
|
+
4.05544892305962419923e0,
|
|
124
|
+
3.15251094599893866154e1,
|
|
125
|
+
5.71628192246421288162e1,
|
|
126
|
+
4.40805073893200834700e1,
|
|
127
|
+
1.46849561928858024014e1,
|
|
128
|
+
2.18663306850790267539e0,
|
|
129
|
+
-1.40256079171354495875e-1,
|
|
130
|
+
-3.50424626827848203418e-2,
|
|
131
|
+
-8.57456785154685413611e-4,
|
|
132
|
+
]
|
|
133
|
+
)
|
|
134
|
+
)
|
|
135
|
+
q1 = list(
|
|
136
|
+
reversed(
|
|
137
|
+
[
|
|
138
|
+
1.0,
|
|
139
|
+
1.57799883256466749731e1,
|
|
140
|
+
4.53907635128879210584e1,
|
|
141
|
+
4.13172038254672030440e1,
|
|
142
|
+
1.50425385692907503408e1,
|
|
143
|
+
2.50464946208309415979e0,
|
|
144
|
+
-1.42182922854787788574e-1,
|
|
145
|
+
-3.80806407691578277194e-2,
|
|
146
|
+
-9.33259480895457427372e-4,
|
|
147
|
+
]
|
|
148
|
+
)
|
|
149
|
+
)
|
|
150
|
+
p2 = list(
|
|
151
|
+
reversed(
|
|
152
|
+
[
|
|
153
|
+
3.23774891776946035970e0,
|
|
154
|
+
6.91522889068984211695e0,
|
|
155
|
+
3.93881025292474443415e0,
|
|
156
|
+
1.33303460815807542389e0,
|
|
157
|
+
2.01485389549179081538e-1,
|
|
158
|
+
1.23716634817820021358e-2,
|
|
159
|
+
3.01581553508235416007e-4,
|
|
160
|
+
2.65806974686737550832e-6,
|
|
161
|
+
6.23974539184983293730e-9,
|
|
162
|
+
]
|
|
163
|
+
)
|
|
164
|
+
)
|
|
165
|
+
q2 = list(
|
|
166
|
+
reversed(
|
|
167
|
+
[
|
|
168
|
+
1.0,
|
|
169
|
+
6.02427039364742014255e0,
|
|
170
|
+
3.67983563856160859403e0,
|
|
171
|
+
1.37702099489081330271e0,
|
|
172
|
+
2.16236993594496635890e-1,
|
|
173
|
+
1.34204006088543189037e-2,
|
|
174
|
+
3.28014464682127739104e-4,
|
|
175
|
+
2.89247864745380683936e-6,
|
|
176
|
+
6.79019408009981274425e-9,
|
|
177
|
+
]
|
|
178
|
+
)
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
dtype = lax.dtype(p).type
|
|
182
|
+
shape = jnp.shape(p)
|
|
183
|
+
|
|
184
|
+
def _create_polynomial(var, coeffs):
|
|
185
|
+
"""Compute n_th order polynomial via Horner's method."""
|
|
186
|
+
coeffs = np.array(coeffs, dtype)
|
|
187
|
+
if not coeffs.size:
|
|
188
|
+
return jnp.zeros_like(var)
|
|
189
|
+
return coeffs[0] + _create_polynomial(var, coeffs[1:]) * var
|
|
190
|
+
|
|
191
|
+
maybe_complement_p = jnp.where(p > dtype(-np.expm1(-2.0)), dtype(1.0) - p, p)
|
|
192
|
+
# Write in an arbitrary value in place of 0 for p since 0 will cause NaNs
|
|
193
|
+
# later on. The result from the computation when p == 0 is not used so any
|
|
194
|
+
# number that doesn't result in NaNs is fine.
|
|
195
|
+
sanitized_mcp = jnp.where(
|
|
196
|
+
maybe_complement_p == dtype(0.0),
|
|
197
|
+
jnp.full(shape, dtype(0.5)),
|
|
198
|
+
maybe_complement_p,
|
|
199
|
+
)
|
|
200
|
+
|
|
201
|
+
# Compute x for p > exp(-2): x/sqrt(2pi) = w + w**3 P0(w**2)/Q0(w**2).
|
|
202
|
+
w = sanitized_mcp - dtype(0.5)
|
|
203
|
+
ww = lax.square(w)
|
|
204
|
+
x_for_big_p = w + w * ww * (_create_polynomial(ww, p0) / _create_polynomial(ww, q0))
|
|
205
|
+
x_for_big_p *= -dtype(np.sqrt(2.0 * np.pi))
|
|
206
|
+
|
|
207
|
+
# Compute x for p <= exp(-2): x = z - log(z)/z - (1/z) P(1/z) / Q(1/z),
|
|
208
|
+
# where z = sqrt(-2. * log(p)), and P/Q are chosen between two different
|
|
209
|
+
# arrays based on whether p < exp(-32).
|
|
210
|
+
z = lax.sqrt(dtype(-2.0) * lax.log(sanitized_mcp))
|
|
211
|
+
first_term = z - lax.log(z) / z
|
|
212
|
+
second_term_small_p = (
|
|
213
|
+
_create_polynomial(dtype(1.0) / z, p2)
|
|
214
|
+
/ _create_polynomial(dtype(1.0) / z, q2)
|
|
215
|
+
/ z
|
|
216
|
+
)
|
|
217
|
+
second_term_otherwise = (
|
|
218
|
+
_create_polynomial(dtype(1.0) / z, p1)
|
|
219
|
+
/ _create_polynomial(dtype(1.0) / z, q1)
|
|
220
|
+
/ z
|
|
221
|
+
)
|
|
222
|
+
x_for_small_p = first_term - second_term_small_p
|
|
223
|
+
x_otherwise = first_term - second_term_otherwise
|
|
224
|
+
|
|
225
|
+
x = jnp.where(
|
|
226
|
+
sanitized_mcp > dtype(np.exp(-2.0)),
|
|
227
|
+
x_for_big_p,
|
|
228
|
+
jnp.where(z >= dtype(8.0), x_for_small_p, x_otherwise),
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
x = jnp.where(p > dtype(1.0 - np.exp(-2.0)), x, -x)
|
|
232
|
+
with debug_infs(False):
|
|
233
|
+
infinity = jnp.full(shape, dtype(np.inf))
|
|
234
|
+
neg_infinity = -infinity
|
|
235
|
+
return jnp.where(
|
|
236
|
+
p == dtype(0.0), neg_infinity, jnp.where(p == dtype(1.0), infinity, x)
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
|
|
240
|
+
################################################################
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
# bartz/src/bartz/jaxext/scipy/stats.py
|
|
2
|
+
#
|
|
3
|
+
# Copyright (c) 2025, Giacomo Petrillo
|
|
4
|
+
#
|
|
5
|
+
# This file is part of bartz.
|
|
6
|
+
#
|
|
7
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
8
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
9
|
+
# in the Software without restriction, including without limitation the rights
|
|
10
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
11
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
12
|
+
# furnished to do so, subject to the following conditions:
|
|
13
|
+
#
|
|
14
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
15
|
+
# copies or substantial portions of the Software.
|
|
16
|
+
#
|
|
17
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
18
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
19
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
20
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
21
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
22
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
23
|
+
# SOFTWARE.
|
|
24
|
+
|
|
25
|
+
"""Mockup of the :external:py:mod:`scipy.stats` module."""
|
|
26
|
+
|
|
27
|
+
from bartz.jaxext.scipy.special import gammainccinv
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class invgamma:
|
|
31
|
+
"""Class that represents the distribution InvGamma(a, 1)."""
|
|
32
|
+
|
|
33
|
+
@staticmethod
|
|
34
|
+
def ppf(q, a):
|
|
35
|
+
"""Percentile point function."""
|
|
36
|
+
return 1 / gammainccinv(a, q)
|