azureml-registry-tools 0.1.0a28__py3-none-any.whl → 0.1.0a29__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- azureml/registry/data/description.md.template +65 -2
- azureml/registry/data/evaluation.md.template +10 -2
- azureml/registry/data/model.schema.json +6 -4
- azureml/registry/data/notes.md.template +22 -2
- {azureml_registry_tools-0.1.0a28.dist-info → azureml_registry_tools-0.1.0a29.dist-info}/METADATA +1 -1
- {azureml_registry_tools-0.1.0a28.dist-info → azureml_registry_tools-0.1.0a29.dist-info}/RECORD +10 -10
- {azureml_registry_tools-0.1.0a28.dist-info → azureml_registry_tools-0.1.0a29.dist-info}/WHEEL +0 -0
- {azureml_registry_tools-0.1.0a28.dist-info → azureml_registry_tools-0.1.0a29.dist-info}/entry_points.txt +0 -0
- {azureml_registry_tools-0.1.0a28.dist-info → azureml_registry_tools-0.1.0a29.dist-info}/licenses/LICENSE.txt +0 -0
- {azureml_registry_tools-0.1.0a28.dist-info → azureml_registry_tools-0.1.0a29.dist-info}/top_level.txt +0 -0
|
@@ -1,2 +1,65 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
1
|
+
# Description
|
|
2
|
+
|
|
3
|
+
Include 1-2 sentences as your core value prop of the model.
|
|
4
|
+
|
|
5
|
+
## Azure Direct Models
|
|
6
|
+
For Microsoft PMs: Include 1-2 sentences as your core value prop of Azure Direct Models.
|
|
7
|
+
|
|
8
|
+
# Technical specs
|
|
9
|
+
Short paragraph describing the model and model family.
|
|
10
|
+
|
|
11
|
+
### Training cut-off date
|
|
12
|
+
Date the training was finished.
|
|
13
|
+
|
|
14
|
+
### Input formats
|
|
15
|
+
Specify the preferred input format for interacting with the model, especially if it was trained on fine-tuned on structured prompts. Provide response output schema to illustrated expected format.
|
|
16
|
+
|
|
17
|
+
### Supported language
|
|
18
|
+
Supported input human languages.
|
|
19
|
+
|
|
20
|
+
## Supported Azure regions
|
|
21
|
+
List of supported Azure regions.
|
|
22
|
+
|
|
23
|
+
## Sample JSON response
|
|
24
|
+
Input and output.
|
|
25
|
+
|
|
26
|
+
## Model architecture
|
|
27
|
+
10-20 word description of the model architecture.
|
|
28
|
+
|
|
29
|
+
# Long context
|
|
30
|
+
Indicate whether the model supports extended context lengths and describe the types of tasks this enables.
|
|
31
|
+
|
|
32
|
+
## Optimizing model performance
|
|
33
|
+
Describes the methods and best practices used to improve a model's efficiency, accuracy, and cost-effectiveness in real-world use.
|
|
34
|
+
|
|
35
|
+
## Additional assets
|
|
36
|
+
List of additional assets (e.g. training data, technical reports data processing code, model training code, model inference code, model evaluation code), if any, that are made available with a link, description of how each can be accessed and what licenses, if any, relate to their use.
|
|
37
|
+
|
|
38
|
+
# Key capabilities
|
|
39
|
+
|
|
40
|
+
## About this model
|
|
41
|
+
A blurb to share more about the model, what it excels in, why it's valuable for developers.
|
|
42
|
+
|
|
43
|
+
## Key model capabilities
|
|
44
|
+
List of 3-4 valuable core capabilities by model, include a value proposition statement.
|
|
45
|
+
|
|
46
|
+
# Pricing
|
|
47
|
+
Pricing is based on a number of factors. See pricing details here. (Please link the last sentence to ACOM pricing page)
|
|
48
|
+
|
|
49
|
+
# Use cases
|
|
50
|
+
See Responsible AI for additional consideration for responsible use.
|
|
51
|
+
|
|
52
|
+
## Key use cases
|
|
53
|
+
Key use cases are the main practical applications of a model. Industry and task specific. Short paragraph describing the intended uses of the model. Highlight specific scenarios where the model excels.
|
|
54
|
+
|
|
55
|
+
## Out of scope use cases
|
|
56
|
+
Short paragraph describing model limitations constraints and identifying any restricted or prohibited uses.
|
|
57
|
+
|
|
58
|
+
# Distribution channels
|
|
59
|
+
A list of the methods of distribution (e.g. enterprise or subscription-based access through existing software suites or enterprise-specific solutions; public or subscription-based access through an API; public or proprietary access through integrated development environments, device-specific applications or firmware, open-source repositories) through which the model can be made available to downstream providers both within and outside the EU.
|
|
60
|
+
|
|
61
|
+
# Azure Direct Models
|
|
62
|
+
For Microsoft PMs: Include 1-2 sentences as your core value prop of Azure Direct Models.
|
|
63
|
+
|
|
64
|
+
# More information
|
|
65
|
+
Whatever you would like to go here!
|
|
@@ -1,2 +1,10 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
1
|
+
# Benchmarks
|
|
2
|
+
|
|
3
|
+
## Quality and performance evaluations
|
|
4
|
+
Summarize the model’s performance across public and internal benchmarks and describe how it compares to other third-party models. Include the types of benchmarks used, grouped by capability areas (reasoning, language understanding, math, multilingual, etc.) and limitations (knowledge capacity, etc.). Include specific datasets and tasks that demonstrate the model’s performance across diverse domains, highlight any custom or adversarial evaluations, and note any planned mitigations
|
|
5
|
+
|
|
6
|
+
## Benchmarking methodology
|
|
7
|
+
Share additional details about your team’s benchmarking methodology, including how prompts are standardized across models for fair comparison. Note any exceptions and clarify what is and isn’t allowed when adapting prompts. If needed, organize the appendix (A, B, C, etc.) based on specific benchmarks such as robustness, short & long context, multilingual, etc.
|
|
8
|
+
|
|
9
|
+
## Public data summary
|
|
10
|
+
Link to the relevant public data summary or summaries for this model
|
|
@@ -251,7 +251,7 @@
|
|
|
251
251
|
"inputModalities": {
|
|
252
252
|
"description": "Input modalities supported (e.g., text, image) as a comma-separated string",
|
|
253
253
|
"type": "string",
|
|
254
|
-
"pattern": "^(audio|csv|embeddings|image|json|pdf|text|video)(?:\\s*,\\s*(audio|csv|embeddings|image|json|pdf|text|video))*$"
|
|
254
|
+
"pattern": "^(audio|csv|embeddings|image|json|pdf|text|video|code)(?:\\s*,\\s*(audio|csv|embeddings|image|json|pdf|text|video|code))*$"
|
|
255
255
|
},
|
|
256
256
|
"inference_supported_envs": {
|
|
257
257
|
"description": "Supported inference environments",
|
|
@@ -361,7 +361,7 @@
|
|
|
361
361
|
"modelCapabilities": {
|
|
362
362
|
"description": "Model capabilities (e.g., agents, assistants) as a comma-separated string",
|
|
363
363
|
"type": "string",
|
|
364
|
-
"pattern": "^(agents|agentsV2|assistants|routing|reasoning|streaming|tool-calling)(?:\\s*,\\s*(agents|agentsV2|assistants|routing|reasoning|streaming|tool-calling))*$"
|
|
364
|
+
"pattern": "^(agents|agentsV2|assistants|routing|reasoning|streaming|tool-calling|function-calling|image-input)(?:\\s*,\\s*(agents|agentsV2|assistants|routing|reasoning|streaming|tool-calling|function-calling|image-input))*$"
|
|
365
365
|
},
|
|
366
366
|
"modelHash": {
|
|
367
367
|
"description": "Hash of the model",
|
|
@@ -395,7 +395,7 @@
|
|
|
395
395
|
"task": {
|
|
396
396
|
"description": "Tasks supported by the model as a comma-separated string",
|
|
397
397
|
"type": "string",
|
|
398
|
-
"pattern": "^(audio-analysis|audio-classification|audio-generation|automatic-speech-recognition|chat-completion|completions|content-filters|content-safety|conversational-ai|custom-extraction|data-generation|document-analysis|document-ingestion|document-translation|embeddings|face-detection|fill-mask|forecasting|image-analysis|image-classification|image-feature-extraction|image-text-to-text|image-to-image|image-to-text|intelligent-content-processing|intelligent-document-processing|text-pii-extraction|conversation-pii-extraction|document-pii-extraction|detect-language|optical-character-recognition|protein-sequence-generation|protein-structure-prediction|responses|responsible-ai|retrosynthesis-prediction|summarization|text-analysis|text-analytics|text-classification|text-generation|text-to-image|text-to-speech|time-series-forecasting|translation|speech-to-text|speech-translation|video-analysis|video-generation|video-text-to-text|visual-question-answering|zero-shot-classification|zero-shot-image-classification|materials-design|atomistic-modelling|image-to-3D|text-to-3D|3D-generation|task-completion-verification|action-affordance|next-plausible-action-prediction|Structure-Prediction|Genomics|biomolecular-complex-structure-prediction|structure-prediction|protein-folding|web-agent-tasks|gui-grounding)(?:\\s*,\\s*(audio-analysis|audio-classification|audio-generation|automatic-speech-recognition|chat-completion|completions|content-filters|content-safety|conversational-ai|custom-extraction|data-generation|document-analysis|document-ingestion|document-translation|embeddings|face-detection|fill-mask|forecasting|image-analysis|image-classification|image-feature-extraction|image-text-to-text|image-to-image|image-to-text|intelligent-content-processing|intelligent-document-processing|optical-character-recognition|protein-sequence-generation|protein-structure-prediction|responses|responsible-ai|summarization|text-analysis|text-analytics|text-classification|text-generation|text-pii-extraction|conversation-pii-extraction|document-pii-extraction|detect-language|text-to-image|text-to-speech|time-series-forecasting|translation|speech-to-text|speech-translation|video-analysis|video-generation|video-text-to-text|visual-question-answering|zero-shot-classification|zero-shot-image-classification|materials-design|atomistic-modelling|image-to-3D|text-to-3D|3D-generation|task-completion-verification|action-affordance|next-plausible-action-prediction|Structure-Prediction|Genomics|biomolecular-complex-structure-prediction|structure-prediction|protein-folding|web-agent-tasks|gui-grounding))*$"
|
|
398
|
+
"pattern": "^(audio-analysis|audio-classification|audio-generation|automatic-speech-recognition|chat-completion|completions|content-filters|content-safety|conversational-ai|custom-extraction|data-generation|document-analysis|document-ingestion|document-translation|embeddings|face-detection|fill-mask|forecasting|image-analysis|image-classification|image-feature-extraction|image-text-to-text|image-to-image|image-to-text|intelligent-content-processing|intelligent-document-processing|text-pii-extraction|conversation-pii-extraction|document-pii-extraction|detect-language|optical-character-recognition|protein-sequence-generation|protein-structure-prediction|responses|responsible-ai|retrosynthesis-prediction|summarization|text-analysis|text-analytics|text-classification|text-generation|text-to-image|text-to-speech|time-series-forecasting|translation|speech-to-text|speech-translation|video-analysis|video-generation|video-text-to-text|visual-question-answering|zero-shot-classification|zero-shot-image-classification|materials-design|atomistic-modelling|image-to-3D|text-to-3D|3D-generation|task-completion-verification|action-affordance|next-plausible-action-prediction|Structure-Prediction|Genomics|biomolecular-complex-structure-prediction|structure-prediction|protein-folding|web-agent-tasks|gui-grounding|messages)(?:\\s*,\\s*(audio-analysis|audio-classification|audio-generation|automatic-speech-recognition|chat-completion|completions|content-filters|content-safety|conversational-ai|custom-extraction|data-generation|document-analysis|document-ingestion|document-translation|embeddings|face-detection|fill-mask|forecasting|image-analysis|image-classification|image-feature-extraction|image-text-to-text|image-to-image|image-to-text|intelligent-content-processing|intelligent-document-processing|optical-character-recognition|protein-sequence-generation|protein-structure-prediction|responses|responsible-ai|summarization|text-analysis|text-analytics|text-classification|text-generation|text-pii-extraction|conversation-pii-extraction|document-pii-extraction|detect-language|text-to-image|text-to-speech|time-series-forecasting|translation|speech-to-text|speech-translation|video-analysis|video-generation|video-text-to-text|visual-question-answering|zero-shot-classification|zero-shot-image-classification|materials-design|atomistic-modelling|image-to-3D|text-to-3D|3D-generation|task-completion-verification|action-affordance|next-plausible-action-prediction|Structure-Prediction|Genomics|biomolecular-complex-structure-prediction|structure-prediction|protein-folding|web-agent-tasks|gui-grounding|messages))*$"
|
|
399
399
|
},
|
|
400
400
|
"textContextWindow": {
|
|
401
401
|
"description": "Context window size",
|
|
@@ -598,7 +598,9 @@
|
|
|
598
598
|
"routing",
|
|
599
599
|
"reasoning",
|
|
600
600
|
"streaming",
|
|
601
|
-
"tool-calling"
|
|
601
|
+
"tool-calling",
|
|
602
|
+
"function-calling",
|
|
603
|
+
"image-input"
|
|
602
604
|
]
|
|
603
605
|
},
|
|
604
606
|
"description": "Model capabilities (e.g., agents, assistants)"
|
|
@@ -1,2 +1,22 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
1
|
+
# Responsible AI considerations
|
|
2
|
+
|
|
3
|
+
## Safety techniques
|
|
4
|
+
Policies, techniques and safety frameworks applied to enable model hosting on Foundry (i.e. Provenance).
|
|
5
|
+
|
|
6
|
+
Describe the safety alignment strategy used during post-training. Include the types of datasets leveraged, specify the techniques applied along with the safety objectives they target.
|
|
7
|
+
|
|
8
|
+
## Safety evaluations
|
|
9
|
+
Describe the evaluation methods used to assess model safety prior to release. Include both quantitative and qualitive approaches and specify the risk categories evaluated [i.e. disallowed content (sexual, violent, hateful, or self-harm content), copyright content/IP, and jailbreaks] and any collaboration with internal or external safety teams. Refer to other relevant documentation for more details.
|
|
10
|
+
|
|
11
|
+
## Known limitations
|
|
12
|
+
Outline known limitations and potential risks associated with the model, including fairness, representation, offensive content, reliability, and misuse. Clearly state areas where the model may underperform (non-English languages, sensitive domains, etc.). Provide specific guidance for developers on applying responsible AI practices, legal compliance, and appropriate safeguards for high-risk or consequential use cases.
|
|
13
|
+
|
|
14
|
+
# Acceptable use
|
|
15
|
+
|
|
16
|
+
## Acceptable use policy
|
|
17
|
+
Link to any relevant acceptable use policies. Otherwise state N/A.
|
|
18
|
+
|
|
19
|
+
# Terms of Service
|
|
20
|
+
|
|
21
|
+
## Terms of Service Link
|
|
22
|
+
Type or category of license (e.g. free/open source or proprietary). If there is no license, describe how access to the model is provided. State the license.
|
{azureml_registry_tools-0.1.0a28.dist-info → azureml_registry_tools-0.1.0a29.dist-info}/RECORD
RENAMED
|
@@ -10,12 +10,12 @@ azureml/registry/_rest_client/registry_management_client.py,sha256=NsqWRaDdOlPyI
|
|
|
10
10
|
azureml/registry/_rest_client/registry_model_client.py,sha256=LqJGTuYQtBnHSeSbOl5KVbiO6vGBkKQ7HD5jc4fvV3k,14466
|
|
11
11
|
azureml/registry/data/__init__.py,sha256=cW3X6HATz6XF-K_7uKdybTbJb9EZSecBN4J27NGdZmU,231
|
|
12
12
|
azureml/registry/data/asset.yaml.template,sha256=WTgfuvKEBp-EVFSQ0JpU0h4z_ULJdULO9kHmB_9Fr1o,96
|
|
13
|
-
azureml/registry/data/description.md.template,sha256=
|
|
14
|
-
azureml/registry/data/evaluation.md.template,sha256=
|
|
13
|
+
azureml/registry/data/description.md.template,sha256=DiVAQEXGXoKmhV4LPqE3NupxVtcsuDZ1pn2UA5Fzd6U,2821
|
|
14
|
+
azureml/registry/data/evaluation.md.template,sha256=FC9U8EI_1Dg9Vz18ftAFDDmTqvpwELDkIDlYqB8C9Dk,1031
|
|
15
15
|
azureml/registry/data/model-variant.schema.json,sha256=AT4Dy6cCtp_SFUfSqYIqcER8AldpYm0QIEy1abY3QWE,1699
|
|
16
|
-
azureml/registry/data/model.schema.json,sha256=
|
|
16
|
+
azureml/registry/data/model.schema.json,sha256=GbpT9kqZ-7t_2YxoU4QX1ojI_yo9XJfR2bAhrG0LgZc,47085
|
|
17
17
|
azureml/registry/data/model.yaml.template,sha256=h5uqAN22FLaWrbPxIb8yVKH9cGDBrIwooXYYfsKhxDw,245
|
|
18
|
-
azureml/registry/data/notes.md.template,sha256=
|
|
18
|
+
azureml/registry/data/notes.md.template,sha256=rgGGHQaxfVg6COIzZU8EVBa48sRPnNezVkCMGNyRRNo,1528
|
|
19
19
|
azureml/registry/data/validate_model_schema.py,sha256=OQp2E01kdxSphvUQYQvelSiD24-qUG6nTFuzW60wX2c,8322
|
|
20
20
|
azureml/registry/data/validate_model_variant_schema.py,sha256=JPVNtRBn6qciMu4PaRXOvS86OGGW0cocL2Rri4xYKo8,3629
|
|
21
21
|
azureml/registry/mgmt/__init__.py,sha256=LMhqcEC8ItmmpKZljElGXH-6olHlT3SLl0dJU01OvuM,226
|
|
@@ -31,9 +31,9 @@ azureml/registry/tools/config.py,sha256=tjPaoBsWtPXBL8Ww1hcJtsr2SuIjPKt79dR8iovc
|
|
|
31
31
|
azureml/registry/tools/create_or_update_assets.py,sha256=7LcuBzwU-HNE9ADG2igFXI696aKR028yTYxMuDtjVmA,16095
|
|
32
32
|
azureml/registry/tools/registry_utils.py,sha256=zgYlCiOONtQJ4yZ9wg8tKVoE8dh6rrjB8hYBGhpV9-0,1403
|
|
33
33
|
azureml/registry/tools/repo2registry_config.py,sha256=eXp_tU8Jyi30g8xGf7wbpLgKEPpieohBANKxMSLzq7s,4873
|
|
34
|
-
azureml_registry_tools-0.1.
|
|
35
|
-
azureml_registry_tools-0.1.
|
|
36
|
-
azureml_registry_tools-0.1.
|
|
37
|
-
azureml_registry_tools-0.1.
|
|
38
|
-
azureml_registry_tools-0.1.
|
|
39
|
-
azureml_registry_tools-0.1.
|
|
34
|
+
azureml_registry_tools-0.1.0a29.dist-info/licenses/LICENSE.txt,sha256=n20rxwp7_NGrrShv9Qvcs90sjI1l3Pkt3m-5OPCWzgs,845
|
|
35
|
+
azureml_registry_tools-0.1.0a29.dist-info/METADATA,sha256=l6pLVmMr-nw8Cd7XPT2XSlcxd2r6prXEkAK8ch6OGqE,522
|
|
36
|
+
azureml_registry_tools-0.1.0a29.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
37
|
+
azureml_registry_tools-0.1.0a29.dist-info/entry_points.txt,sha256=iRUkAeQidMnO6RQzpLqMUBTcyYtNzAfSin9WnSdVGLw,147
|
|
38
|
+
azureml_registry_tools-0.1.0a29.dist-info/top_level.txt,sha256=ZOeEa0TAXo6i5wOjwBoqfIGEuxOcKuscGgNSpizqREY,8
|
|
39
|
+
azureml_registry_tools-0.1.0a29.dist-info/RECORD,,
|
{azureml_registry_tools-0.1.0a28.dist-info → azureml_registry_tools-0.1.0a29.dist-info}/WHEEL
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|