bartz 0.0.1__py3-none-any.whl → 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- bartz/__init__.py +1 -1
- bartz/_version.py +1 -0
- bartz/debug.py +5 -19
- bartz/grove.py +71 -118
- bartz/interface.py +6 -15
- bartz/mcmcloop.py +12 -6
- bartz/mcmcstep.py +379 -427
- {bartz-0.0.1.dist-info → bartz-0.1.0.dist-info}/METADATA +1 -1
- bartz-0.1.0.dist-info/RECORD +13 -0
- bartz-0.0.1.dist-info/RECORD +0 -12
- {bartz-0.0.1.dist-info → bartz-0.1.0.dist-info}/LICENSE +0 -0
- {bartz-0.0.1.dist-info → bartz-0.1.0.dist-info}/WHEEL +0 -0
bartz/__init__.py
CHANGED
bartz/_version.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
__version__ = '0.1.0'
|
bartz/debug.py
CHANGED
|
@@ -7,22 +7,6 @@ from jax import lax
|
|
|
7
7
|
from . import grove
|
|
8
8
|
from . import mcmcstep
|
|
9
9
|
|
|
10
|
-
def trace_evaluate_trees(bart, X):
|
|
11
|
-
"""
|
|
12
|
-
Evaluate all trees, for all samples, at all x. Out axes:
|
|
13
|
-
0: mcmc sample
|
|
14
|
-
1: tree
|
|
15
|
-
2: X
|
|
16
|
-
"""
|
|
17
|
-
def loop(_, bart):
|
|
18
|
-
return None, evaluate_all_trees(X, bart['leaf_trees'], bart['var_trees'], bart['split_trees'])
|
|
19
|
-
_, y = lax.scan(loop, None, bart)
|
|
20
|
-
return y
|
|
21
|
-
|
|
22
|
-
@functools.partial(jax.vmap, in_axes=(None, 0, 0, 0)) # vectorize over forest
|
|
23
|
-
def evaluate_all_trees(X, leaf_trees, var_trees, split_trees):
|
|
24
|
-
return grove.evaluate_tree_vmap_x(X, leaf_trees, var_trees, split_trees, jnp.float32)
|
|
25
|
-
|
|
26
10
|
def print_tree(leaf_tree, var_tree, split_tree, print_all=False):
|
|
27
11
|
|
|
28
12
|
tee = '├──'
|
|
@@ -97,8 +81,10 @@ def trace_depth_distr(split_trees_trace):
|
|
|
97
81
|
return jax.vmap(forest_depth_distr)(split_trees_trace)
|
|
98
82
|
|
|
99
83
|
def points_per_leaf_distr(var_tree, split_tree, X):
|
|
100
|
-
|
|
101
|
-
|
|
84
|
+
traverse_tree = jax.vmap(grove.traverse_tree, in_axes=(1, None, None))
|
|
85
|
+
indices = traverse_tree(X, var_tree, split_tree)
|
|
86
|
+
count_tree = jnp.zeros(2 * split_tree.size, dtype=grove.minimal_unsigned_dtype(indices.size))
|
|
87
|
+
count_tree = count_tree.at[indices].add(1)
|
|
102
88
|
is_leaf = grove.is_actual_leaf(split_tree, add_bottom_level=True).view(jnp.uint8)
|
|
103
89
|
return jnp.bincount(count_tree, is_leaf, length=X.shape[1] + 1)
|
|
104
90
|
|
|
@@ -125,7 +111,7 @@ def check_sizes(leaf_tree, var_tree, split_tree, max_split):
|
|
|
125
111
|
return leaf_tree.size == 2 * var_tree.size == 2 * split_tree.size
|
|
126
112
|
|
|
127
113
|
def check_unused_node(leaf_tree, var_tree, split_tree, max_split):
|
|
128
|
-
return (
|
|
114
|
+
return (var_tree[0] == 0) & (split_tree[0] == 0)
|
|
129
115
|
|
|
130
116
|
def check_leaf_values(leaf_tree, var_tree, split_tree, max_split):
|
|
131
117
|
return jnp.all(jnp.isfinite(leaf_tree))
|
bartz/grove.py
CHANGED
|
@@ -28,13 +28,15 @@ Functions to create and manipulate binary trees.
|
|
|
28
28
|
|
|
29
29
|
A tree is represented with arrays as a heap. The root node is at index 1. The children nodes of a node at index :math:`i` are at indices :math:`2i` (left child) and :math:`2i + 1` (right child). The array element at index 0 is unused.
|
|
30
30
|
|
|
31
|
-
A decision tree is represented by tree arrays: 'leaf', 'var', and 'split'.
|
|
31
|
+
A decision tree is represented by tree arrays: 'leaf', 'var', and 'split'.
|
|
32
32
|
|
|
33
|
-
|
|
33
|
+
The 'leaf' array contains the values in the leaves.
|
|
34
34
|
|
|
35
|
-
|
|
35
|
+
The 'var' array contains the axes along which the decision nodes operate.
|
|
36
|
+
|
|
37
|
+
The 'split' array contains the decision boundaries. The boundaries are open on the right, i.e., a point belongs to the left child iff x < split. Whether a node is a leaf is indicated by the corresponding 'split' element being 0.
|
|
36
38
|
|
|
37
|
-
|
|
39
|
+
Since the nodes at the bottom can only be leaves and not decision nodes, the 'var' and 'split' arrays have half the length of the 'leaf' array.
|
|
38
40
|
|
|
39
41
|
"""
|
|
40
42
|
|
|
@@ -42,6 +44,7 @@ import functools
|
|
|
42
44
|
import math
|
|
43
45
|
|
|
44
46
|
import jax
|
|
47
|
+
|
|
45
48
|
from jax import numpy as jnp
|
|
46
49
|
from jax import lax
|
|
47
50
|
|
|
@@ -63,24 +66,18 @@ def make_tree(depth, dtype):
|
|
|
63
66
|
-------
|
|
64
67
|
tree : array
|
|
65
68
|
An array of zeroes with shape (2 ** depth,).
|
|
66
|
-
|
|
67
|
-
Notes
|
|
68
|
-
-----
|
|
69
|
-
The tree is represented as a heap, with the root node at index 1, and the
|
|
70
|
-
children of the node at index i at indices 2 * i and 2 * i + 1. The element
|
|
71
|
-
at index 0 is unused.
|
|
72
69
|
"""
|
|
73
70
|
return jnp.zeros(2 ** depth, dtype)
|
|
74
71
|
|
|
75
72
|
def tree_depth(tree):
|
|
76
73
|
"""
|
|
77
|
-
Return the maximum depth of a
|
|
74
|
+
Return the maximum depth of a tree.
|
|
78
75
|
|
|
79
76
|
Parameters
|
|
80
77
|
----------
|
|
81
78
|
tree : array
|
|
82
|
-
A
|
|
83
|
-
|
|
79
|
+
A tree created by `make_tree`. If the array is ND, the tree structure is
|
|
80
|
+
assumed to be along the last axis.
|
|
84
81
|
|
|
85
82
|
Returns
|
|
86
83
|
-------
|
|
@@ -89,120 +86,97 @@ def tree_depth(tree):
|
|
|
89
86
|
"""
|
|
90
87
|
return int(round(math.log2(tree.shape[-1])))
|
|
91
88
|
|
|
92
|
-
def
|
|
89
|
+
def traverse_tree(x, var_tree, split_tree):
|
|
93
90
|
"""
|
|
94
|
-
|
|
91
|
+
Find the leaf where a point falls into.
|
|
95
92
|
|
|
96
93
|
Parameters
|
|
97
94
|
----------
|
|
98
|
-
|
|
95
|
+
x : array (p,)
|
|
99
96
|
The coordinates to evaluate the tree at.
|
|
100
|
-
|
|
101
|
-
The
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
The variable indices of the tree or forest. Each index is in [0, p) and
|
|
105
|
-
indicates which value of `X` to consider.
|
|
106
|
-
split_trees : array (n,) or (m, n)
|
|
107
|
-
The split values of the tree or forest. Leaf nodes are indicated by the
|
|
108
|
-
condition `split == 0`. If non-zero, the node has children, and its left
|
|
109
|
-
children is assigned points which satisfy `x < split`.
|
|
110
|
-
out_dtype : dtype
|
|
111
|
-
The dtype of the output.
|
|
97
|
+
var_tree : array (2 ** (d - 1),)
|
|
98
|
+
The decision axes of the tree.
|
|
99
|
+
split_tree : array (2 ** (d - 1),)
|
|
100
|
+
The decision boundaries of the tree.
|
|
112
101
|
|
|
113
102
|
Returns
|
|
114
103
|
-------
|
|
115
|
-
|
|
116
|
-
The
|
|
104
|
+
index : int
|
|
105
|
+
The index of the leaf.
|
|
117
106
|
"""
|
|
118
107
|
|
|
119
|
-
is_forest = leaf_trees.ndim == 2
|
|
120
|
-
if is_forest:
|
|
121
|
-
m, _ = leaf_trees.shape
|
|
122
|
-
forest_shape = m,
|
|
123
|
-
tree_index = jnp.arange(m, dtype=minimal_unsigned_dtype(m - 1)),
|
|
124
|
-
else:
|
|
125
|
-
forest_shape = ()
|
|
126
|
-
tree_index = ()
|
|
127
|
-
|
|
128
108
|
carry = (
|
|
129
|
-
jnp.zeros(
|
|
130
|
-
jnp.
|
|
131
|
-
jnp.ones(forest_shape, minimal_unsigned_dtype(leaf_trees.shape[-1] - 1))
|
|
109
|
+
jnp.zeros((), bool),
|
|
110
|
+
jnp.ones((), minimal_unsigned_dtype(2 * var_tree.size - 1)),
|
|
132
111
|
)
|
|
133
112
|
|
|
134
113
|
def loop(carry, _):
|
|
135
|
-
leaf_found,
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
if is_forest:
|
|
140
|
-
leaf_sum = jnp.sum(leaf_value, where=is_leaf) # TODO set dtype to large float
|
|
141
|
-
# alternative: dot(is_leaf, leaf_value):
|
|
142
|
-
# - maybe faster
|
|
143
|
-
# - maybe less accurate
|
|
144
|
-
# - fucked by nans
|
|
145
|
-
else:
|
|
146
|
-
leaf_sum = jnp.where(is_leaf, leaf_value, 0)
|
|
147
|
-
out += leaf_sum
|
|
148
|
-
leaf_found |= is_leaf
|
|
149
|
-
|
|
150
|
-
split = split_trees.at[tree_index + (node_index,)].get(mode='fill', fill_value=0)
|
|
151
|
-
var = var_trees.at[tree_index + (node_index,)].get(mode='fill', fill_value=0)
|
|
152
|
-
x = X[var]
|
|
114
|
+
leaf_found, index = carry
|
|
115
|
+
|
|
116
|
+
split = split_tree.at[index].get(mode='fill', fill_value=0)
|
|
117
|
+
var = var_tree.at[index].get(mode='fill', fill_value=0)
|
|
153
118
|
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
119
|
+
leaf_found |= split_tree.at[index].get(mode='fill', fill_value=0) == 0
|
|
120
|
+
child_index = (index << 1) + (x[var] >= split)
|
|
121
|
+
index = jnp.where(leaf_found, index, child_index)
|
|
157
122
|
|
|
158
|
-
|
|
159
|
-
return carry, _
|
|
123
|
+
return (leaf_found, index), None
|
|
160
124
|
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
125
|
+
# TODO
|
|
126
|
+
# - unroll (how much? 5?)
|
|
127
|
+
# - separate and special-case the last iteration
|
|
164
128
|
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
maximum value.
|
|
169
|
-
"""
|
|
170
|
-
if max_value < 2 ** 8:
|
|
171
|
-
return jnp.uint8
|
|
172
|
-
if max_value < 2 ** 16:
|
|
173
|
-
return jnp.uint16
|
|
174
|
-
if max_value < 2 ** 32:
|
|
175
|
-
return jnp.uint32
|
|
176
|
-
return jnp.uint64
|
|
129
|
+
depth = 1 + tree_depth(var_tree)
|
|
130
|
+
(_, index), _ = lax.scan(loop, carry, None, depth)
|
|
131
|
+
return index
|
|
177
132
|
|
|
178
|
-
|
|
179
|
-
def evaluate_tree_vmap_x(X, leaf_trees, var_trees, split_trees, out_dtype):
|
|
133
|
+
def evaluate_forest(X, leaf_trees, var_trees, split_trees, dtype):
|
|
180
134
|
"""
|
|
181
|
-
Evaluate a
|
|
135
|
+
Evaluate a ensemble of trees at an array of points.
|
|
182
136
|
|
|
183
137
|
Parameters
|
|
184
138
|
----------
|
|
185
139
|
X : array (p, n)
|
|
186
|
-
The
|
|
187
|
-
leaf_trees :
|
|
140
|
+
The coordinates to evaluate the trees at.
|
|
141
|
+
leaf_trees : (m, 2 ** d)
|
|
188
142
|
The leaf values of the tree or forest. If the input is a forest, the
|
|
189
143
|
first axis is the tree index, and the values are summed.
|
|
190
|
-
var_trees : array (
|
|
191
|
-
The
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
condition `split == 0`. If non-zero, the node has children, and its left
|
|
196
|
-
children is assigned points which satisfy `x < split`.
|
|
197
|
-
out_dtype : dtype
|
|
144
|
+
var_trees : array (m, 2 ** (d - 1))
|
|
145
|
+
The decision axes of the trees.
|
|
146
|
+
split_trees : array (m, 2 ** (d - 1))
|
|
147
|
+
The decision boundaries of the trees.
|
|
148
|
+
dtype : dtype
|
|
198
149
|
The dtype of the output.
|
|
199
150
|
|
|
200
151
|
Returns
|
|
201
152
|
-------
|
|
202
|
-
out : (n,)
|
|
203
|
-
The
|
|
153
|
+
out : array (n,)
|
|
154
|
+
The sum of the values of the trees at the points in `X`.
|
|
204
155
|
"""
|
|
205
|
-
|
|
156
|
+
indices = _traverse_forest(X, var_trees, split_trees)
|
|
157
|
+
ntree, _ = leaf_trees.shape
|
|
158
|
+
tree_index = jnp.arange(ntree, dtype=minimal_unsigned_dtype(ntree - 1))[:, None]
|
|
159
|
+
leaves = leaf_trees[tree_index, indices]
|
|
160
|
+
return jnp.sum(leaves, axis=0, dtype=dtype)
|
|
161
|
+
# this sum suggests to swap the vmaps, but I think it's better for X copying to keep it that way
|
|
162
|
+
|
|
163
|
+
@functools.partial(jax.vmap, in_axes=(None, 0, 0))
|
|
164
|
+
@functools.partial(jax.vmap, in_axes=(1, None, None))
|
|
165
|
+
def _traverse_forest(X, var_trees, split_trees):
|
|
166
|
+
return traverse_tree(X, var_trees, split_trees)
|
|
167
|
+
|
|
168
|
+
def minimal_unsigned_dtype(max_value):
|
|
169
|
+
"""
|
|
170
|
+
Return the smallest unsigned integer dtype that can represent a given
|
|
171
|
+
maximum value.
|
|
172
|
+
"""
|
|
173
|
+
if max_value < 2 ** 8:
|
|
174
|
+
return jnp.uint8
|
|
175
|
+
if max_value < 2 ** 16:
|
|
176
|
+
return jnp.uint16
|
|
177
|
+
if max_value < 2 ** 32:
|
|
178
|
+
return jnp.uint32
|
|
179
|
+
return jnp.uint64
|
|
206
180
|
|
|
207
181
|
def is_actual_leaf(split_tree, *, add_bottom_level=False):
|
|
208
182
|
"""
|
|
@@ -239,7 +213,7 @@ def is_leaves_parent(split_tree):
|
|
|
239
213
|
Parameters
|
|
240
214
|
----------
|
|
241
215
|
split_tree : int array (2 ** (d - 1),)
|
|
242
|
-
The
|
|
216
|
+
The decision boundaries of the tree.
|
|
243
217
|
|
|
244
218
|
Returns
|
|
245
219
|
-------
|
|
@@ -279,24 +253,3 @@ def tree_depths(tree_length):
|
|
|
279
253
|
depths.append(depth - 1)
|
|
280
254
|
depths[0] = 0
|
|
281
255
|
return jnp.array(depths, minimal_unsigned_dtype(max(depths)))
|
|
282
|
-
|
|
283
|
-
def index_depth(index, tree_length):
|
|
284
|
-
"""
|
|
285
|
-
Return the depth of a node in a binary tree.
|
|
286
|
-
|
|
287
|
-
Parameters
|
|
288
|
-
----------
|
|
289
|
-
index : int
|
|
290
|
-
The index of the node.
|
|
291
|
-
tree_length : int
|
|
292
|
-
The length of the tree array, i.e., 2 ** d.
|
|
293
|
-
|
|
294
|
-
Returns
|
|
295
|
-
-------
|
|
296
|
-
depth : int
|
|
297
|
-
The depth of the node. The root node (index 1) has depth 0. The depth is
|
|
298
|
-
the position of the most significant non-zero bit in the index. If
|
|
299
|
-
``index == 0``, return -1.
|
|
300
|
-
"""
|
|
301
|
-
depths = tree_depths(tree_length)
|
|
302
|
-
return depths[index]
|
bartz/interface.py
CHANGED
|
@@ -38,7 +38,7 @@ class BART:
|
|
|
38
38
|
Nonparametric regression with Bayesian Additive Regression Trees (BART).
|
|
39
39
|
|
|
40
40
|
Regress `y_train` on `x_train` with a latent mean function represented as
|
|
41
|
-
a sum of decision trees. The inference is carried out by
|
|
41
|
+
a sum of decision trees. The inference is carried out by sampling the
|
|
42
42
|
posterior distribution of the tree ensemble with an MCMC.
|
|
43
43
|
|
|
44
44
|
Parameters
|
|
@@ -86,7 +86,7 @@ class BART:
|
|
|
86
86
|
predictor is binned such that its distribution in `x_train` is
|
|
87
87
|
approximately uniform across bins. The number of bins is at most the
|
|
88
88
|
number of unique values appearing in `x_train`, or ``numcut + 1``.
|
|
89
|
-
Before running the algorithm, the predictors are compressed to
|
|
89
|
+
Before running the algorithm, the predictors are compressed to the
|
|
90
90
|
smallest integer type that fits the bin indices, so `numcut` is best set
|
|
91
91
|
to the maximum value of an unsigned integer type.
|
|
92
92
|
ndpost : int, default 1000
|
|
@@ -321,7 +321,7 @@ class BART:
|
|
|
321
321
|
p_nonterminal = base / (1 + depth).astype(float) ** power
|
|
322
322
|
sigma2_alpha = sigdf / 2
|
|
323
323
|
sigma2_beta = lamda * sigma2_alpha
|
|
324
|
-
return mcmcstep.
|
|
324
|
+
return mcmcstep.init(
|
|
325
325
|
X=x_train,
|
|
326
326
|
y=y_train,
|
|
327
327
|
max_split=max_split,
|
|
@@ -354,13 +354,6 @@ class BART:
|
|
|
354
354
|
return scale * jnp.sqrt(trace['sigma2'])
|
|
355
355
|
|
|
356
356
|
|
|
357
|
-
def _predict_debug(self, x_test):
|
|
358
|
-
from . import debug
|
|
359
|
-
x_test, x_test_fmt = self._process_predictor_input(x_test)
|
|
360
|
-
self._check_compatible_formats(x_test_fmt, self._x_train_fmt)
|
|
361
|
-
x_test = self._bin_predictors(x_test, self._splits)
|
|
362
|
-
return debug.trace_evaluate_trees(self._main_trace, x_test)
|
|
363
|
-
|
|
364
357
|
def _show_tree(self, i_sample, i_tree, print_all=False):
|
|
365
358
|
from . import debug
|
|
366
359
|
trace = self._main_trace
|
|
@@ -385,7 +378,7 @@ class BART:
|
|
|
385
378
|
def _compare_resid(self):
|
|
386
379
|
bart = self._mcmc_state
|
|
387
380
|
resid1 = bart['resid']
|
|
388
|
-
yhat = grove.
|
|
381
|
+
yhat = grove.evaluate_forest(bart['X'], bart['leaf_trees'], bart['var_trees'], bart['split_trees'], jnp.float32)
|
|
389
382
|
resid2 = bart['y'] - yhat
|
|
390
383
|
return resid1, resid2
|
|
391
384
|
|
|
@@ -427,7 +420,5 @@ class BART:
|
|
|
427
420
|
|
|
428
421
|
def _tree_goes_bad(self):
|
|
429
422
|
bad = self._check_trees().astype(bool)
|
|
430
|
-
bad_before = bad[:-1]
|
|
431
|
-
|
|
432
|
-
goes_bad = bad_after & ~bad_before
|
|
433
|
-
return jnp.pad(goes_bad, [(1, 0), (0, 0)])
|
|
423
|
+
bad_before = jnp.pad(bad[:-1], [(1, 0), (0, 0)])
|
|
424
|
+
return bad & ~bad_before
|
bartz/mcmcloop.py
CHANGED
|
@@ -100,15 +100,21 @@ def run_mcmc(bart, n_burn, n_save, n_skip, callback, key):
|
|
|
100
100
|
def inner_loop(carry, _, tracelist, burnin):
|
|
101
101
|
bart, i_total, i_skip, key = carry
|
|
102
102
|
key, subkey = random.split(key)
|
|
103
|
-
bart = mcmcstep.
|
|
103
|
+
bart = mcmcstep.step(bart, subkey)
|
|
104
104
|
callback(bart=bart, burnin=burnin, i_total=i_total, i_skip=i_skip, **callback_kw)
|
|
105
105
|
output = {key: bart[key] for key in tracelist}
|
|
106
106
|
return (bart, i_total + 1, i_skip + 1, key), output
|
|
107
107
|
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
108
|
+
if n_burn > 0:
|
|
109
|
+
carry = bart, 0, 0, key
|
|
110
|
+
burnin_loop = functools.partial(inner_loop, tracelist=tracelist_burnin, burnin=True)
|
|
111
|
+
(bart, i_total, _, key), burnin_trace = lax.scan(burnin_loop, carry, None, n_burn)
|
|
112
|
+
else:
|
|
113
|
+
i_total = 0
|
|
114
|
+
burnin_trace = {
|
|
115
|
+
key: jnp.empty((0,) + bart[key].shape, bart[key].dtype)
|
|
116
|
+
for key in tracelist_burnin
|
|
117
|
+
}
|
|
112
118
|
|
|
113
119
|
def outer_loop(carry, _):
|
|
114
120
|
bart, i_total, key = carry
|
|
@@ -180,6 +186,6 @@ def evaluate_trace(trace, X):
|
|
|
180
186
|
The predictions for each iteration of the MCMC.
|
|
181
187
|
"""
|
|
182
188
|
def loop(_, state):
|
|
183
|
-
return None, grove.
|
|
189
|
+
return None, grove.evaluate_forest(X, state['leaf_trees'], state['var_trees'], state['split_trees'], jnp.float32)
|
|
184
190
|
_, y = lax.scan(loop, None, trace)
|
|
185
191
|
return y
|