azure-ai-evaluation 1.0.0__py3-none-any.whl → 1.0.0b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of azure-ai-evaluation might be problematic. Click here for more details.

Files changed (105) hide show
  1. azure/ai/evaluation/__init__.py +5 -31
  2. azure/ai/evaluation/_common/constants.py +2 -9
  3. azure/ai/evaluation/_common/rai_service.py +120 -300
  4. azure/ai/evaluation/_common/utils.py +23 -381
  5. azure/ai/evaluation/_constants.py +6 -19
  6. azure/ai/evaluation/_evaluate/{_batch_run → _batch_run_client}/__init__.py +2 -3
  7. azure/ai/evaluation/_evaluate/{_batch_run/eval_run_context.py → _batch_run_client/batch_run_context.py} +7 -23
  8. azure/ai/evaluation/_evaluate/{_batch_run → _batch_run_client}/code_client.py +17 -33
  9. azure/ai/evaluation/_evaluate/{_batch_run → _batch_run_client}/proxy_client.py +4 -32
  10. azure/ai/evaluation/_evaluate/_eval_run.py +24 -81
  11. azure/ai/evaluation/_evaluate/_evaluate.py +239 -393
  12. azure/ai/evaluation/_evaluate/_telemetry/__init__.py +17 -17
  13. azure/ai/evaluation/_evaluate/_utils.py +28 -82
  14. azure/ai/evaluation/_evaluators/_bleu/_bleu.py +18 -17
  15. azure/ai/evaluation/_evaluators/{_retrieval → _chat}/__init__.py +2 -2
  16. azure/ai/evaluation/_evaluators/_chat/_chat.py +357 -0
  17. azure/ai/evaluation/_evaluators/{_service_groundedness → _chat/retrieval}/__init__.py +2 -2
  18. azure/ai/evaluation/_evaluators/_chat/retrieval/_retrieval.py +157 -0
  19. azure/ai/evaluation/_evaluators/_chat/retrieval/retrieval.prompty +48 -0
  20. azure/ai/evaluation/_evaluators/_coherence/_coherence.py +88 -78
  21. azure/ai/evaluation/_evaluators/_coherence/coherence.prompty +39 -76
  22. azure/ai/evaluation/_evaluators/_content_safety/__init__.py +4 -0
  23. azure/ai/evaluation/_evaluators/_content_safety/_content_safety.py +67 -105
  24. azure/ai/evaluation/_evaluators/{_multimodal/_content_safety_multimodal_base.py → _content_safety/_content_safety_base.py} +34 -24
  25. azure/ai/evaluation/_evaluators/_content_safety/_content_safety_chat.py +301 -0
  26. azure/ai/evaluation/_evaluators/_content_safety/_hate_unfairness.py +54 -105
  27. azure/ai/evaluation/_evaluators/_content_safety/_self_harm.py +52 -99
  28. azure/ai/evaluation/_evaluators/_content_safety/_sexual.py +52 -101
  29. azure/ai/evaluation/_evaluators/_content_safety/_violence.py +51 -101
  30. azure/ai/evaluation/_evaluators/_eci/_eci.py +54 -44
  31. azure/ai/evaluation/_evaluators/_f1_score/_f1_score.py +19 -34
  32. azure/ai/evaluation/_evaluators/_fluency/_fluency.py +89 -76
  33. azure/ai/evaluation/_evaluators/_fluency/fluency.prompty +41 -66
  34. azure/ai/evaluation/_evaluators/_gleu/_gleu.py +16 -14
  35. azure/ai/evaluation/_evaluators/_groundedness/_groundedness.py +87 -113
  36. azure/ai/evaluation/_evaluators/_groundedness/groundedness.prompty +54 -0
  37. azure/ai/evaluation/_evaluators/_meteor/_meteor.py +27 -20
  38. azure/ai/evaluation/_evaluators/_protected_material/_protected_material.py +80 -89
  39. azure/ai/evaluation/_evaluators/_protected_materials/__init__.py +5 -0
  40. azure/ai/evaluation/_evaluators/_protected_materials/_protected_materials.py +104 -0
  41. azure/ai/evaluation/_evaluators/_qa/_qa.py +30 -23
  42. azure/ai/evaluation/_evaluators/_relevance/_relevance.py +96 -84
  43. azure/ai/evaluation/_evaluators/_relevance/relevance.prompty +47 -78
  44. azure/ai/evaluation/_evaluators/_rouge/_rouge.py +27 -26
  45. azure/ai/evaluation/_evaluators/_similarity/_similarity.py +38 -53
  46. azure/ai/evaluation/_evaluators/_similarity/similarity.prompty +5 -0
  47. azure/ai/evaluation/_evaluators/_xpia/xpia.py +105 -91
  48. azure/ai/evaluation/_exceptions.py +7 -28
  49. azure/ai/evaluation/_http_utils.py +132 -203
  50. azure/ai/evaluation/_model_configurations.py +8 -104
  51. azure/ai/evaluation/_version.py +1 -1
  52. azure/ai/evaluation/simulator/__init__.py +1 -2
  53. azure/ai/evaluation/simulator/_adversarial_scenario.py +1 -20
  54. azure/ai/evaluation/simulator/_adversarial_simulator.py +92 -111
  55. azure/ai/evaluation/simulator/_constants.py +1 -11
  56. azure/ai/evaluation/simulator/_conversation/__init__.py +12 -13
  57. azure/ai/evaluation/simulator/_conversation/_conversation.py +4 -4
  58. azure/ai/evaluation/simulator/_direct_attack_simulator.py +67 -33
  59. azure/ai/evaluation/simulator/_helpers/__init__.py +2 -1
  60. azure/ai/evaluation/{_common → simulator/_helpers}/_experimental.py +9 -24
  61. azure/ai/evaluation/simulator/_helpers/_simulator_data_classes.py +5 -26
  62. azure/ai/evaluation/simulator/_indirect_attack_simulator.py +94 -107
  63. azure/ai/evaluation/simulator/_model_tools/_identity_manager.py +22 -70
  64. azure/ai/evaluation/simulator/_model_tools/_proxy_completion_model.py +11 -28
  65. azure/ai/evaluation/simulator/_model_tools/_rai_client.py +4 -8
  66. azure/ai/evaluation/simulator/_model_tools/_template_handler.py +24 -68
  67. azure/ai/evaluation/simulator/_model_tools/models.py +10 -10
  68. azure/ai/evaluation/simulator/_prompty/task_query_response.prompty +10 -6
  69. azure/ai/evaluation/simulator/_prompty/task_simulate.prompty +5 -6
  70. azure/ai/evaluation/simulator/_simulator.py +207 -277
  71. azure/ai/evaluation/simulator/_tracing.py +4 -4
  72. azure/ai/evaluation/simulator/_utils.py +13 -31
  73. azure_ai_evaluation-1.0.0b2.dist-info/METADATA +449 -0
  74. azure_ai_evaluation-1.0.0b2.dist-info/RECORD +99 -0
  75. {azure_ai_evaluation-1.0.0.dist-info → azure_ai_evaluation-1.0.0b2.dist-info}/WHEEL +1 -1
  76. azure/ai/evaluation/_common/math.py +0 -89
  77. azure/ai/evaluation/_evaluate/_batch_run/target_run_context.py +0 -46
  78. azure/ai/evaluation/_evaluators/_common/__init__.py +0 -13
  79. azure/ai/evaluation/_evaluators/_common/_base_eval.py +0 -344
  80. azure/ai/evaluation/_evaluators/_common/_base_prompty_eval.py +0 -88
  81. azure/ai/evaluation/_evaluators/_common/_base_rai_svc_eval.py +0 -133
  82. azure/ai/evaluation/_evaluators/_groundedness/groundedness_with_query.prompty +0 -113
  83. azure/ai/evaluation/_evaluators/_groundedness/groundedness_without_query.prompty +0 -99
  84. azure/ai/evaluation/_evaluators/_multimodal/__init__.py +0 -20
  85. azure/ai/evaluation/_evaluators/_multimodal/_content_safety_multimodal.py +0 -132
  86. azure/ai/evaluation/_evaluators/_multimodal/_hate_unfairness.py +0 -100
  87. azure/ai/evaluation/_evaluators/_multimodal/_protected_material.py +0 -124
  88. azure/ai/evaluation/_evaluators/_multimodal/_self_harm.py +0 -100
  89. azure/ai/evaluation/_evaluators/_multimodal/_sexual.py +0 -100
  90. azure/ai/evaluation/_evaluators/_multimodal/_violence.py +0 -100
  91. azure/ai/evaluation/_evaluators/_retrieval/_retrieval.py +0 -112
  92. azure/ai/evaluation/_evaluators/_retrieval/retrieval.prompty +0 -93
  93. azure/ai/evaluation/_evaluators/_service_groundedness/_service_groundedness.py +0 -148
  94. azure/ai/evaluation/_vendor/__init__.py +0 -3
  95. azure/ai/evaluation/_vendor/rouge_score/__init__.py +0 -14
  96. azure/ai/evaluation/_vendor/rouge_score/rouge_scorer.py +0 -328
  97. azure/ai/evaluation/_vendor/rouge_score/scoring.py +0 -63
  98. azure/ai/evaluation/_vendor/rouge_score/tokenize.py +0 -63
  99. azure/ai/evaluation/_vendor/rouge_score/tokenizers.py +0 -53
  100. azure/ai/evaluation/simulator/_data_sources/__init__.py +0 -3
  101. azure/ai/evaluation/simulator/_data_sources/grounding.json +0 -1150
  102. azure_ai_evaluation-1.0.0.dist-info/METADATA +0 -595
  103. azure_ai_evaluation-1.0.0.dist-info/NOTICE.txt +0 -70
  104. azure_ai_evaluation-1.0.0.dist-info/RECORD +0 -119
  105. {azure_ai_evaluation-1.0.0.dist-info → azure_ai_evaluation-1.0.0b2.dist-info}/top_level.txt +0 -0
@@ -2,32 +2,26 @@
2
2
  # Copyright (c) Microsoft Corporation. All rights reserved.
3
3
  # ---------------------------------------------------------
4
4
  import inspect
5
- import json
6
- import logging
7
5
  import os
8
6
  import re
9
- from typing import Any, Callable, Dict, List, Optional, Set, Tuple, TypedDict, TypeVar, Union
7
+ from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type
10
8
 
9
+ import numpy as np
11
10
  import pandas as pd
12
11
  from promptflow._sdk._constants import LINE_NUMBER
13
- from promptflow._sdk._errors import UserAuthenticationError, UploadInternalError
14
12
  from promptflow.client import PFClient
15
- from promptflow.entities import Run
16
13
 
17
- from azure.ai.evaluation._common.math import list_mean_nan_safe, apply_transform_nan_safe
18
- from azure.ai.evaluation._common.utils import validate_azure_ai_project
19
14
  from azure.ai.evaluation._exceptions import ErrorBlame, ErrorCategory, ErrorTarget, EvaluationException
20
15
 
21
16
  from .._constants import (
22
17
  CONTENT_SAFETY_DEFECT_RATE_THRESHOLD_DEFAULT,
23
18
  EvaluationMetrics,
24
- EvaluationRunProperties,
25
19
  Prefixes,
26
20
  _InternalEvaluationMetrics,
27
21
  )
28
- from .._model_configurations import AzureAIProject, EvaluationResult, EvaluatorConfig
22
+ from .._model_configurations import AzureAIProject
29
23
  from .._user_agent import USER_AGENT
30
- from ._batch_run import EvalRunContext, CodeClient, ProxyClient, TargetRunContext
24
+ from ._batch_run_client import BatchRunContext, CodeClient, ProxyClient
31
25
  from ._utils import (
32
26
  _apply_column_mapping,
33
27
  _log_metrics_and_instance_results,
@@ -35,54 +29,10 @@ from ._utils import (
35
29
  _write_output,
36
30
  )
37
31
 
38
- TClient = TypeVar("TClient", ProxyClient, CodeClient)
39
- LOGGER = logging.getLogger(__name__)
40
-
41
- # For metrics (aggregates) whose metric names intentionally differ from their
42
- # originating column name, usually because the aggregation of the original value
43
- # means something sufficiently different.
44
- # Note that content safety metrics are handled seprately.
45
- METRIC_COLUMN_NAME_REPLACEMENTS = {
46
- "groundedness_pro_label": "groundedness_pro_passing_rate",
47
- }
48
-
49
-
50
- class __EvaluatorInfo(TypedDict):
51
- result: pd.DataFrame
52
- metrics: Dict[str, Any]
53
- run_summary: Dict[str, Any]
54
-
55
-
56
- def _aggregate_other_metrics(df: pd.DataFrame) -> Tuple[List[str], Dict[str, float]]:
57
- """Identify and average various metrics that need to have the metric name be replaced,
58
- instead of having the metric match the originating column name.
59
- :param df: The dataframe of evaluation results.
60
- :type df: ~pandas.DataFrame
61
- :return: A tuple; the first element is a list of dataframe columns that were aggregated,
62
- and the second element is a dictionary of resultant new metric column names and their values.
63
- :rtype: Tuple[List[str], Dict[str, float]]
64
- """
65
- renamed_cols = []
66
- metric_columns = {}
67
- for col in df.columns:
68
- metric_prefix = col.split(".")[0]
69
- metric_name = col.split(".")[1]
70
- if metric_name in METRIC_COLUMN_NAME_REPLACEMENTS:
71
- renamed_cols.append(col)
72
- new_col_name = metric_prefix + "." + METRIC_COLUMN_NAME_REPLACEMENTS[metric_name]
73
- col_with_numeric_values = pd.to_numeric(df[col], errors="coerce")
74
- try:
75
- metric_columns[new_col_name] = round(list_mean_nan_safe(col_with_numeric_values), 2)
76
- except EvaluationException: # only exception that can be cause is all NaN values
77
- msg = f"All score evaluations are NaN/None for column {col}. No aggregation can be performed."
78
- LOGGER.warning(msg)
79
-
80
- return renamed_cols, metric_columns
81
-
82
32
 
83
33
  # pylint: disable=line-too-long
84
34
  def _aggregate_content_safety_metrics(
85
- df: pd.DataFrame, evaluators: Dict[str, Callable]
35
+ df: pd.DataFrame, evaluators: Dict[str, Type]
86
36
  ) -> Tuple[List[str], Dict[str, float]]:
87
37
  """Find and aggregate defect rates for content safety metrics. Returns both a list
88
38
  of columns that were used to calculate defect rates and the defect rates themselves.
@@ -122,15 +72,11 @@ def _aggregate_content_safety_metrics(
122
72
  for col in content_safety_df.columns:
123
73
  defect_rate_name = col.replace("_score", "_defect_rate")
124
74
  col_with_numeric_values = pd.to_numeric(content_safety_df[col], errors="coerce")
125
- try:
126
- col_with_boolean_values = apply_transform_nan_safe(
127
- col_with_numeric_values, lambda x: 1 if x >= CONTENT_SAFETY_DEFECT_RATE_THRESHOLD_DEFAULT else 0
128
- )
129
- defect_rates[defect_rate_name] = round(list_mean_nan_safe(col_with_boolean_values), 2)
130
- except EvaluationException: # only exception that can be cause is all NaN values
131
- msg = f"All score evaluations are NaN/None for column {col}. No aggregation can be performed."
132
- LOGGER.warning(msg)
133
-
75
+ defect_rates[defect_rate_name] = round(
76
+ np.sum(col_with_numeric_values >= CONTENT_SAFETY_DEFECT_RATE_THRESHOLD_DEFAULT)
77
+ / col_with_numeric_values.count(),
78
+ 2,
79
+ )
134
80
  return content_safety_cols, defect_rates
135
81
 
136
82
 
@@ -160,15 +106,14 @@ def _aggregate_label_defect_metrics(df: pd.DataFrame) -> Tuple[List[str], Dict[s
160
106
  for col in label_df.columns:
161
107
  defect_rate_name = col.replace("_label", "_defect_rate")
162
108
  col_with_boolean_values = pd.to_numeric(label_df[col], errors="coerce")
163
- try:
164
- defect_rates[defect_rate_name] = round(list_mean_nan_safe(col_with_boolean_values), 2)
165
- except EvaluationException: # only exception that can be cause is all NaN values
166
- msg = f"All score evaluations are NaN/None for column {col}. No aggregation can be performed."
167
- LOGGER.warning(msg)
109
+ defect_rates[defect_rate_name] = round(
110
+ np.sum(col_with_boolean_values) / col_with_boolean_values.count(),
111
+ 2,
112
+ )
168
113
  return label_cols, defect_rates
169
114
 
170
115
 
171
- def _aggregate_metrics(df: pd.DataFrame, evaluators: Dict[str, Callable]) -> Dict[str, float]:
116
+ def _aggregate_metrics(df: pd.DataFrame, evaluators: Dict[str, Type]) -> Dict[str, float]:
172
117
  """Aggregate metrics from the evaluation results.
173
118
  On top of naively calculating the mean of most metrics, this function also identifies certain columns
174
119
  that represent defect rates and renames them accordingly. Other columns in the dataframe are dropped.
@@ -177,7 +122,7 @@ def _aggregate_metrics(df: pd.DataFrame, evaluators: Dict[str, Callable]) -> Dic
177
122
  :param df: The dataframe of evaluation results.
178
123
  :type df: ~pandas.DataFrame
179
124
  :param evaluators: A dictionary mapping of strings to evaluator classes.
180
- :type evaluators: Dict[str, Callable]
125
+ :type evaluators: Dict[str, Type]
181
126
  :return: The aggregated metrics.
182
127
  :rtype: Dict[str, float]
183
128
  """
@@ -188,11 +133,8 @@ def _aggregate_metrics(df: pd.DataFrame, evaluators: Dict[str, Callable]) -> Dic
188
133
  # Rename certain columns as defect rates if we know that's what their aggregates represent
189
134
  # Content safety metrics
190
135
  content_safety_cols, cs_defect_rates = _aggregate_content_safety_metrics(df, evaluators)
191
- other_renamed_cols, renamed_cols = _aggregate_other_metrics(df)
192
136
  handled_columns.extend(content_safety_cols)
193
- handled_columns.extend(other_renamed_cols)
194
137
  defect_rates.update(cs_defect_rates)
195
- defect_rates.update(renamed_cols)
196
138
  # Label-based (true/false) metrics where 'true' means 'something is wrong'
197
139
  label_cols, label_defect_rates = _aggregate_label_defect_metrics(df)
198
140
  handled_columns.extend(label_cols)
@@ -201,9 +143,6 @@ def _aggregate_metrics(df: pd.DataFrame, evaluators: Dict[str, Callable]) -> Dic
201
143
  # For rest of metrics, we will calculate mean
202
144
  df.drop(columns=handled_columns, inplace=True)
203
145
 
204
- # NOTE: nan/None values don't count as as booleans, so boolean columns with
205
- # nan/None values won't have a mean produced from them.
206
- # This is different from label-based known evaluators, which have special handling.
207
146
  mean_value = df.mean(numeric_only=True)
208
147
  metrics = mean_value.to_dict()
209
148
  # Add defect rates back into metrics
@@ -211,133 +150,28 @@ def _aggregate_metrics(df: pd.DataFrame, evaluators: Dict[str, Callable]) -> Dic
211
150
  return metrics
212
151
 
213
152
 
214
- def _validate_columns_for_target(
215
- df: pd.DataFrame,
216
- target: Callable,
217
- ) -> None:
218
- """
219
- Check that all columns needed by target function are present.
220
-
221
- :param df: The data frame to be validated.
222
- :type df: pd.DataFrame
223
- :param target: The callable to be applied to data set.
224
- :type target: Optional[Callable]
225
- :raises EvaluationException: If the column starts with "__outputs." or if the input data contains missing fields.
226
- """
227
- if any(c.startswith(Prefixes.TSG_OUTPUTS) for c in df.columns):
228
- msg = "The column cannot start from " f'"{Prefixes.TSG_OUTPUTS}" if target was defined.'
229
- raise EvaluationException(
230
- message=msg,
231
- internal_message=msg,
232
- target=ErrorTarget.EVALUATE,
233
- category=ErrorCategory.INVALID_VALUE,
234
- blame=ErrorBlame.USER_ERROR,
235
- )
236
- # If the target function is given, it may return
237
- # several columns and hence we cannot check the availability of columns
238
- # without knowing target function semantics.
239
- # Instead, here we will validate the columns, taken by target.
153
+ def _validate_input_data_for_evaluator(evaluator, evaluator_name, df_data, is_target_fn=False):
240
154
  required_inputs = [
241
155
  param.name
242
- for param in inspect.signature(target).parameters.values()
156
+ for param in inspect.signature(evaluator).parameters.values()
243
157
  if param.default == inspect.Parameter.empty and param.name not in ["kwargs", "args", "self"]
244
158
  ]
245
159
 
246
- missing_inputs = [col for col in required_inputs if col not in df.columns]
160
+ missing_inputs = [col for col in required_inputs if col not in df_data.columns]
247
161
  if missing_inputs:
248
- msg = f"Missing required inputs for target: {missing_inputs}."
162
+ if not is_target_fn:
163
+ msg = f"Missing required inputs for evaluator {evaluator_name} : {missing_inputs}."
164
+ raise EvaluationException(
165
+ message=msg,
166
+ internal_message=msg,
167
+ target=ErrorTarget.EVALUATE,
168
+ category=ErrorCategory.MISSING_FIELD,
169
+ blame=ErrorBlame.USER_ERROR,
170
+ )
171
+ msg = f"Missing required inputs for target : {missing_inputs}."
249
172
  raise EvaluationException(
250
173
  message=msg,
251
- target=ErrorTarget.EVALUATE,
252
- category=ErrorCategory.MISSING_FIELD,
253
- blame=ErrorBlame.USER_ERROR,
254
- )
255
-
256
-
257
- def _validate_columns_for_evaluators(
258
- df: pd.DataFrame,
259
- evaluators: Dict[str, Callable],
260
- target: Optional[Callable],
261
- target_generated_columns: Optional[Set[str]],
262
- column_mapping: Dict[str, Dict[str, str]],
263
- ) -> None:
264
- """
265
- Check that all columns needed by evaluators are present.
266
-
267
- :param df: The data frame to be validated.
268
- :type df: pd.DataFrame
269
- :param evaluators: The dictionary of evaluators.
270
- :type evaluators: Dict[str, Callable]
271
- :param target: The callable to be applied to data set.
272
- :type target: Optional[Callable]
273
- :param target_generated_columns: The set of columns generated by the target callable.
274
- :type target_generated_columns: Optional[Set[str]]
275
- :param column_mapping: Dictionary mapping evaluator name to evaluator column mapping.
276
- :type column_mapping: Dict[str, Dict[str, str]]
277
- :raises EvaluationException: If data is missing required inputs or if the target callable did not generate the necessary columns.
278
- """
279
- missing_inputs_per_evaluator = {}
280
-
281
- for evaluator_name, evaluator in evaluators.items():
282
- # Apply column mapping
283
- mapping_config = column_mapping.get(evaluator_name, column_mapping.get("default", None))
284
- new_df = _apply_column_mapping(df, mapping_config)
285
-
286
- # Validate input data for evaluator
287
- is_built_in = evaluator.__module__.startswith("azure.ai.evaluation")
288
- if is_built_in:
289
- # Note that for built-in evaluators supporting the "conversation" parameter,
290
- # input parameters are now optional.
291
- evaluator_params = [
292
- param.name
293
- for param in inspect.signature(evaluator).parameters.values()
294
- if param.name not in ["kwargs", "args", "self"]
295
- ]
296
-
297
- if "conversation" in evaluator_params and "conversation" in new_df.columns:
298
- # Ignore the missing fields if "conversation" presents in the input data
299
- missing_inputs = []
300
- else:
301
- optional_params = (
302
- evaluator._OPTIONAL_PARAMS # pylint: disable=protected-access
303
- if hasattr(evaluator, "_OPTIONAL_PARAMS")
304
- else []
305
- )
306
- excluded_params = set(new_df.columns).union(optional_params)
307
- missing_inputs = [col for col in evaluator_params if col not in excluded_params]
308
-
309
- # If "conversation" is the only parameter and it is missing, keep it in the missing inputs
310
- # Otherwise, remove it from the missing inputs
311
- if "conversation" in missing_inputs:
312
- if not (evaluator_params == ["conversation"] and missing_inputs == ["conversation"]):
313
- missing_inputs.remove("conversation")
314
- else:
315
- evaluator_params = [
316
- param.name
317
- for param in inspect.signature(evaluator).parameters.values()
318
- if param.default == inspect.Parameter.empty and param.name not in ["kwargs", "args", "self"]
319
- ]
320
-
321
- missing_inputs = [col for col in evaluator_params if col not in new_df.columns]
322
-
323
- if missing_inputs:
324
- missing_inputs_per_evaluator[evaluator_name] = missing_inputs
325
-
326
- if missing_inputs_per_evaluator:
327
- msg = "Some evaluators are missing required inputs:\n"
328
- for evaluator_name, missing in missing_inputs_per_evaluator.items():
329
- msg += f"- {evaluator_name}: {missing}\n"
330
-
331
- # Add the additional notes
332
- msg += "\nTo resolve this issue:\n"
333
- msg += "- Ensure the data contains required inputs.\n"
334
- if target is not None:
335
- msg += "- Verify that the target is generating the necessary columns for the evaluators. "
336
- msg += f"Currently generated columns: {target_generated_columns} \n"
337
- msg += "- Check that the column mapping is correctly configured."
338
-
339
- raise EvaluationException(
340
- message=msg.strip(),
174
+ internal_message=msg,
341
175
  target=ErrorTarget.EVALUATE,
342
176
  category=ErrorCategory.MISSING_FIELD,
343
177
  blame=ErrorBlame.USER_ERROR,
@@ -346,85 +180,76 @@ def _validate_columns_for_evaluators(
346
180
 
347
181
  def _validate_and_load_data(target, data, evaluators, output_path, azure_ai_project, evaluation_name):
348
182
  if data is None:
349
- msg = "The 'data' parameter is required for evaluation."
350
- raise EvaluationException(
351
- message=msg,
352
- target=ErrorTarget.EVALUATE,
353
- category=ErrorCategory.INVALID_VALUE,
354
- blame=ErrorBlame.USER_ERROR,
355
- )
356
- if not isinstance(data, (os.PathLike, str)):
357
- msg = "The 'data' parameter must be a string or a path-like object."
358
- raise EvaluationException(
359
- message=msg,
360
- target=ErrorTarget.EVALUATE,
361
- category=ErrorCategory.INVALID_VALUE,
362
- blame=ErrorBlame.USER_ERROR,
363
- )
364
- if not os.path.exists(data):
365
- msg = f"The input data file path '{data}' does not exist."
183
+ msg = "data parameter must be provided for evaluation."
366
184
  raise EvaluationException(
367
185
  message=msg,
186
+ internal_message=msg,
368
187
  target=ErrorTarget.EVALUATE,
369
- category=ErrorCategory.INVALID_VALUE,
188
+ category=ErrorCategory.MISSING_FIELD,
370
189
  blame=ErrorBlame.USER_ERROR,
371
190
  )
372
191
 
373
192
  if target is not None:
374
193
  if not callable(target):
375
- msg = "The 'target' parameter must be a callable function."
194
+ msg = "target parameter must be a callable function."
376
195
  raise EvaluationException(
377
196
  message=msg,
197
+ internal_message=msg,
378
198
  target=ErrorTarget.EVALUATE,
379
199
  category=ErrorCategory.INVALID_VALUE,
380
200
  blame=ErrorBlame.USER_ERROR,
381
201
  )
382
202
 
383
- if not evaluators:
384
- msg = "The 'evaluators' parameter is required and cannot be None or empty."
385
- raise EvaluationException(
386
- message=msg,
387
- target=ErrorTarget.EVALUATE,
388
- category=ErrorCategory.INVALID_VALUE,
389
- blame=ErrorBlame.USER_ERROR,
390
- )
391
- if not isinstance(evaluators, dict):
392
- msg = "The 'evaluators' parameter must be a dictionary."
393
- raise EvaluationException(
394
- message=msg,
395
- target=ErrorTarget.EVALUATE,
396
- category=ErrorCategory.INVALID_VALUE,
397
- blame=ErrorBlame.USER_ERROR,
398
- )
203
+ if data is not None:
204
+ if not isinstance(data, str):
205
+ msg = "data parameter must be a string."
206
+ raise EvaluationException(
207
+ message=msg,
208
+ internal_message=msg,
209
+ target=ErrorTarget.EVALUATE,
210
+ category=ErrorCategory.INVALID_VALUE,
211
+ blame=ErrorBlame.USER_ERROR,
212
+ )
399
213
 
400
- if output_path is not None:
401
- if not isinstance(output_path, (os.PathLike, str)):
402
- msg = "The 'output_path' parameter must be a string or a path-like object."
214
+ if evaluators is not None:
215
+ if not isinstance(evaluators, dict):
216
+ msg = "evaluators parameter must be a dictionary."
403
217
  raise EvaluationException(
404
218
  message=msg,
219
+ internal_message=msg,
405
220
  target=ErrorTarget.EVALUATE,
406
221
  category=ErrorCategory.INVALID_VALUE,
407
222
  blame=ErrorBlame.USER_ERROR,
408
223
  )
409
224
 
410
- output_dir = output_path if os.path.isdir(output_path) else os.path.dirname(output_path)
411
- if output_dir and not os.path.exists(output_dir):
412
- msg = f"The output directory '{output_dir}' does not exist. Please create the directory manually."
225
+ if output_path is not None:
226
+ if not isinstance(output_path, str):
227
+ msg = "output_path parameter must be a string."
413
228
  raise EvaluationException(
414
229
  message=msg,
230
+ internal_message=msg,
415
231
  target=ErrorTarget.EVALUATE,
416
232
  category=ErrorCategory.INVALID_VALUE,
417
233
  blame=ErrorBlame.USER_ERROR,
418
234
  )
419
235
 
420
236
  if azure_ai_project is not None:
421
- validate_azure_ai_project(azure_ai_project)
237
+ if not isinstance(azure_ai_project, Dict):
238
+ msg = "azure_ai_project parameter must be a dictionary."
239
+ raise EvaluationException(
240
+ message=msg,
241
+ internal_message=msg,
242
+ target=ErrorTarget.EVALUATE,
243
+ category=ErrorCategory.INVALID_VALUE,
244
+ blame=ErrorBlame.USER_ERROR,
245
+ )
422
246
 
423
247
  if evaluation_name is not None:
424
- if not isinstance(evaluation_name, str) or not evaluation_name.strip():
425
- msg = "The 'evaluation_name' parameter must be a non-empty string."
248
+ if not isinstance(evaluation_name, str):
249
+ msg = "evaluation_name parameter must be a string."
426
250
  raise EvaluationException(
427
251
  message=msg,
252
+ internal_message=msg,
428
253
  target=ErrorTarget.EVALUATE,
429
254
  category=ErrorCategory.INVALID_VALUE,
430
255
  blame=ErrorBlame.USER_ERROR,
@@ -434,7 +259,8 @@ def _validate_and_load_data(target, data, evaluators, output_path, azure_ai_proj
434
259
  initial_data_df = pd.read_json(data, lines=True)
435
260
  except Exception as e:
436
261
  raise EvaluationException(
437
- message=f"Unable to load data from '{data}'. Please ensure the input is valid JSONL format. Detailed error: {e}.",
262
+ message=f"Failed to load data from {data}. Confirm that it is valid jsonl data. Error: {str(e)}.",
263
+ internal_message="Failed to load data. Confirm that it is valid jsonl data.",
438
264
  target=ErrorTarget.EVALUATE,
439
265
  category=ErrorCategory.INVALID_VALUE,
440
266
  blame=ErrorBlame.USER_ERROR,
@@ -443,60 +269,88 @@ def _validate_and_load_data(target, data, evaluators, output_path, azure_ai_proj
443
269
  return initial_data_df
444
270
 
445
271
 
272
+ def _validate_columns(
273
+ df: pd.DataFrame,
274
+ evaluators: Dict[str, Any],
275
+ target: Optional[Callable],
276
+ evaluator_config: Dict[str, Dict[str, str]],
277
+ ) -> None:
278
+ """
279
+ Check that all columns needed by evaluator or target function are present.
280
+
281
+ :param df: The data frame to be validated.
282
+ :type df: pd.DataFrame
283
+ :param evaluators: The dictionary of evaluators.
284
+ :type evaluators: Dict[str, Any]
285
+ :param target: The callable to be applied to data set.
286
+ :type target: Optional[Callable]
287
+ :param evaluator_config: The configuration for evaluators.
288
+ :type evaluator_config: Dict[str, Dict[str, str]]
289
+ :raises EvaluationException: If column starts from "__outputs." while target is defined.
290
+ """
291
+ if target:
292
+ if any(c.startswith(Prefixes.TSG_OUTPUTS) for c in df.columns):
293
+ msg = "The column cannot start from " f'"{Prefixes.TSG_OUTPUTS}" if target was defined.'
294
+ raise EvaluationException(
295
+ message=msg,
296
+ internal_message=msg,
297
+ target=ErrorTarget.EVALUATE,
298
+ category=ErrorCategory.INVALID_VALUE,
299
+ blame=ErrorBlame.USER_ERROR,
300
+ )
301
+ # If the target function is given, it may return
302
+ # several columns and hence we cannot check the availability of columns
303
+ # without knowing target function semantics.
304
+ # Instead, here we will validate the columns, taken by target.
305
+ _validate_input_data_for_evaluator(target, None, df, is_target_fn=True)
306
+ else:
307
+ for evaluator_name, evaluator in evaluators.items():
308
+ # Apply column mapping
309
+ mapping_config = evaluator_config.get(evaluator_name, evaluator_config.get("default", None))
310
+ new_df = _apply_column_mapping(df, mapping_config)
311
+
312
+ # Validate input data for evaluator
313
+ _validate_input_data_for_evaluator(evaluator, evaluator_name, new_df)
314
+
315
+
446
316
  def _apply_target_to_data(
447
317
  target: Callable,
448
- data: Union[str, os.PathLike],
318
+ data: str,
449
319
  pf_client: PFClient,
450
320
  initial_data: pd.DataFrame,
451
321
  evaluation_name: Optional[str] = None,
452
- **kwargs,
453
- ) -> Tuple[pd.DataFrame, Set[str], Run]:
322
+ _run_name: Optional[str] = None,
323
+ ) -> Tuple[pd.DataFrame, Set[str]]:
454
324
  """
455
325
  Apply the target function to the data set and return updated data and generated columns.
456
326
 
457
327
  :param target: The function to be applied to data.
458
328
  :type target: Callable
459
329
  :param data: The path to input jsonl file.
460
- :type data: Union[str, os.PathLike]
330
+ :type data: str
461
331
  :param pf_client: The promptflow client to be used.
462
332
  :type pf_client: PFClient
463
333
  :param initial_data: The data frame with the loaded data.
464
334
  :type initial_data: pd.DataFrame
465
335
  :param evaluation_name: The name of the evaluation.
466
336
  :type evaluation_name: Optional[str]
337
+ :param _run_name: The name of target run. Used for testing only.
338
+ :type _run_name: Optional[str]
467
339
  :return: The tuple, containing data frame and the list of added columns.
468
340
  :rtype: Tuple[pandas.DataFrame, List[str]]
469
341
  """
470
- _run_name = kwargs.get("_run_name")
471
- upload_target_snaphot = kwargs.get("_upload_target_snapshot", False)
472
-
473
- try:
474
- with TargetRunContext(upload_target_snaphot):
475
- run: Run = pf_client.run(
476
- flow=target,
477
- display_name=evaluation_name,
478
- data=data,
479
- properties={EvaluationRunProperties.RUN_TYPE: "eval_run", "isEvaluatorRun": "true"},
480
- stream=True,
481
- name=_run_name,
482
- )
483
- except (UserAuthenticationError, UploadInternalError) as ex:
484
- if "Failed to upload run" in ex.message:
485
- msg = (
486
- "Failed to upload the target run to the cloud. "
487
- "This may be caused by insufficient permission to access storage or other errors."
488
- )
489
- raise EvaluationException(
490
- message=msg,
491
- target=ErrorTarget.EVALUATE,
492
- category=ErrorCategory.FAILED_REMOTE_TRACKING,
493
- blame=ErrorBlame.USER_ERROR,
494
- tsg_link="https://aka.ms/azsdk/python/evaluation/remotetracking/troubleshoot",
495
- ) from ex
496
-
497
- raise ex
498
-
499
- target_output: pd.DataFrame = pf_client.runs.get_details(run, all_results=True)
342
+ # We are manually creating the temporary directory for the flow
343
+ # because the way tempdir remove temporary directories will
344
+ # hang the debugger, because promptflow will keep flow directory.
345
+ run = pf_client.run(
346
+ flow=target,
347
+ display_name=evaluation_name,
348
+ data=data,
349
+ properties={"runType": "eval_run", "isEvaluatorRun": "true"},
350
+ stream=True,
351
+ name=_run_name,
352
+ )
353
+ target_output = pf_client.runs.get_details(run, all_results=True)
500
354
  # Remove input and output prefix
501
355
  generated_columns = {
502
356
  col[len(Prefixes.OUTPUTS) :] for col in target_output.columns if col.startswith(Prefixes.OUTPUTS)
@@ -518,30 +372,28 @@ def _apply_target_to_data(
518
372
  return target_output, generated_columns, run
519
373
 
520
374
 
521
- def _process_column_mappings(
522
- column_mapping: Dict[str, Optional[Dict[str, str]]],
523
- ) -> Dict[str, Dict[str, str]]:
524
- """Process column_mapping to replace ${target.} with ${data.}
375
+ def _process_evaluator_config(evaluator_config: Dict[str, Dict[str, str]]) -> Dict[str, Dict[str, str]]:
376
+ """Process evaluator_config to replace ${target.} with ${data.}
525
377
 
526
- :param column_mapping: The configuration for evaluators.
527
- :type column_mapping: Dict[str, Optional[Dict[str, str]]]
378
+ :param evaluator_config: The configuration for evaluators.
379
+ :type evaluator_config: Dict[str, Dict[str, str]]
528
380
  :return: The processed configuration.
529
381
  :rtype: Dict[str, Dict[str, str]]
530
382
  """
531
383
 
532
- processed_config: Dict[str, Dict[str, str]] = {}
384
+ processed_config = {}
533
385
 
534
386
  unexpected_references = re.compile(r"\${(?!target\.|data\.).+?}")
535
387
 
536
- if column_mapping:
537
- for evaluator, mapping_config in column_mapping.items():
388
+ if evaluator_config:
389
+ for evaluator, mapping_config in evaluator_config.items():
538
390
  if isinstance(mapping_config, dict):
539
391
  processed_config[evaluator] = {}
540
392
 
541
393
  for map_to_key, map_value in mapping_config.items():
542
394
  # Check if there's any unexpected reference other than ${target.} or ${data.}
543
395
  if unexpected_references.search(map_value):
544
- msg = "Unexpected references detected in 'column_mapping'. Ensure only ${target.} and ${data.} are used."
396
+ msg = "Unexpected references detected in 'evaluator_config'. Ensure only ${target.} and ${data.} are used."
545
397
  raise EvaluationException(
546
398
  message=msg,
547
399
  internal_message=msg,
@@ -583,15 +435,15 @@ def _rename_columns_conditionally(df: pd.DataFrame) -> pd.DataFrame:
583
435
  # @log_evaluate_activity
584
436
  def evaluate(
585
437
  *,
586
- data: Union[str, os.PathLike],
438
+ data: str,
587
439
  evaluators: Dict[str, Callable],
588
440
  evaluation_name: Optional[str] = None,
589
441
  target: Optional[Callable] = None,
590
- evaluator_config: Optional[Dict[str, EvaluatorConfig]] = None,
442
+ evaluator_config: Optional[Dict[str, Dict[str, str]]] = None,
591
443
  azure_ai_project: Optional[AzureAIProject] = None,
592
- output_path: Optional[Union[str, os.PathLike]] = None,
444
+ output_path: Optional[str] = None,
593
445
  **kwargs,
594
- ) -> EvaluationResult:
446
+ ):
595
447
  """Evaluates target or data with built-in or custom evaluators. If both target and data are provided,
596
448
  data will be run through target function and then results will be evaluated.
597
449
 
@@ -606,26 +458,56 @@ def evaluate(
606
458
  :keyword target: Target to be evaluated. `target` and `data` both cannot be None
607
459
  :paramtype target: Optional[Callable]
608
460
  :keyword evaluator_config: Configuration for evaluators. The configuration should be a dictionary with evaluator
609
- names as keys and a values that are dictionaries containing the column mappings. The column mappings should
610
- be a dictionary with keys as the column names in the evaluator input and values as the column names in the
611
- input data or data generated by target.
612
- :paramtype evaluator_config: Optional[Dict[str, ~azure.ai.evaluation.EvaluatorConfig]]
461
+ names as keys and a dictionary of column mappings as values. The column mappings should be a dictionary with
462
+ keys as the column names in the evaluator input and values as the column names in the input data or data
463
+ generated by target.
464
+ :paramtype evaluator_config: Optional[Dict[str, Dict[str, str]]
613
465
  :keyword output_path: The local folder or file path to save evaluation results to if set. If folder path is provided
614
466
  the results will be saved to a file named `evaluation_results.json` in the folder.
615
467
  :paramtype output_path: Optional[str]
616
468
  :keyword azure_ai_project: Logs evaluation results to AI Studio if set.
617
469
  :paramtype azure_ai_project: Optional[~azure.ai.evaluation.AzureAIProject]
618
470
  :return: Evaluation results.
619
- :rtype: ~azure.ai.evaluation.EvaluationResult
471
+ :rtype: dict
472
+
473
+ :Example:
474
+
475
+ Evaluate API can be used as follows:
476
+
477
+ .. code-block:: python
478
+
479
+ from azure.ai.evaluation import evaluate, RelevanceEvaluator, CoherenceEvaluator
480
+
620
481
 
621
- .. admonition:: Example:
482
+ model_config = {
483
+ "azure_endpoint": os.environ.get("AZURE_OPENAI_ENDPOINT"),
484
+ "api_key": os.environ.get("AZURE_OPENAI_KEY"),
485
+ "azure_deployment": os.environ.get("AZURE_OPENAI_DEPLOYMENT")
486
+ }
487
+
488
+ coherence_eval = CoherenceEvaluator(model_config=model_config)
489
+ relevance_eval = RelevanceEvaluator(model_config=model_config)
490
+
491
+ path = "evaluate_test_data.jsonl"
492
+ result = evaluate(
493
+ data=path,
494
+ evaluators={
495
+ "coherence": coherence_eval,
496
+ "relevance": relevance_eval,
497
+ },
498
+ evaluator_config={
499
+ "coherence": {
500
+ "response": "${data.response}",
501
+ "query": "${data.query}"
502
+ },
503
+ "relevance": {
504
+ "response": "${data.response}",
505
+ "context": "${data.context}",
506
+ "query": "${data.query}"
507
+ }
508
+ }
509
+ )
622
510
 
623
- .. literalinclude:: ../samples/evaluation_samples_evaluate.py
624
- :start-after: [START evaluate_method]
625
- :end-before: [END evaluate_method]
626
- :language: python
627
- :dedent: 8
628
- :caption: Run an evaluation on local data with Coherence and Relevance evaluators.
629
511
  """
630
512
  try:
631
513
  return _evaluate(
@@ -656,90 +538,69 @@ def evaluate(
656
538
  internal_message=error_message,
657
539
  target=ErrorTarget.EVALUATE,
658
540
  category=ErrorCategory.FAILED_EXECUTION,
659
- blame=ErrorBlame.USER_ERROR,
660
- ) from e
661
-
662
- # Ensure a consistent user experience when encountering errors by converting
663
- # all other exceptions to EvaluationException.
664
- if not isinstance(e, EvaluationException):
665
- raise EvaluationException(
666
- message=str(e),
667
- target=ErrorTarget.EVALUATE,
668
- category=ErrorCategory.FAILED_EXECUTION,
669
- blame=ErrorBlame.SYSTEM_ERROR,
541
+ blame=ErrorBlame.UNKNOWN,
670
542
  ) from e
671
543
 
672
544
  raise e
673
545
 
674
546
 
675
- def _print_summary(per_evaluator_results: Dict[str, Any]) -> None:
676
- # Extract evaluators with a non-empty "run_summary"
677
- output_dict = {
678
- name: result["run_summary"] for name, result in per_evaluator_results.items() if result.get("run_summary")
679
- }
680
-
681
- if output_dict:
682
- print("======= Combined Run Summary (Per Evaluator) =======\n")
683
- print(json.dumps(output_dict, indent=4))
684
- print("\n====================================================\n")
685
-
686
-
687
- def _evaluate( # pylint: disable=too-many-locals,too-many-statements
547
+ def _evaluate( # pylint: disable=too-many-locals
688
548
  *,
689
- evaluators: Dict[str, Callable],
690
549
  evaluation_name: Optional[str] = None,
691
550
  target: Optional[Callable] = None,
692
- data: Union[str, os.PathLike],
693
- evaluator_config: Optional[Dict[str, EvaluatorConfig]] = None,
551
+ data: Optional[str] = None,
552
+ evaluators: Optional[Dict[str, Callable]] = None,
553
+ evaluator_config: Optional[Dict[str, Dict[str, str]]] = None,
694
554
  azure_ai_project: Optional[AzureAIProject] = None,
695
- output_path: Optional[Union[str, os.PathLike]] = None,
555
+ output_path: Optional[str] = None,
696
556
  **kwargs,
697
- ) -> EvaluationResult:
557
+ ):
698
558
  input_data_df = _validate_and_load_data(target, data, evaluators, output_path, azure_ai_project, evaluation_name)
699
559
 
700
560
  # Process evaluator config to replace ${target.} with ${data.}
701
561
  if evaluator_config is None:
702
562
  evaluator_config = {}
703
- # extract column mapping dicts into dictionary mapping evaluator name to column mapping
704
- column_mapping = _process_column_mappings(
705
- {
706
- evaluator_name: evaluator_configuration.get("column_mapping", None)
707
- for evaluator_name, evaluator_configuration in evaluator_config.items()
708
- }
563
+ evaluator_config = _process_evaluator_config(evaluator_config)
564
+ _validate_columns(input_data_df, evaluators, target, evaluator_config)
565
+
566
+ # Target Run
567
+ pf_client = PFClient(
568
+ config=(
569
+ {"trace.destination": _trace_destination_from_project_scope(azure_ai_project)} if azure_ai_project else None
570
+ ),
571
+ user_agent=USER_AGENT,
709
572
  )
710
573
 
711
- if target is not None:
712
- _validate_columns_for_target(input_data_df, target)
713
-
714
- pf_client = PFClient(user_agent=USER_AGENT)
715
- target_run: Optional[Run] = None
574
+ trace_destination = pf_client._config.get_trace_destination() # pylint: disable=protected-access
575
+ target_run = None
576
+ target_generated_columns = set()
716
577
 
717
578
  # Create default configuration for evaluators that directly maps
718
579
  # input data names to keyword inputs of the same name in the evaluators.
719
- column_mapping = column_mapping or {}
720
- column_mapping.setdefault("default", {})
580
+ evaluator_config = evaluator_config or {}
581
+ evaluator_config.setdefault("default", {})
721
582
 
722
583
  # If target is set, apply 1-1 column mapping from target outputs to evaluator inputs
723
- target_generated_columns: Set[str] = set()
724
584
  if data is not None and target is not None:
725
585
  input_data_df, target_generated_columns, target_run = _apply_target_to_data(
726
- target, data, pf_client, input_data_df, evaluation_name, **kwargs
586
+ target, data, pf_client, input_data_df, evaluation_name, _run_name=kwargs.get("_run_name")
727
587
  )
728
588
 
729
- for evaluator_name, mapping in column_mapping.items():
589
+ for evaluator_name, mapping in evaluator_config.items():
730
590
  mapped_to_values = set(mapping.values())
731
591
  for col in target_generated_columns:
732
592
  # If user defined mapping differently, do not change it.
733
593
  # If it was mapped to target, we have already changed it
734
- # in _process_column_mappings
594
+ # in _process_evaluator_config
735
595
  run_output = f"${{run.outputs.{col}}}"
736
596
  # We will add our mapping only if
737
597
  # customer did not mapped target output.
738
598
  if col not in mapping and run_output not in mapped_to_values:
739
- column_mapping[evaluator_name][col] = run_output # pylint: disable=unnecessary-dict-index-lookup
599
+ evaluator_config[evaluator_name][col] = run_output # pylint: disable=unnecessary-dict-index-lookup
740
600
 
741
- # After we have generated all columns, we can check if we have everything we need for evaluators.
742
- _validate_columns_for_evaluators(input_data_df, evaluators, target, target_generated_columns, column_mapping)
601
+ # After we have generated all columns we can check if we have
602
+ # everything we need for evaluators.
603
+ _validate_columns(input_data_df, evaluators, target=None, evaluator_config=evaluator_config)
743
604
 
744
605
  # Apply 1-1 mapping from input data to evaluator inputs, excluding values already assigned
745
606
  # via target mapping.
@@ -749,52 +610,44 @@ def _evaluate( # pylint: disable=too-many-locals,too-many-statements
749
610
  for col in input_data_df.columns:
750
611
  # Ignore columns added by target mapping. These are formatted as "__outputs.<column_name>"
751
612
  # Also ignore columns that are already in config, since they've been covered by target mapping.
752
- if not col.startswith(Prefixes.TSG_OUTPUTS) and col not in column_mapping["default"].keys():
753
- column_mapping["default"][col] = f"${{data.{col}}}"
754
-
755
- def eval_batch_run(
756
- batch_run_client: TClient, *, data=Union[str, os.PathLike, pd.DataFrame]
757
- ) -> Dict[str, __EvaluatorInfo]:
758
- with EvalRunContext(batch_run_client):
759
- runs = {
760
- evaluator_name: batch_run_client.run(
761
- flow=evaluator,
762
- run=target_run,
763
- evaluator_name=evaluator_name,
764
- column_mapping=column_mapping.get(evaluator_name, column_mapping.get("default", None)),
765
- data=data,
766
- stream=True,
767
- name=kwargs.get("_run_name"),
768
- )
769
- for evaluator_name, evaluator in evaluators.items()
770
- }
771
-
772
- # get_details needs to be called within EvalRunContext scope in order to have user agent populated
773
- return {
774
- evaluator_name: {
775
- "result": batch_run_client.get_details(run, all_results=True),
776
- "metrics": batch_run_client.get_metrics(run),
777
- "run_summary": batch_run_client.get_run_summary(run),
778
- }
779
- for evaluator_name, run in runs.items()
780
- }
781
-
613
+ if not col.startswith(Prefixes.TSG_OUTPUTS) and col not in evaluator_config["default"].keys():
614
+ evaluator_config["default"][col] = f"${{data.{col}}}"
782
615
  # Batch Run
616
+ evaluators_info = {}
783
617
  use_pf_client = kwargs.get("_use_pf_client", True)
784
618
  if use_pf_client:
619
+ batch_run_client = ProxyClient(pf_client)
620
+
785
621
  # Ensure the absolute path is passed to pf.run, as relative path doesn't work with
786
622
  # multiple evaluators. If the path is already absolute, abspath will return the original path.
787
623
  data = os.path.abspath(data)
788
- per_evaluator_results = eval_batch_run(ProxyClient(pf_client), data=data)
789
624
  else:
625
+ batch_run_client = CodeClient()
790
626
  data = input_data_df
791
- per_evaluator_results = eval_batch_run(CodeClient(), data=input_data_df)
627
+
628
+ with BatchRunContext(batch_run_client):
629
+ for evaluator_name, evaluator in evaluators.items():
630
+ evaluators_info[evaluator_name] = {}
631
+ evaluators_info[evaluator_name]["run"] = batch_run_client.run(
632
+ flow=evaluator,
633
+ run=target_run,
634
+ evaluator_name=evaluator_name,
635
+ column_mapping=evaluator_config.get(evaluator_name, evaluator_config.get("default", None)),
636
+ data=data,
637
+ stream=True,
638
+ name=kwargs.get("_run_name"),
639
+ )
640
+
641
+ # get_details needs to be called within BatchRunContext scope in order to have user agent populated
642
+ for evaluator_name, evaluator_info in evaluators_info.items():
643
+ evaluator_info["result"] = batch_run_client.get_details(evaluator_info["run"], all_results=True)
644
+ evaluator_info["metrics"] = batch_run_client.get_metrics(evaluator_info["run"])
792
645
 
793
646
  # Concatenate all results
794
647
  evaluators_result_df = None
795
648
  evaluators_metric = {}
796
- for evaluator_name, evaluator_result in per_evaluator_results.items():
797
- evaluator_result_df = evaluator_result["result"]
649
+ for evaluator_name, evaluator_info in evaluators_info.items():
650
+ evaluator_result_df = evaluator_info["result"]
798
651
 
799
652
  # drop input columns
800
653
  evaluator_result_df = evaluator_result_df.drop(
@@ -817,7 +670,7 @@ def _evaluate( # pylint: disable=too-many-locals,too-many-statements
817
670
  else evaluator_result_df
818
671
  )
819
672
 
820
- evaluators_metric.update({f"{evaluator_name}.{k}": v for k, v in evaluator_result["metrics"].items()})
673
+ evaluators_metric.update({f"{evaluator_name}.{k}": v for k, v in evaluator_info["metrics"].items()})
821
674
 
822
675
  # Rename columns, generated by target function to outputs instead of inputs.
823
676
  # If target generates columns, already present in the input data, these columns
@@ -827,10 +680,6 @@ def _evaluate( # pylint: disable=too-many-locals,too-many-statements
827
680
  result_df = pd.concat([input_data_df, evaluators_result_df], axis=1, verify_integrity=True)
828
681
  metrics = _aggregate_metrics(evaluators_result_df, evaluators)
829
682
  metrics.update(evaluators_metric)
830
-
831
- # Since tracing is disabled, pass None for target_run so a dummy evaluation run will be created each time.
832
- target_run = None
833
- trace_destination = _trace_destination_from_project_scope(azure_ai_project) if azure_ai_project else None
834
683
  studio_url = _log_metrics_and_instance_results(
835
684
  metrics,
836
685
  result_df,
@@ -839,10 +688,7 @@ def _evaluate( # pylint: disable=too-many-locals,too-many-statements
839
688
  evaluation_name,
840
689
  )
841
690
 
842
- result_df_dict = result_df.to_dict("records")
843
- result: EvaluationResult = {"rows": result_df_dict, "metrics": metrics, "studio_url": studio_url} # type: ignore
844
-
845
- _print_summary(per_evaluator_results)
691
+ result = {"rows": result_df.to_dict("records"), "metrics": metrics, "studio_url": studio_url}
846
692
 
847
693
  if output_path:
848
694
  _write_output(output_path, result)