bartz 0.3.0__py3-none-any.whl → 0.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,52 @@
1
+ Metadata-Version: 2.3
2
+ Name: bartz
3
+ Version: 0.4.1
4
+ Summary: Super-fast BART (Bayesian Additive Regression Trees) in Python
5
+ License: MIT
6
+ Author: Giacomo Petrillo
7
+ Author-email: info@giacomopetrillo.com
8
+ Requires-Python: >=3.10
9
+ Classifier: License :: OSI Approved :: MIT License
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Programming Language :: Python :: 3.10
12
+ Classifier: Programming Language :: Python :: 3.11
13
+ Classifier: Programming Language :: Python :: 3.12
14
+ Classifier: Programming Language :: Python :: 3.13
15
+ Requires-Dist: jax (>=0.4.35,<1)
16
+ Requires-Dist: jaxlib (>=0.4.35,<1)
17
+ Requires-Dist: numpy (>=1.25.2,<3)
18
+ Requires-Dist: scipy (>=1.11.4,<2)
19
+ Project-URL: Bug Tracker, https://github.com/Gattocrucco/bartz/issues
20
+ Description-Content-Type: text/markdown
21
+
22
+ [![PyPI](https://img.shields.io/pypi/v/bartz)](https://pypi.org/project/bartz/)
23
+ [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.13931477.svg)](https://doi.org/10.5281/zenodo.13931477)
24
+
25
+ # BART vectoriZed
26
+
27
+ An implementation of Bayesian Additive Regression Trees (BART) in JAX.
28
+
29
+ If you don't know what BART is, but know XGBoost, consider BART as a sort of Bayesian XGBoost. bartz makes BART run as fast as XGBoost.
30
+
31
+ BART is a nonparametric Bayesian regression technique. Given training predictors $X$ and responses $y$, BART finds a function to predict $y$ given $X$. The result of the inference is a sample of possible functions, representing the uncertainty over the determination of the function.
32
+
33
+ This Python module provides an implementation of BART that runs on GPU, to process large datasets faster. It is also good on CPU. Most other implementations of BART are for R, and run on CPU only.
34
+
35
+ On CPU, bartz runs at the speed of dbarts (the fastest implementation I know of) if n > 20,000, but using 1/20 of the memory. On GPU, the speed premium depends on sample size; it is convenient over CPU only for n > 10,000. The maximum speedup is currently 200x, on an Nvidia A100 and with at least 2,000,000 observations.
36
+
37
+ [This Colab notebook](https://colab.research.google.com/github/Gattocrucco/bartz/blob/main/docs/examples/basic_simdata.ipynb) runs bartz with n = 100,000 observations, p = 1000 predictors, 10,000 trees, for 1000 MCMC iterations, in 5 minutes.
38
+
39
+ ## Links
40
+
41
+ - [Documentation (latest release)](https://gattocrucco.github.io/bartz/docs)
42
+ - [Documentation (development version)](https://gattocrucco.github.io/bartz/docs-dev)
43
+ - [Repository](https://github.com/Gattocrucco/bartz)
44
+ - [Code coverage](https://gattocrucco.github.io/bartz/coverage)
45
+ - [List of BART packages](https://gattocrucco.github.io/bartz/docs-dev/pkglist.html)
46
+
47
+ ## Citing bartz
48
+
49
+ Article: Petrillo (2024), "Very fast Bayesian Additive Regression Trees on GPU", [arXiv:2410.23244](https://arxiv.org/abs/2410.23244).
50
+
51
+ To cite the software directly, including the specific version, use [zenodo](https://doi.org/10.5281/zenodo.13931477).
52
+
@@ -0,0 +1,13 @@
1
+ bartz/BART.py,sha256=CbGzFWtYw5u38Z9-Hy3CbDXpKOOvPFAAkSqu2HZl8no,16862
2
+ bartz/__init__.py,sha256=CcWbDdelQoObG4MW7_jit0Y9fQumU2_Yv3LYtBi1Ag8,1480
3
+ bartz/_version.py,sha256=qBs4HqYsPn6yUHWEuCN4rGUC05gABbl800d8LBd8h9w,22
4
+ bartz/debug.py,sha256=9ZH-JfwZVu5OPhHBEyXQHAU5H9KIu1vxLK7yNv4m4Ew,5314
5
+ bartz/grove.py,sha256=x_6NK_l-hrXfy1PhssYNJkX41-w_WqjDziww0E7YRS8,8500
6
+ bartz/jaxext.py,sha256=UiAHw6pQMz8rjtn_JChFAIdPgUF393S5m-Dduyndnbo,11409
7
+ bartz/mcmcloop.py,sha256=lKDszvniNXka99X3e9RCrTgvEAZHA7ZbVXEgxUYvKMY,7634
8
+ bartz/mcmcstep.py,sha256=diI9vHXHMvu_Lk_bSJ-a038OnEbXDpNEikVPhRcxEys,54987
9
+ bartz/prepcovars.py,sha256=mMgfL-LGJ_8QpOL6iy7yfkL8A7FrT7Zfn5M3voyNwSQ,5818
10
+ bartz-0.4.1.dist-info/LICENSE,sha256=heuIJZQK9IexJYC-fYHoLUrgj8HG8yS3G072EvKh-94,1073
11
+ bartz-0.4.1.dist-info/METADATA,sha256=nOOpuP_b-eAJSR1sgyzJaGK4I1iuEWVFMJ9D3JMkY5M,2890
12
+ bartz-0.4.1.dist-info/WHEEL,sha256=fGIA9gx4Qxk2KDKeNJCbOEwSrmLtjWCwzBz351GyrPQ,88
13
+ bartz-0.4.1.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 1.9.0
2
+ Generator: poetry-core 2.1.2
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -1,77 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: bartz
3
- Version: 0.3.0
4
- Summary: A JAX implementation of BART
5
- Home-page: https://github.com/Gattocrucco/bartz
6
- License: MIT
7
- Author: Giacomo Petrillo
8
- Author-email: info@giacomopetrillo.com
9
- Requires-Python: >=3.10,<4.0
10
- Classifier: License :: OSI Approved :: MIT License
11
- Classifier: Programming Language :: Python :: 3
12
- Classifier: Programming Language :: Python :: 3.10
13
- Classifier: Programming Language :: Python :: 3.11
14
- Classifier: Programming Language :: Python :: 3.12
15
- Requires-Dist: jax (>=0.4.23,<0.5.0)
16
- Requires-Dist: jaxlib (>=0.4.23,<0.5.0)
17
- Requires-Dist: numpy (>=1.25.2,<2.0.0)
18
- Requires-Dist: scipy (>=1.11.4,<2.0.0)
19
- Project-URL: Bug Tracker, https://github.com/Gattocrucco/bartz/issues
20
- Project-URL: Repository, https://github.com/Gattocrucco/bartz
21
- Description-Content-Type: text/markdown
22
-
23
- [![PyPI](https://img.shields.io/pypi/v/bartz)](https://pypi.org/project/bartz/)
24
-
25
- # BART vectoriZed
26
-
27
- A branchless vectorized implementation of Bayesian Additive Regression Trees (BART) in JAX.
28
-
29
- BART is a nonparametric Bayesian regression technique. Given predictors $X$ and responses $y$, BART finds a function to predict $y$ given $X$. The result of the inference is a sample of possible functions, representing the uncertainty over the determination of the function.
30
-
31
- This Python module provides an implementation of BART that runs on GPU, to process large datasets faster. It is also good on CPU. Most other implementations of BART are for R, and run on CPU only.
32
-
33
- On CPU, bartz runs at the speed of dbarts (the fastest implementation I know of), but using half the memory. On GPU, the speed premium depends on sample size; with 50000 datapoints and 5000 trees, on an Nvidia Tesla V100 GPU it's 12 times faster than an Apple M1 CPU, and this factor is linearly proportional to the number of datapoints.
34
-
35
- ## Links
36
-
37
- - [Documentation (latest release)](https://gattocrucco.github.io/bartz/docs)
38
- - [Documentation (development version)](https://gattocrucco.github.io/bartz/docs-dev)
39
- - [Repository](https://github.com/Gattocrucco/bartz)
40
- - [Code coverage](https://gattocrucco.github.io/bartz/coverage)
41
-
42
- ## Other BART packages
43
-
44
- - [stochtree](https://github.com/StochasticTree) C++ library with R and Python bindings taylored to researchers who want to make their own BART variants
45
- - [bnptools](https://github.com/rsparapa/bnptools) Feature-rich R packages for BART and some variants
46
- - [dbarts](https://github.com/vdorie/dbarts) Fast R package
47
- - [bartMachine](https://github.com/kapelner/bartMachine) Fast R package, supports missing predictors imputation
48
- - [SoftBART](https://github.com/theodds/SoftBART) R package with a smooth version of BART
49
- - [bcf](https://github.com/jaredsmurray/bcf) R package for a version of BART for causal inference
50
- - [flexBART](https://github.com/skdeshpande91/flexBART) Fast R package, supports categorical predictors
51
- - [flexBCF](https://github.com/skdeshpande91/flexBCF) R package, version of bcf optimized for large datasets
52
- - [XBART](https://github.com/JingyuHe/XBART) R/Python package, XBART is a faster variant of BART
53
- - [BART](https://github.com/JingyuHe/BART) R package, BART warm-started with XBART
54
- - [XBCF](https://github.com/socket778/XBCF)
55
- - [BayesTree](https://cran.r-project.org/package=BayesTree) R package, original BART implementation
56
- - [bartCause](https://github.com/vdorie/bartCause) R package, pre-made BART-based workflows for causal inference
57
- - [stan4bart](https://github.com/vdorie/stan4bart)
58
- - [VCBART](https://github.com/skdeshpande91/VCBART)
59
- - [monbart](https://github.com/jaredsmurray/monbart)
60
- - [mBART](https://github.com/remcc/mBART_shlib)
61
- - [SequentialBART](https://github.com/mjdaniels/SequentialBART)
62
- - [sparseBART](https://github.com/cspanbauer/sparseBART)
63
- - [pymc-bart](https://github.com/pymc-devs/pymc-bart)
64
- - [semibart](https://github.com/zeldow/semibart)
65
- - [CSP-BART](https://github.com/ebprado/CSP-BART)
66
- - [AMBARTI](https://github.com/ebprado/AMBARTI)
67
- - [MOTR-BART](https://github.com/ebprado/MOTR-BART)
68
- - [bcfbma](https://github.com/EoghanONeill/bcfbma)
69
- - [bartBMAnew](https://github.com/EoghanONeill/bartBMAnew)
70
- - [BART-BMA](https://github.com/BelindaHernandez/BART-BMA) (superseded by bartBMAnew)
71
- - [gpbart](https://github.com/MateusMaiaDS/gpbart)
72
- - [GPBART](https://github.com/nchenderson/GPBART)
73
- - [bartpy](https://github.com/JakeColtman/bartpy)
74
- - [BayesTreePrior](https://github.com/AlexiaJM/BayesTreePrior)
75
- - [BayesTree.jl](https://github.com/mathcg/BayesTree.jl)
76
- - [longbet](https://github.com/google/longbet)
77
-
@@ -1,13 +0,0 @@
1
- bartz/BART.py,sha256=CbGzFWtYw5u38Z9-Hy3CbDXpKOOvPFAAkSqu2HZl8no,16862
2
- bartz/__init__.py,sha256=E96vsP0bZ8brejpZmEmRoXuMsUdinO_B_SKUUl1rLsg,1448
3
- bartz/_version.py,sha256=3wVEs2QD_7OcTlD97cZdCeizd2hUbJJ0GeIO8wQIjrk,22
4
- bartz/debug.py,sha256=9ZH-JfwZVu5OPhHBEyXQHAU5H9KIu1vxLK7yNv4m4Ew,5314
5
- bartz/grove.py,sha256=x_6NK_l-hrXfy1PhssYNJkX41-w_WqjDziww0E7YRS8,8500
6
- bartz/jaxext.py,sha256=RcVWTCGS8lXF7GBsNbKrpuA4MTcokItq0CpWm3s7CGk,12033
7
- bartz/mcmcloop.py,sha256=lKDszvniNXka99X3e9RCrTgvEAZHA7ZbVXEgxUYvKMY,7634
8
- bartz/mcmcstep.py,sha256=HPcxfl5f-OESZul-iurn0JmOnUJBe6IYTVaATeR6YBA,54221
9
- bartz/prepcovars.py,sha256=mMgfL-LGJ_8QpOL6iy7yfkL8A7FrT7Zfn5M3voyNwSQ,5818
10
- bartz-0.3.0.dist-info/LICENSE,sha256=heuIJZQK9IexJYC-fYHoLUrgj8HG8yS3G072EvKh-94,1073
11
- bartz-0.3.0.dist-info/METADATA,sha256=ymZNoowDdqQFyAJdeKKj6t7h8_eBXQr2cVPglyoYLDQ,4500
12
- bartz-0.3.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
13
- bartz-0.3.0.dist-info/RECORD,,
File without changes