azure-ai-evaluation 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of azure-ai-evaluation might be problematic. Click here for more details.

Files changed (53) hide show
  1. azure/ai/evaluation/__init__.py +0 -16
  2. azure/ai/evaluation/_common/rai_service.py +1 -1
  3. azure/ai/evaluation/_common/utils.py +1 -1
  4. azure/ai/evaluation/_converters/__init__.py +1 -1
  5. azure/ai/evaluation/_converters/_ai_services.py +4 -4
  6. azure/ai/evaluation/_evaluate/_batch_run/code_client.py +18 -12
  7. azure/ai/evaluation/_evaluate/_batch_run/eval_run_context.py +9 -4
  8. azure/ai/evaluation/_evaluate/_batch_run/proxy_client.py +42 -22
  9. azure/ai/evaluation/_evaluate/_batch_run/target_run_context.py +1 -1
  10. azure/ai/evaluation/_evaluate/_eval_run.py +1 -1
  11. azure/ai/evaluation/_evaluate/_evaluate.py +84 -68
  12. azure/ai/evaluation/_evaluate/_telemetry/__init__.py +5 -89
  13. azure/ai/evaluation/_evaluate/_utils.py +3 -3
  14. azure/ai/evaluation/_evaluators/_common/_base_eval.py +1 -1
  15. azure/ai/evaluation/_evaluators/_common/_base_multi_eval.py +1 -1
  16. azure/ai/evaluation/_evaluators/_common/_base_prompty_eval.py +1 -1
  17. azure/ai/evaluation/_evaluators/_groundedness/_groundedness.py +1 -1
  18. azure/ai/evaluation/_evaluators/_response_completeness/_response_completeness.py +1 -0
  19. azure/ai/evaluation/_legacy/_adapters/__init__.py +21 -0
  20. azure/ai/evaluation/_legacy/_adapters/_configuration.py +45 -0
  21. azure/ai/evaluation/_legacy/_adapters/_constants.py +10 -0
  22. azure/ai/evaluation/_legacy/_adapters/_errors.py +29 -0
  23. azure/ai/evaluation/_legacy/_adapters/_flows.py +28 -0
  24. azure/ai/evaluation/_legacy/_adapters/_service.py +16 -0
  25. azure/ai/evaluation/_legacy/_adapters/client.py +51 -0
  26. azure/ai/evaluation/_legacy/_adapters/entities.py +26 -0
  27. azure/ai/evaluation/_legacy/_adapters/tracing.py +28 -0
  28. azure/ai/evaluation/_legacy/_adapters/types.py +15 -0
  29. azure/ai/evaluation/_legacy/_adapters/utils.py +31 -0
  30. azure/ai/evaluation/_legacy/_batch_engine/_result.py +1 -1
  31. azure/ai/evaluation/_legacy/_batch_engine/_status.py +1 -1
  32. azure/ai/evaluation/_version.py +1 -1
  33. azure/ai/evaluation/red_team/__init__.py +19 -0
  34. azure/ai/evaluation/{_red_team → red_team}/_attack_objective_generator.py +3 -0
  35. azure/ai/evaluation/{_red_team → red_team}/_attack_strategy.py +3 -0
  36. azure/ai/evaluation/{_red_team → red_team}/_red_team.py +96 -67
  37. azure/ai/evaluation/red_team/_red_team_result.py +382 -0
  38. azure/ai/evaluation/{_red_team → red_team}/_utils/constants.py +2 -1
  39. azure/ai/evaluation/{_red_team → red_team}/_utils/formatting_utils.py +23 -22
  40. azure/ai/evaluation/{_red_team → red_team}/_utils/logging_utils.py +1 -1
  41. azure/ai/evaluation/{_red_team → red_team}/_utils/strategy_utils.py +8 -4
  42. azure/ai/evaluation/simulator/_simulator.py +1 -1
  43. {azure_ai_evaluation-1.4.0.dist-info → azure_ai_evaluation-1.5.0.dist-info}/METADATA +13 -2
  44. {azure_ai_evaluation-1.4.0.dist-info → azure_ai_evaluation-1.5.0.dist-info}/RECORD +50 -40
  45. azure/ai/evaluation/_red_team/_red_team_result.py +0 -246
  46. azure/ai/evaluation/_red_team/_utils/__init__.py +0 -3
  47. azure/ai/evaluation/simulator/_tracing.py +0 -89
  48. /azure/ai/evaluation/{_red_team → red_team}/_callback_chat_target.py +0 -0
  49. /azure/ai/evaluation/{_red_team → red_team}/_default_converter.py +0 -0
  50. /azure/ai/evaluation/{_red_team → red_team/_utils}/__init__.py +0 -0
  51. {azure_ai_evaluation-1.4.0.dist-info → azure_ai_evaluation-1.5.0.dist-info}/NOTICE.txt +0 -0
  52. {azure_ai_evaluation-1.4.0.dist-info → azure_ai_evaluation-1.5.0.dist-info}/WHEEL +0 -0
  53. {azure_ai_evaluation-1.4.0.dist-info → azure_ai_evaluation-1.5.0.dist-info}/top_level.txt +0 -0
@@ -52,22 +52,6 @@ try:
52
52
  except ImportError:
53
53
  print("[INFO] Could not import AIAgentConverter. Please install the dependency with `pip install azure-ai-projects`.")
54
54
 
55
- # RedTeam requires a dependency on pyrit, but python 3.9 is not supported by pyrit.
56
- # So we only import it if it's available and the user has pyrit.
57
- try:
58
- from ._red_team._red_team import RedTeam
59
- from ._red_team._attack_strategy import AttackStrategy
60
- from ._red_team._attack_objective_generator import RiskCategory
61
- from ._red_team._red_team_result import RedTeamOutput
62
- _patch_all.extend([
63
- "RedTeam",
64
- "RedTeamOutput",
65
- "AttackStrategy",
66
- "RiskCategory",
67
- ])
68
- except ImportError:
69
- print("[INFO] Could not import RedTeam. Please install the dependency with `pip install azure-ai-evaluation[redteam]`.")
70
-
71
55
 
72
56
  __all__ = [
73
57
  "evaluate",
@@ -15,7 +15,7 @@ from string import Template
15
15
 
16
16
  import jwt
17
17
 
18
- from promptflow.core._errors import MissingRequiredPackage
18
+ from azure.ai.evaluation._legacy._adapters._errors import MissingRequiredPackage
19
19
  from azure.ai.evaluation._exceptions import ErrorBlame, ErrorCategory, ErrorTarget, EvaluationException
20
20
  from azure.ai.evaluation._http_utils import AsyncHttpPipeline, get_async_http_client
21
21
  from azure.ai.evaluation._model_configurations import AzureAIProject
@@ -9,7 +9,7 @@ from typing import Any, List, Literal, Mapping, Type, TypeVar, Tuple, Union, cas
9
9
 
10
10
  import nltk
11
11
  from typing_extensions import NotRequired, Required, TypeGuard
12
- from promptflow.core._errors import MissingRequiredPackage
12
+ from azure.ai.evaluation._legacy._adapters._errors import MissingRequiredPackage
13
13
  from azure.ai.evaluation._constants import AZURE_OPENAI_TYPE, OPENAI_TYPE
14
14
  from azure.ai.evaluation._exceptions import ErrorBlame, ErrorCategory, ErrorTarget, EvaluationException
15
15
  from azure.ai.evaluation._model_configurations import (
@@ -1,3 +1,3 @@
1
1
  # ---------------------------------------------------------
2
2
  # Copyright (c) Microsoft Corporation. All rights reserved.
3
- # ---------------------------------------------------------
3
+ # ---------------------------------------------------------
@@ -667,7 +667,7 @@ class AIAgentConverter:
667
667
  return evaluations
668
668
 
669
669
  @staticmethod
670
- def run_ids_from_conversation(conversation: dict) -> List[str]:
670
+ def _run_ids_from_conversation(conversation: dict) -> List[str]:
671
671
  """
672
672
  Extracts a list of unique run IDs from a conversation dictionary.
673
673
 
@@ -684,7 +684,7 @@ class AIAgentConverter:
684
684
  return run_ids
685
685
 
686
686
  @staticmethod
687
- def convert_from_conversation(
687
+ def _convert_from_conversation(
688
688
  conversation: dict, run_id: str, exclude_tool_calls_previous_runs: bool = False
689
689
  ) -> dict:
690
690
  """
@@ -765,7 +765,7 @@ class AIAgentConverter:
765
765
  return json.loads(final_result.to_json())
766
766
 
767
767
  @staticmethod
768
- def convert_from_file(filename: str, run_id: str) -> dict:
768
+ def _convert_from_file(filename: str, run_id: str) -> dict:
769
769
  """
770
770
  Converts the agent run from a JSON file to a format suitable for the OpenAI API, the JSON file being a thread.
771
771
 
@@ -801,4 +801,4 @@ class AIAgentConverter:
801
801
  with open(filename, mode="r", encoding="utf-8") as file:
802
802
  data = json.load(file)
803
803
 
804
- return AIAgentConverter.convert_from_conversation(data, run_id)
804
+ return AIAgentConverter._convert_from_conversation(data, run_id)
@@ -6,17 +6,17 @@ import json
6
6
  import logging
7
7
  import os
8
8
  from concurrent.futures import Future
9
- from pathlib import Path
10
- from typing import Any, Callable, Dict, Optional, Union, cast
9
+ from typing import Any, Callable, Dict, Optional, Sequence, Union, cast
11
10
 
12
11
  import pandas as pd
13
- from promptflow.contracts.types import AttrDict
14
- from promptflow.tracing import ThreadPoolExecutorWithContext as ThreadPoolExecutor
12
+ from azure.ai.evaluation._legacy._adapters.types import AttrDict
13
+ from azure.ai.evaluation._legacy._adapters.tracing import ThreadPoolExecutorWithContext as ThreadPoolExecutor
15
14
 
16
15
  from azure.ai.evaluation._evaluate._utils import _apply_column_mapping, _has_aggregator, get_int_env_var, load_jsonl
17
16
  from azure.ai.evaluation._exceptions import ErrorBlame, ErrorCategory, ErrorTarget, EvaluationException
18
17
 
19
18
  from ..._constants import PF_BATCH_TIMEOUT_SEC, PF_BATCH_TIMEOUT_SEC_DEFAULT
19
+ from .batch_clients import BatchClientRun
20
20
 
21
21
  LOGGER = logging.getLogger(__name__)
22
22
 
@@ -84,7 +84,7 @@ class CodeClient: # pylint: disable=client-accepts-api-version-keyword
84
84
  for param in inspect.signature(evaluator).parameters.values()
85
85
  if param.name not in ["args", "kwargs"]
86
86
  }
87
- for value in input_df.to_dict("records"):
87
+ for value in cast(Sequence[Dict[str, Any]], input_df.to_dict("records")):
88
88
  # Filter out only the parameters that are present in the input data
89
89
  # if no parameters then pass data as is
90
90
  filtered_values = {k: v for k, v in value.items() if k in parameters} if len(parameters) > 0 else value
@@ -133,10 +133,10 @@ class CodeClient: # pylint: disable=client-accepts-api-version-keyword
133
133
  def run(
134
134
  self, # pylint: disable=unused-argument
135
135
  flow: Callable,
136
- data: Union[os.PathLike, Path, pd.DataFrame],
137
- evaluator_name: Optional[str] = None,
136
+ data: Union[str, os.PathLike, pd.DataFrame],
138
137
  column_mapping: Optional[Dict[str, str]] = None,
139
- **kwargs,
138
+ evaluator_name: Optional[str] = None,
139
+ **kwargs: Any,
140
140
  ) -> CodeRun:
141
141
  input_df = data
142
142
  if not isinstance(input_df, pd.DataFrame):
@@ -157,7 +157,7 @@ class CodeClient: # pylint: disable=client-accepts-api-version-keyword
157
157
  evaluator=flow,
158
158
  input_df=input_df,
159
159
  column_mapping=column_mapping,
160
- evaluator_name=evaluator_name,
160
+ evaluator_name=evaluator_name or "",
161
161
  )
162
162
 
163
163
  return CodeRun(
@@ -169,11 +169,13 @@ class CodeClient: # pylint: disable=client-accepts-api-version-keyword
169
169
  ),
170
170
  )
171
171
 
172
- def get_details(self, run: CodeRun, all_results: bool = False) -> pd.DataFrame:
172
+ def get_details(self, client_run: BatchClientRun, all_results: bool = False) -> pd.DataFrame:
173
+ run = self._get_result(client_run)
173
174
  result_df = run.get_result_df(exclude_inputs=not all_results)
174
175
  return result_df
175
176
 
176
- def get_metrics(self, run: CodeRun) -> Dict[str, Any]:
177
+ def get_metrics(self, client_run: BatchClientRun) -> Dict[str, Any]:
178
+ run = self._get_result(client_run)
177
179
  try:
178
180
  aggregated_metrics = run.get_aggregated_metrics()
179
181
  print("Aggregated metrics")
@@ -183,6 +185,10 @@ class CodeClient: # pylint: disable=client-accepts-api-version-keyword
183
185
  return {}
184
186
  return aggregated_metrics
185
187
 
186
- def get_run_summary(self, run: CodeRun) -> Any: # pylint: disable=unused-argument
188
+ def get_run_summary(self, client_run: BatchClientRun) -> Any: # pylint: disable=unused-argument
187
189
  # Not implemented
188
190
  return None
191
+
192
+ @staticmethod
193
+ def _get_result(run: BatchClientRun) -> CodeRun:
194
+ return cast(CodeRun, run)
@@ -5,9 +5,9 @@ import os
5
5
  import types
6
6
  from typing import Optional, Type, Union
7
7
 
8
- from promptflow._sdk._constants import PF_FLOW_ENTRY_IN_TMP, PF_FLOW_META_LOAD_IN_SUBPROCESS
9
- from promptflow._utils.user_agent_utils import ClientUserAgentUtil
10
- from promptflow.tracing._integrations._openai_injector import inject_openai_api, recover_openai_api
8
+ from azure.ai.evaluation._legacy._adapters._constants import PF_FLOW_ENTRY_IN_TMP, PF_FLOW_META_LOAD_IN_SUBPROCESS
9
+ from azure.ai.evaluation._legacy._adapters.utils import ClientUserAgentUtil
10
+ from azure.ai.evaluation._legacy._adapters.tracing import inject_openai_api, recover_openai_api
11
11
 
12
12
  from azure.ai.evaluation._constants import (
13
13
  OTEL_EXPORTER_OTLP_TRACES_TIMEOUT,
@@ -19,6 +19,8 @@ from azure.ai.evaluation._constants import (
19
19
 
20
20
  from ..._user_agent import USER_AGENT
21
21
  from .._utils import set_event_loop_policy
22
+ from .batch_clients import BatchClient
23
+ from ._run_submitter_client import RunSubmitterClient
22
24
  from .code_client import CodeClient
23
25
  from .proxy_client import ProxyClient
24
26
 
@@ -33,7 +35,7 @@ class EvalRunContext:
33
35
  ]
34
36
  """
35
37
 
36
- def __init__(self, client: Union[CodeClient, ProxyClient]) -> None:
38
+ def __init__(self, client: BatchClient) -> None:
37
39
  self.client = client
38
40
  self._is_batch_timeout_set_by_system = False
39
41
  self._is_otel_timeout_set_by_system = False
@@ -64,6 +66,9 @@ class EvalRunContext:
64
66
  # For addressing the issue of asyncio event loop closed on Windows
65
67
  set_event_loop_policy()
66
68
 
69
+ if isinstance(self.client, RunSubmitterClient):
70
+ set_event_loop_policy()
71
+
67
72
  def __exit__(
68
73
  self,
69
74
  exc_type: Optional[Type[BaseException]],
@@ -8,15 +8,21 @@ import inspect
8
8
  import logging
9
9
  import math
10
10
  import os
11
+ from datetime import datetime
11
12
  from collections import OrderedDict
12
13
  from concurrent.futures import Future
13
- from typing import Any, Callable, Dict, Optional, Union
14
+ from typing import Any, Callable, Dict, Optional, Union, cast
14
15
 
16
+ from azure.ai.evaluation._legacy._adapters.entities import Run
17
+ from azure.ai.evaluation._legacy._adapters._configuration import Configuration
18
+ from azure.ai.evaluation._legacy._adapters.client import PFClient
19
+ from azure.ai.evaluation._legacy._adapters.tracing import ThreadPoolExecutorWithContext
15
20
  import pandas as pd
16
- from promptflow.client import PFClient
17
- from promptflow.entities import Run
18
- from promptflow.tracing import ThreadPoolExecutorWithContext as ThreadPoolExecutor
19
21
 
22
+ from azure.ai.evaluation._evaluate._batch_run.batch_clients import BatchClientRun, HasAsyncCallable
23
+
24
+
25
+ Configuration.get_instance().set_config("trace.destination", "none")
20
26
  LOGGER = logging.getLogger(__name__)
21
27
 
22
28
 
@@ -26,46 +32,56 @@ class ProxyRun:
26
32
 
27
33
 
28
34
  class ProxyClient: # pylint: disable=client-accepts-api-version-keyword
29
- def __init__( # pylint: disable=missing-client-constructor-parameter-credential,missing-client-constructor-parameter-kwargs
30
- self, pf_client: PFClient
35
+ def __init__( # pylint: disable=missing-client-constructor-parameter-credential
36
+ self,
37
+ **kwargs: Any,
31
38
  ) -> None:
32
- self._pf_client = pf_client
33
- self._thread_pool = ThreadPoolExecutor(thread_name_prefix="evaluators_thread")
39
+ self._pf_client = PFClient(**kwargs)
40
+ self._thread_pool = ThreadPoolExecutorWithContext(thread_name_prefix="evaluators_thread")
34
41
 
35
42
  def run(
36
43
  self,
37
- flow: Union[str, os.PathLike, Callable],
38
- data: Union[str, os.PathLike],
44
+ flow: Callable,
45
+ data: Union[str, os.PathLike, pd.DataFrame],
39
46
  column_mapping: Optional[Dict[str, str]] = None,
40
- **kwargs
47
+ evaluator_name: Optional[str] = None,
48
+ **kwargs: Any,
41
49
  ) -> ProxyRun:
42
- flow_to_run = flow
43
- if os.getenv("AI_EVALS_BATCH_USE_ASYNC", "true").lower() == "true" and hasattr(flow, "_to_async"):
50
+ if isinstance(data, pd.DataFrame):
51
+ raise ValueError("Data cannot be a pandas DataFrame")
52
+
53
+ flow_to_run: Callable = flow
54
+ if os.getenv("AI_EVALS_BATCH_USE_ASYNC", "true").lower() == "true" and isinstance(flow, HasAsyncCallable):
44
55
  flow_to_run = flow._to_async() # pylint: disable=protected-access
45
56
 
57
+ name: str = kwargs.pop("name", "")
58
+ if not name:
59
+ name = f"azure_ai_evaluation_evaluators_{evaluator_name}_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}"
60
+
46
61
  batch_use_async = self._should_batch_use_async(flow_to_run)
47
62
  eval_future = self._thread_pool.submit(
48
63
  self._pf_client.run,
49
64
  flow_to_run,
50
65
  data=data,
51
- column_mapping=column_mapping,
66
+ column_mapping=column_mapping, # type: ignore
52
67
  batch_use_async=batch_use_async,
53
- **kwargs
68
+ name=name,
69
+ **kwargs,
54
70
  )
55
71
  return ProxyRun(run=eval_future)
56
72
 
57
- def get_details(self, proxy_run: ProxyRun, all_results: bool = False) -> pd.DataFrame:
58
- run: Run = proxy_run.run.result()
73
+ def get_details(self, client_run: BatchClientRun, all_results: bool = False) -> pd.DataFrame:
74
+ run: Run = self.get_result(client_run)
59
75
  result_df = self._pf_client.get_details(run, all_results=all_results)
60
76
  result_df.replace("(Failed)", math.nan, inplace=True)
61
77
  return result_df
62
78
 
63
- def get_metrics(self, proxy_run: ProxyRun) -> Dict[str, Any]:
64
- run: Run = proxy_run.run.result()
79
+ def get_metrics(self, client_run: BatchClientRun) -> Dict[str, Any]:
80
+ run: Run = self.get_result(client_run)
65
81
  return self._pf_client.get_metrics(run)
66
82
 
67
- def get_run_summary(self, proxy_run: ProxyRun) -> Dict[str, Any]:
68
- run = proxy_run.run.result()
83
+ def get_run_summary(self, client_run: BatchClientRun) -> Dict[str, Any]:
84
+ run: Run = self.get_result(client_run)
69
85
 
70
86
  # pylint: disable=protected-access
71
87
  completed_lines = run._properties.get("system_metrics", {}).get("__pf__.lines.completed", "NA")
@@ -81,13 +97,17 @@ class ProxyClient: # pylint: disable=client-accepts-api-version-keyword
81
97
  return OrderedDict(
82
98
  [
83
99
  ("status", status),
84
- ("duration", str(run._end_time - run._created_on)),
100
+ ("duration", str((run._end_time or run._created_on) - run._created_on)),
85
101
  ("completed_lines", completed_lines),
86
102
  ("failed_lines", failed_lines),
87
103
  ("log_path", str(run._output_path)),
88
104
  ]
89
105
  )
90
106
 
107
+ @staticmethod
108
+ def get_result(run: BatchClientRun) -> Run:
109
+ return cast(ProxyRun, run).run.result()
110
+
91
111
  @staticmethod
92
112
  def _should_batch_use_async(flow):
93
113
  if os.getenv("AI_EVALS_BATCH_USE_ASYNC", "true").lower() == "true":
@@ -5,7 +5,7 @@ import os
5
5
  import types
6
6
  from typing import Optional, Type
7
7
 
8
- from promptflow._sdk._constants import PF_FLOW_ENTRY_IN_TMP
8
+ from azure.ai.evaluation._legacy._adapters._constants import PF_FLOW_ENTRY_IN_TMP
9
9
  from azure.ai.evaluation._constants import PF_DISABLE_TRACING
10
10
 
11
11
 
@@ -13,7 +13,7 @@ import uuid
13
13
  from typing import Any, Dict, List, Optional, Set, Type
14
14
  from urllib.parse import urlparse
15
15
 
16
- from promptflow._sdk.entities import Run
16
+ from azure.ai.evaluation._legacy._adapters.entities import Run
17
17
  from typing_extensions import Self
18
18
 
19
19
  from azure.ai.evaluation._exceptions import ErrorBlame, ErrorCategory, ErrorTarget, EvaluationException
@@ -6,13 +6,11 @@ import json
6
6
  import logging
7
7
  import os
8
8
  import re
9
- from typing import Any, Callable, Dict, List, Optional, Set, Tuple, TypedDict, TypeVar, Union
9
+ from typing import Any, Callable, Dict, List, Optional, Set, Tuple, TypedDict, Union, cast
10
10
 
11
+ from azure.ai.evaluation._legacy._adapters._constants import LINE_NUMBER
12
+ from azure.ai.evaluation._legacy._adapters.entities import Run
11
13
  import pandas as pd
12
- from promptflow._sdk._constants import LINE_NUMBER
13
- from promptflow.client import PFClient
14
- from promptflow.entities import Run
15
- from promptflow._sdk._configuration import Configuration
16
14
 
17
15
  from azure.ai.evaluation._common.math import list_mean_nan_safe, apply_transform_nan_safe
18
16
  from azure.ai.evaluation._common.utils import validate_azure_ai_project
@@ -27,7 +25,14 @@ from .._constants import (
27
25
  )
28
26
  from .._model_configurations import AzureAIProject, EvaluationResult, EvaluatorConfig
29
27
  from .._user_agent import USER_AGENT
30
- from ._batch_run import EvalRunContext, CodeClient, ProxyClient, TargetRunContext, ProxyRun
28
+ from ._batch_run import (
29
+ EvalRunContext,
30
+ CodeClient,
31
+ ProxyClient,
32
+ ProxyRun,
33
+ TargetRunContext,
34
+ RunSubmitterClient,
35
+ )
31
36
  from ._utils import (
32
37
  _apply_column_mapping,
33
38
  _log_metrics_and_instance_results,
@@ -35,8 +40,8 @@ from ._utils import (
35
40
  _write_output,
36
41
  DataLoaderFactory,
37
42
  )
43
+ from ._batch_run.batch_clients import BatchClient
38
44
 
39
- TClient = TypeVar("TClient", ProxyClient, CodeClient)
40
45
  LOGGER = logging.getLogger(__name__)
41
46
 
42
47
  # For metrics (aggregates) whose metric names intentionally differ from their
@@ -71,7 +76,7 @@ def _aggregate_other_metrics(df: pd.DataFrame) -> Tuple[List[str], Dict[str, flo
71
76
  if metric_name in METRIC_COLUMN_NAME_REPLACEMENTS:
72
77
  renamed_cols.append(col)
73
78
  new_col_name = metric_prefix + "." + METRIC_COLUMN_NAME_REPLACEMENTS[metric_name]
74
- col_with_numeric_values = pd.to_numeric(df[col], errors="coerce")
79
+ col_with_numeric_values = cast(List[float], pd.to_numeric(df[col], errors="coerce"))
75
80
  try:
76
81
  metric_columns[new_col_name] = round(list_mean_nan_safe(col_with_numeric_values), 2)
77
82
  except EvaluationException: # only exception that can be cause is all NaN values
@@ -122,7 +127,7 @@ def _aggregate_content_safety_metrics(
122
127
  defect_rates = {}
123
128
  for col in content_safety_df.columns:
124
129
  defect_rate_name = col.replace("_score", "_defect_rate")
125
- col_with_numeric_values = pd.to_numeric(content_safety_df[col], errors="coerce")
130
+ col_with_numeric_values = cast(List[float], pd.to_numeric(content_safety_df[col], errors="coerce"))
126
131
  try:
127
132
  col_with_boolean_values = apply_transform_nan_safe(
128
133
  col_with_numeric_values, lambda x: 1 if x >= CONTENT_SAFETY_DEFECT_RATE_THRESHOLD_DEFAULT else 0
@@ -161,37 +166,40 @@ def _aggregate_label_defect_metrics(df: pd.DataFrame) -> Tuple[List[str], Dict[s
161
166
  metric_name = col.split(".")[1]
162
167
  if metric_name.endswith("_label") and metric_name.replace("_label", "").lower() in handled_metrics:
163
168
  label_cols.append(col)
164
- if metric_name.endswith("_details") and metric_name.replace("_details", "").lower() in handled_metrics:
169
+ if metric_name.endswith("_details") and metric_name.replace("_details", "").lower() in handled_metrics:
165
170
  details_cols = col
166
171
 
167
172
  label_df = df[label_cols]
168
173
  defect_rates = {}
169
174
  for col in label_df.columns:
170
175
  defect_rate_name = col.replace("_label", "_defect_rate")
171
- col_with_boolean_values = pd.to_numeric(label_df[col], errors="coerce")
176
+ col_with_boolean_values = cast(List[float], pd.to_numeric(label_df[col], errors="coerce"))
172
177
  try:
173
178
  defect_rates[defect_rate_name] = round(list_mean_nan_safe(col_with_boolean_values), 2)
174
179
  except EvaluationException: # only exception that can be cause is all NaN values
175
180
  msg = f"All score evaluations are NaN/None for column {col}. No aggregation can be performed."
176
181
  LOGGER.warning(msg)
177
-
182
+
178
183
  if details_cols:
179
184
  details_df = df[details_cols]
180
185
  detail_defect_rates = {}
181
-
186
+
182
187
  for key, value in details_df.items():
183
188
  _process_rows(value, detail_defect_rates)
184
-
189
+
185
190
  for key, value in detail_defect_rates.items():
186
191
  col_with_boolean_values = pd.to_numeric(value, errors="coerce")
187
192
  try:
188
- defect_rates[f"{details_cols}.{key}_defect_rate"] = round(list_mean_nan_safe(col_with_boolean_values), 2)
193
+ defect_rates[f"{details_cols}.{key}_defect_rate"] = round(
194
+ list_mean_nan_safe(col_with_boolean_values), 2
195
+ )
189
196
  except EvaluationException: # only exception that can be cause is all NaN values
190
197
  msg = f"All score evaluations are NaN/None for column {key}. No aggregation can be performed."
191
198
  LOGGER.warning(msg)
192
-
199
+
193
200
  return label_cols, defect_rates
194
201
 
202
+
195
203
  def _process_rows(row, detail_defect_rates):
196
204
  for key, value in row.items():
197
205
  if key not in detail_defect_rates:
@@ -199,6 +207,7 @@ def _process_rows(row, detail_defect_rates):
199
207
  detail_defect_rates[key].append(value)
200
208
  return detail_defect_rates
201
209
 
210
+
202
211
  def _aggregate_metrics(df: pd.DataFrame, evaluators: Dict[str, Callable]) -> Dict[str, float]:
203
212
  """Aggregate metrics from the evaluation results.
204
213
  On top of naively calculating the mean of most metrics, this function also identifies certain columns
@@ -330,7 +339,7 @@ def _validate_columns_for_evaluators(
330
339
  missing_inputs = []
331
340
  else:
332
341
  optional_params = (
333
- evaluator._OPTIONAL_PARAMS # pylint: disable=protected-access
342
+ cast(Any, evaluator)._OPTIONAL_PARAMS # pylint: disable=protected-access
334
343
  if hasattr(evaluator, "_OPTIONAL_PARAMS")
335
344
  else []
336
345
  )
@@ -478,7 +487,7 @@ def _validate_and_load_data(target, data, evaluators, output_path, azure_ai_proj
478
487
  def _apply_target_to_data(
479
488
  target: Callable,
480
489
  data: Union[str, os.PathLike],
481
- batch_client: TClient,
490
+ batch_client: BatchClient,
482
491
  initial_data: pd.DataFrame,
483
492
  evaluation_name: Optional[str] = None,
484
493
  **kwargs,
@@ -499,14 +508,21 @@ def _apply_target_to_data(
499
508
  :return: The tuple, containing data frame and the list of added columns.
500
509
  :rtype: Tuple[pandas.DataFrame, List[str]]
501
510
  """
511
+
512
+ if not isinstance(batch_client, ProxyClient):
513
+ raise ValueError("Only ProxyClient supports target runs for now.")
514
+
502
515
  _run_name = kwargs.get("_run_name")
503
516
  with TargetRunContext():
504
- run: ProxyRun = batch_client.run(
505
- flow=target,
506
- display_name=evaluation_name,
507
- data=data,
508
- stream=True,
509
- name=_run_name,
517
+ run = cast(
518
+ ProxyRun,
519
+ batch_client.run(
520
+ flow=target,
521
+ display_name=evaluation_name,
522
+ data=data,
523
+ stream=True,
524
+ name=_run_name,
525
+ ),
510
526
  )
511
527
 
512
528
  target_output: pd.DataFrame = batch_client.get_details(run, all_results=True)
@@ -606,7 +622,6 @@ def _rename_columns_conditionally(df: pd.DataFrame) -> pd.DataFrame:
606
622
  return df
607
623
 
608
624
 
609
- # @log_evaluate_activity
610
625
  def evaluate(
611
626
  *,
612
627
  data: Union[str, os.PathLike],
@@ -757,20 +772,24 @@ def _evaluate( # pylint: disable=too-many-locals,too-many-statements
757
772
  if target is not None:
758
773
  _validate_columns_for_target(input_data_df, target)
759
774
 
760
- Configuration.get_instance().set_config("trace.destination", "none")
761
- pf_client = PFClient(user_agent=USER_AGENT)
762
- target_run: Optional[Run] = None
763
-
764
775
  # Create default configuration for evaluators that directly maps
765
776
  # input data names to keyword inputs of the same name in the evaluators.
766
777
  column_mapping = column_mapping or {}
767
778
  column_mapping.setdefault("default", {})
768
779
 
769
- # If target is set, apply 1-1 column mapping from target outputs to evaluator inputs
780
+ target_run: Optional[Run] = None
770
781
  target_generated_columns: Set[str] = set()
782
+ batch_run_client: BatchClient
783
+ batch_run_data: Union[str, os.PathLike, pd.DataFrame] = data
784
+
785
+ # If target is set, apply 1-1 column mapping from target outputs to evaluator inputs
771
786
  if data is not None and target is not None:
787
+ # Right now, only the ProxyClient that uses Promptflow supports a target function
788
+ batch_run_client = ProxyClient(user_agent=USER_AGENT)
789
+ batch_run_data = os.path.abspath(data)
790
+
772
791
  input_data_df, target_generated_columns, target_run = _apply_target_to_data(
773
- target, data, ProxyClient(pf_client), input_data_df, evaluation_name, **kwargs
792
+ target, data, batch_run_client, input_data_df, evaluation_name, **kwargs
774
793
  )
775
794
 
776
795
  for evaluator_name, mapping in column_mapping.items():
@@ -784,6 +803,17 @@ def _evaluate( # pylint: disable=too-many-locals,too-many-statements
784
803
  # customer did not mapped target output.
785
804
  if col not in mapping and run_output not in mapped_to_values:
786
805
  column_mapping[evaluator_name][col] = run_output # pylint: disable=unnecessary-dict-index-lookup
806
+ elif kwargs.pop("_use_run_submitter_client", False):
807
+ batch_run_client = RunSubmitterClient()
808
+ batch_run_data = input_data_df
809
+ elif kwargs.pop("_use_pf_client", True):
810
+ batch_run_client = ProxyClient(user_agent=USER_AGENT)
811
+ # Ensure the absolute path is passed to pf.run, as relative path doesn't work with
812
+ # multiple evaluators. If the path is already absolute, abspath will return the original path.
813
+ batch_run_data = os.path.abspath(data)
814
+ else:
815
+ batch_run_client = CodeClient()
816
+ batch_run_data = input_data_df
787
817
 
788
818
  # After we have generated all columns, we can check if we have everything we need for evaluators.
789
819
  _validate_columns_for_evaluators(input_data_df, evaluators, target, target_generated_columns, column_mapping)
@@ -799,46 +829,32 @@ def _evaluate( # pylint: disable=too-many-locals,too-many-statements
799
829
  if not col.startswith(Prefixes.TSG_OUTPUTS) and col not in column_mapping["default"].keys():
800
830
  column_mapping["default"][col] = f"${{data.{col}}}"
801
831
 
802
- def eval_batch_run(
803
- batch_run_client: TClient, *, data=Union[str, os.PathLike, pd.DataFrame]
804
- ) -> Dict[str, __EvaluatorInfo]:
805
- with EvalRunContext(batch_run_client):
806
- runs = {
807
- evaluator_name: batch_run_client.run(
808
- flow=evaluator,
809
- run=target_run,
810
- evaluator_name=evaluator_name,
811
- column_mapping=column_mapping.get(evaluator_name, column_mapping.get("default", None)),
812
- data=data,
813
- stream=True,
814
- name=kwargs.get("_run_name"),
815
- )
816
- for evaluator_name, evaluator in evaluators.items()
817
- }
832
+ with EvalRunContext(batch_run_client):
833
+ runs = {
834
+ evaluator_name: batch_run_client.run(
835
+ flow=evaluator,
836
+ data=batch_run_data,
837
+ run=target_run,
838
+ evaluator_name=evaluator_name,
839
+ column_mapping=column_mapping.get(evaluator_name, column_mapping.get("default", None)),
840
+ stream=True,
841
+ name=kwargs.get("_run_name"),
842
+ )
843
+ for evaluator_name, evaluator in evaluators.items()
844
+ }
818
845
 
819
- # get_details needs to be called within EvalRunContext scope in order to have user agent populated
820
- return {
821
- evaluator_name: {
822
- "result": batch_run_client.get_details(run, all_results=True),
823
- "metrics": batch_run_client.get_metrics(run),
824
- "run_summary": batch_run_client.get_run_summary(run),
825
- }
826
- for evaluator_name, run in runs.items()
846
+ # get_details needs to be called within EvalRunContext scope in order to have user agent populated
847
+ per_evaluator_results: Dict[str, __EvaluatorInfo] = {
848
+ evaluator_name: {
849
+ "result": batch_run_client.get_details(run, all_results=True),
850
+ "metrics": batch_run_client.get_metrics(run),
851
+ "run_summary": batch_run_client.get_run_summary(run),
827
852
  }
828
-
829
- # Batch Run
830
- use_pf_client = kwargs.get("_use_pf_client", True)
831
- if use_pf_client:
832
- # Ensure the absolute path is passed to pf.run, as relative path doesn't work with
833
- # multiple evaluators. If the path is already absolute, abspath will return the original path.
834
- data = os.path.abspath(data)
835
- per_evaluator_results = eval_batch_run(ProxyClient(pf_client), data=data)
836
- else:
837
- data = input_data_df
838
- per_evaluator_results = eval_batch_run(CodeClient(), data=input_data_df)
853
+ for evaluator_name, run in runs.items()
854
+ }
839
855
 
840
856
  # Concatenate all results
841
- evaluators_result_df = None
857
+ evaluators_result_df = pd.DataFrame()
842
858
  evaluators_metric = {}
843
859
  for evaluator_name, evaluator_result in per_evaluator_results.items():
844
860
  if fail_on_evaluator_errors and evaluator_result["run_summary"]["failed_lines"] > 0:
@@ -880,7 +896,7 @@ def _evaluate( # pylint: disable=too-many-locals,too-many-statements
880
896
  metrics.update(evaluators_metric)
881
897
 
882
898
  # Since tracing is disabled, pass None for target_run so a dummy evaluation run will be created each time.
883
- target_run = None
899
+ target_run: Optional[Run] = None
884
900
  trace_destination = _trace_destination_from_project_scope(azure_ai_project) if azure_ai_project else None
885
901
  studio_url = None
886
902
  if trace_destination: