awslabs.cdk-mcp-server 0.1.1__py3-none-any.whl → 0.1.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (32) hide show
  1. awslabs/cdk_mcp_server/core/resources.py +104 -15
  2. awslabs/cdk_mcp_server/core/server.py +4 -3
  3. awslabs/cdk_mcp_server/core/tools.py +6 -1
  4. awslabs/cdk_mcp_server/data/genai_cdk_loader.py +508 -349
  5. {awslabs_cdk_mcp_server-0.1.1.dist-info → awslabs_cdk_mcp_server-0.1.3.dist-info}/METADATA +24 -1
  6. awslabs_cdk_mcp_server-0.1.3.dist-info/RECORD +33 -0
  7. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/actiongroups.md +0 -137
  8. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/alias.md +0 -39
  9. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/collaboration.md +0 -91
  10. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/creation.md +0 -149
  11. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/custom_orchestration.md +0 -74
  12. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/overview.md +0 -78
  13. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/prompt_override.md +0 -70
  14. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/bedrockguardrails.md +0 -188
  15. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/chunking.md +0 -137
  16. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/datasources.md +0 -225
  17. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/kendra.md +0 -81
  18. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/overview.md +0 -116
  19. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/parsing.md +0 -36
  20. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/transformation.md +0 -30
  21. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/vector/aurora.md +0 -185
  22. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/vector/creation.md +0 -80
  23. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/vector/opensearch.md +0 -56
  24. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/vector/pinecone.md +0 -66
  25. awslabs/cdk_mcp_server/static/genai_cdk/bedrock/profiles.md +0 -153
  26. awslabs/cdk_mcp_server/static/genai_cdk/opensearch-vectorindex/overview.md +0 -135
  27. awslabs/cdk_mcp_server/static/genai_cdk/opensearchserverless/overview.md +0 -17
  28. awslabs_cdk_mcp_server-0.1.1.dist-info/RECORD +0 -54
  29. {awslabs_cdk_mcp_server-0.1.1.dist-info → awslabs_cdk_mcp_server-0.1.3.dist-info}/WHEEL +0 -0
  30. {awslabs_cdk_mcp_server-0.1.1.dist-info → awslabs_cdk_mcp_server-0.1.3.dist-info}/entry_points.txt +0 -0
  31. {awslabs_cdk_mcp_server-0.1.1.dist-info → awslabs_cdk_mcp_server-0.1.3.dist-info}/licenses/LICENSE +0 -0
  32. {awslabs_cdk_mcp_server-0.1.1.dist-info → awslabs_cdk_mcp_server-0.1.3.dist-info}/licenses/NOTICE +0 -0
@@ -1,153 +0,0 @@
1
- # Bedrock Inference Profiles
2
-
3
- ## System Defined Inference Profiles
4
-
5
- You can build a CrossRegionInferenceProfile using a system defined inference profile. The inference profile will route requests to the Regions defined in the cross region (system-defined) inference profile that you choose. You can find the system defined inference profiles by navigating to your console (Amazon Bedrock -> Cross-region inference) or programmatically, for instance using [boto3](https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/bedrock/client/list_inference_profiles.html).
6
-
7
- Before using creating a CrossRegionInferenceProfile, ensure that you have access to the models and regions defined in the inference profiles. For instance, if you see the system defined inference profile "us.anthropic.claude-3-5-sonnet-20241022-v2:0" defined in your region, the table mentions that inference requests will be routed to US East (Virginia) us-east-1, US East (Ohio) us-east-2 and US West (Oregon) us-west-2. Thus, you need to have model access enabled in those regions for the model `anthropic.claude-3-5-sonnet-20241022-v2:0`. You can then create the CrossRegionInferenceProfile as follows:
8
-
9
- ### Examples
10
-
11
- #### TypeScript
12
-
13
- ```ts
14
- const cris = bedrock.CrossRegionInferenceProfile.fromConfig({
15
- geoRegion: bedrock.CrossRegionInferenceProfileRegion.US,
16
- model: bedrock.BedrockFoundationModel.ANTHROPIC_CLAUDE_3_5_SONNET_V2_0,
17
- });
18
- ```
19
-
20
- #### Python
21
-
22
- ```python
23
- cris = bedrock.CrossRegionInferenceProfile.from_config(
24
- geo_region= bedrock.CrossRegionInferenceProfileRegion.US,
25
- model= bedrock.BedrockFoundationModel.ANTHROPIC_CLAUDE_3_5_SONNET_V2_0
26
- )
27
- ```
28
-
29
- [View full documentation](https://github.com/awslabs/generative-ai-cdk-constructs/tree/main/src/cdk-lib/bedrock#system-defined-inference-profiles)
30
-
31
- ## Application Inference Profile
32
-
33
- You can create an application inference profile with one or more Regions to track usage and costs when invoking a model.
34
-
35
- To create an application inference profile for one Region, specify a foundation model. Usage and costs for requests made to that Region with that model will be tracked.
36
-
37
- To create an application inference profile for multiple Regions, specify a cross region (system-defined) inference profile. The inference profile will route requests to the Regions defined in the cross region (system-defined) inference profile that you choose. Usage and costs for requests made to the Regions in the inference profile will be tracked. You can find the system defined inference profiles by navigating to your console (Amazon Bedrock -> Cross-region inference) or programmatically, for instance using [boto3](https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/bedrock/client/list_inference_profiles.html):
38
-
39
- ```
40
- bedrock = session.client("bedrock", region_name="us-east-1")
41
- bedrock.list_inference_profiles(typeEquals='SYSTEM_DEFINED')
42
- ```
43
-
44
- Before using application inference profiles, ensure that:
45
-
46
- - You have appropriate IAM permissions
47
- - You have access to the models and regions defined in the inference profiles
48
- - Ensure proper configuration of the required API permissions for inference profile-related actions
49
-
50
- Specifically the role you are assuming needs to have permissions for following actions in the IAM policy
51
-
52
- ```
53
- "Action": [
54
- "bedrock:GetInferenceProfile",
55
- "bedrock:ListInferenceProfiles",
56
- "bedrock:DeleteInferenceProfile"
57
- "bedrock:TagResource",
58
- "bedrock:UntagResource",
59
- "bedrock:ListTagsForResource"
60
- ]
61
- ```
62
-
63
- You can restrict to specific resources by applying "Resources" tag in the IAM policy.
64
-
65
- ```
66
- "Resource": ["arn:aws:bedrock:*:*:application-inference-profile/*"]
67
- ```
68
-
69
- ### Examples
70
-
71
- #### TypeScript
72
-
73
- ```ts
74
- // Create an application inference profile for one Region
75
- // You can use the 'bedrock.BedrockFoundationModel' or pass the arn as a string
76
- const appInfProfile1 = new ApplicationInferenceProfile(this, 'myapplicationprofile', {
77
- inferenceProfileName: 'claude 3 sonnet v1',
78
- modelSource: bedrock.BedrockFoundationModel.ANTHROPIC_CLAUDE_SONNET_V1_0,
79
- tags: [{ key: 'test', value: 'test' }],
80
- });
81
-
82
- // To create an application inference profile across regions, specify the cross region inference profile
83
- const cris = bedrock.CrossRegionInferenceProfile.fromConfig({
84
- geoRegion: bedrock.CrossRegionInferenceProfileRegion.US,
85
- model: bedrock.BedrockFoundationModel.ANTHROPIC_CLAUDE_3_5_SONNET_V2_0,
86
- });
87
-
88
- const appInfProfile2 = new ApplicationInferenceProfile(this, 'myapplicationprofile2', {
89
- inferenceProfileName: 'claude 3 sonnet v1',
90
- modelSource: cris,
91
- });
92
-
93
- // Import a Cfn L1 construct created application inference profile
94
- const cfnapp = new CfnApplicationInferenceProfile(this, 'mytestaip3', {
95
- inferenceProfileName: 'mytest',
96
- modelSource: {
97
- copyFrom: 'arn:aws:bedrock:us-east-1::foundation-model/anthropic.claude-3-sonnet-20240229-v1:0',
98
- },
99
- });
100
-
101
- const appInfProfile3 = bedrock.ApplicationInferenceProfile.fromCfnApplicationInferenceProfile(cfnapp);
102
-
103
- // Import an inference profile through attributes
104
- const appInfProfile4 = bedrock.ApplicationInferenceProfile.fromApplicationInferenceProfileAttributes(this, 'TestAIP', {
105
- inferenceProfileArn: 'arn:aws:bedrock:us-east-1:XXXXX:application-inference-profile/ID',
106
- inferenceProfileIdentifier: 'arn:aws:bedrock:us-east-1:XXXXXXX:application-inference-profile/ID',
107
- });
108
- ```
109
-
110
- #### Python
111
-
112
- ```python
113
-
114
- # Create an application inference profile for one Region
115
- # You can use the 'bedrock.BedrockFoundationModel' or pass the arn as a string
116
- appInfProfile1 = bedrock.ApplicationInferenceProfile(self, 'myapplicationprofile',
117
- inference_profile_name='claude 3 sonnet v1',
118
- model_source=bedrock.BedrockFoundationModel.ANTHROPIC_CLAUDE_SONNET_V1_0,
119
- tags=[CfnTag(
120
- key="key",
121
- value="value"
122
- )]
123
- )
124
-
125
- # To create an application inference profile across regions, specify the cross region inference profile
126
- cris = bedrock.CrossRegionInferenceProfile.from_config(
127
- geo_region= bedrock.CrossRegionInferenceProfileRegion.US,
128
- model= bedrock.BedrockFoundationModel.ANTHROPIC_CLAUDE_3_5_SONNET_V2_0
129
- )
130
-
131
- appInfProfile2 = bedrock.ApplicationInferenceProfile(self, 'myapplicationprofile2',
132
- inference_profile_name='claude 35 sonnet v2',
133
- model_source=cris
134
- )
135
-
136
- # Import an inference profile through attributes
137
- appInfProfile3 = bedrock.ApplicationInferenceProfile.from_application_inference_profile_attributes(self, 'TestAIP',
138
- inference_profile_arn='arn:aws:bedrock:us-east-1:XXXXX:application-inference-profile/ID',
139
- inference_profile_identifier='arn:aws:bedrock:us-east-1:XXXXXXX:application-inference-profile/ID',
140
- )
141
-
142
- # Import a Cfn L1 construct created application inference profile
143
- cfnaip = CfnApplicationInferenceProfile(this, 'mytestaip4',
144
- inference_profile_name='mytest',
145
- model_source= CfnApplicationInferenceProfile.InferenceProfileModelSourceProperty(
146
- copy_from='arn:aws:bedrock:us-east-1::foundation-model/anthropic.claude-3-sonnet-20240229-v1:0'
147
- ),
148
- )
149
-
150
- appInfProfile4 = bedrock.ApplicationInferenceProfile.from_cfn_application_inference_profile(cfnaip);
151
- ```
152
-
153
- [View full documentation](https://github.com/awslabs/generative-ai-cdk-constructs/tree/main/src/cdk-lib/bedrock#application-inference-profile)
@@ -1,135 +0,0 @@
1
- # Amazon OpenSearch Vector Index Construct Library
2
-
3
- ## Table of contents
4
-
5
- - [Amazon OpenSearch Vector Index Construct Library](#amazon-opensearch-vector-index-construct-library)
6
- - [Table of contents](#table-of-contents)
7
- - [API](#api)
8
- - [Vector Index](#vector-index)
9
- - [Example](#example)
10
- - [TypeScript](#typescript)
11
- - [Python](#python)
12
- - [Default values](#default-values)
13
-
14
- ## API
15
-
16
- See the [API documentation](../../../apidocs/namespaces/opensearch_vectorindex/README.md).
17
-
18
- ## Vector Index
19
-
20
- The `VectorIndex` resource connects to OpenSearch and creates an index suitable for use with Amazon Bedrock Knowledge Bases.
21
-
22
- ## Example
23
-
24
- ### TypeScript
25
-
26
- ```ts
27
- import {
28
- opensearchserverless,
29
- opensearch_vectorindex,
30
- } from '@cdklabs/generative-ai-cdk-constructs';
31
-
32
- const vectorStore = new opensearchserverless.VectorCollection(
33
- this,
34
- 'VectorCollection'
35
- );
36
-
37
- new opensearch_vectorindex.VectorIndex(this, 'VectorIndex', {
38
- collection: vectorStore,
39
- indexName: 'bedrock-knowledge-base-default-index',
40
- vectorField: 'bedrock-knowledge-base-default-vector',
41
- vectorDimensions: 1536,
42
- precision: 'float',
43
- distanceType: 'l2',
44
- mappings: [
45
- {
46
- mappingField: 'AMAZON_BEDROCK_TEXT_CHUNK',
47
- dataType: 'text',
48
- filterable: true,
49
- },
50
- {
51
- mappingField: 'AMAZON_BEDROCK_METADATA',
52
- dataType: 'text',
53
- filterable: false,
54
- },
55
- ],
56
- analyzer: {
57
- characterFilters: [opensearchserverless.CharacterFilterType.ICU_NORMALIZER],
58
- tokenizer: opensearchserverless.TokenizerType.KUROMOJI_TOKENIZER,
59
- tokenFilters: [
60
- opensearchserverless.TokenFilterType.KUROMOJI_BASEFORM,
61
- opensearchserverless.TokenFilterType.JA_STOP,
62
- ],
63
- },
64
- });
65
- ```
66
-
67
- ### Python
68
-
69
- ```python
70
- from cdklabs.generative_ai_cdk_constructs import (
71
- opensearchserverless,
72
- opensearch_vectorindex,
73
- )
74
-
75
- vectorCollection = opensearchserverless.VectorCollection(self, "VectorCollection")
76
-
77
- vectorIndex = opensearch_vectorindex.VectorIndex(self, "VectorIndex",
78
- vector_dimensions= 1536,
79
- collection=vectorCollection,
80
- index_name='bedrock-knowledge-base-default-index',
81
- vector_field='bedrock-knowledge-base-default-vector',
82
- precision='float',
83
- distance_type='l2',
84
- mappings= [
85
- opensearch_vectorindex.MetadataManagementFieldProps(
86
- mapping_field='AMAZON_BEDROCK_TEXT_CHUNK',
87
- data_type='text',
88
- filterable=True
89
- ),
90
- opensearch_vectorindex.MetadataManagementFieldProps(
91
- mapping_field='AMAZON_BEDROCK_METADATA',
92
- data_type='text',
93
- filterable=False
94
- )
95
- ],
96
- analyzer=opensearchserverless.AnalyzerProps(
97
- character_filters=[opensearchserverless.CharacterFilterType.ICU_NORMALIZER],
98
- tokenizer=opensearchserverless.TokenizerType.KUROMOJI_TOKENIZER,
99
- token_filters=[
100
- opensearchserverless.TokenFilterType.KUROMOJI_BASEFORM,
101
- opensearchserverless.TokenFilterType.JA_STOP,
102
- ],
103
- )
104
- )
105
- ```
106
-
107
- ## Default values
108
-
109
- Behind the scenes, the custom resource creates a k-NN vector in the OpenSearch index, allowing to perform different kinds of k-NN search. The knn_vector field is highly configurable and can serve many different k-NN workloads. It is created as follows:
110
-
111
- Python
112
-
113
- ```py
114
- "properties": {
115
- vector_field: {
116
- "type": "knn_vector",
117
- "dimension": dimensions,
118
- "data_type": precision,
119
- "method": {
120
- "engine": "faiss",
121
- "space_type": distance_type,
122
- "name": "hnsw",
123
- "parameters": {},
124
- },
125
- },
126
- "id": {
127
- "type": "text",
128
- "fields": {"keyword": {"type": "keyword", "ignore_above": 256}},
129
- },
130
- },
131
- ```
132
-
133
- Users can currently configure the ```vector_field```, ```dimension```, ```data_type```, and ```distance_type``` fields through the construct interface.
134
-
135
- For details on the different settings, you can refer to the [Knn plugin documentation](https://opensearch.org/docs/latest/search-plugins/knn/knn-index/).
@@ -1,17 +0,0 @@
1
- # Amazon OpenSearch Serverless Construct Library
2
-
3
- ## Table of contents
4
-
5
- - [API](#api)
6
- - [Vector Collection](#vector-collection)
7
-
8
- ## API
9
- See the [API documentation](../../../apidocs/namespaces/opensearchserverless/README.md).
10
-
11
- ## Vector Collection
12
-
13
- This resource creates an Amazon OpenSearch Serverless collection configured for `VECTORSEARCH`. It creates default encryption, network, and data policies for use with Amazon Bedrock Knowledge Bases. For encryption, it uses the default AWS owned KMS key. It allows network connections from the public internet, but access is restricted to specific IAM principals.
14
-
15
- ### Granting Data Access
16
-
17
- The `grantDataAccess` method grants the specified role access to read and write the data in the collection.
@@ -1,54 +0,0 @@
1
- awslabs/__init__.py,sha256=CyFUCiG6C9srM7h_p6i9w72Y_G53m4QN-jK0duBu948,558
2
- awslabs/cdk_mcp_server/__init__.py,sha256=tE_wgU3b_iQUzMy9HlAJUehazMBzM9hGM94kDKPEDq4,748
3
- awslabs/cdk_mcp_server/server.py,sha256=Mom-3sv93jLG-KdESEfbrIEo3isXdAMhHcyTxANFtBw,693
4
- awslabs/cdk_mcp_server/core/__init__.py,sha256=P5jMlOb_nAqCEM22QnIe9RZMUCLVHwmAnwqJInvcQfc,605
5
- awslabs/cdk_mcp_server/core/resources.py,sha256=DBIgjzhBorbjtDp-qRxq16oGnK39KHtZlKlUXXhKKC4,10152
6
- awslabs/cdk_mcp_server/core/search_utils.py,sha256=GLaNJBFzmDgwM8OY98R4VHfgj2Cw7GEBk-Y2lLZcPjM,6144
7
- awslabs/cdk_mcp_server/core/server.py,sha256=KsxXYBcS5TahpAcj0CnBmLvVcMDaZXddQhAKl2yU8pc,3238
8
- awslabs/cdk_mcp_server/core/tools.py,sha256=kVl003lbsAS18MDp5HrbcoxPZYiAvKAIC4zE2WjkHdk,21700
9
- awslabs/cdk_mcp_server/data/__init__.py,sha256=8o7-TnXbiVvfwc_xc6LGnDfERnD9GMPRFfnWcgf--0Y,605
10
- awslabs/cdk_mcp_server/data/cdk_nag_parser.py,sha256=AKJU0O9lkzeVLAElzgBkV7rpKNUktywIXwmA52m3Vec,11477
11
- awslabs/cdk_mcp_server/data/construct_descriptions.py,sha256=CBfKFM_pJo6Sn_NA7hr-0oVB8piXdncQ_A5ewnTCx30,3164
12
- awslabs/cdk_mcp_server/data/genai_cdk_loader.py,sha256=detHbuKZYmJrsJi5UzZYZsU0hZJyykI_-QLw36itbE8,16156
13
- awslabs/cdk_mcp_server/data/lambda_layer_parser.py,sha256=TWInqjN56Vkhs-sXqLnIvhAPCBbq3Zlm1bAerUGb1cQ,8611
14
- awslabs/cdk_mcp_server/data/lambda_powertools_loader.py,sha256=XtJb8tTYhmAQ6Ulor6nhKWLQ56aIh2eElpBuw2D9sco,2411
15
- awslabs/cdk_mcp_server/data/schema_generator.py,sha256=eAjLnok3dqxnf3PtnwRno_Ps24ZZTo2iJcBv1H23sE0,29269
16
- awslabs/cdk_mcp_server/data/solutions_constructs_parser.py,sha256=NVOKV0cZl-9PdyoRtPo2JspSAEbCdebE8XR10dpCxyE,28243
17
- awslabs/cdk_mcp_server/static/CDK_GENERAL_GUIDANCE.md,sha256=-O0LIpmeDXr1JoVxxbQnVp0oNqvSbX20xOgcZqknr_c,8532
18
- awslabs/cdk_mcp_server/static/CDK_NAG_GUIDANCE.md,sha256=zJtHJp9ruaaJ-xa68k9kDrPmEaXpiWCZZf7JIy8NK0w,5839
19
- awslabs/cdk_mcp_server/static/__init__.py,sha256=NqWI8Mnqoc_sEr70ZtQ_oI6W_mdhuRCmgIbgmIWljzU,858
20
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/bedrockguardrails.md,sha256=CX00B7XgDpLbVxvf6B-a13O4NERAJMiaPPeTuKK-8Sw,7386
21
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/profiles.md,sha256=xxPnEkZ0tJAFKomMuAPLm3EtlQFku6MR2nPu4VoyppE,7195
22
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/actiongroups.md,sha256=m40RkxPkX3BI4PHEBQHHPOAAK0rgdPkLVi37F3JcLZQ,4857
23
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/alias.md,sha256=eyTmjmHyQbuR5CbFpp2qrEcEqw2l9pMupWERRVksVNw,1293
24
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/collaboration.md,sha256=nNu30F5ydUbb7HtboUWNhp0hOnQMw8q8shCUjMDwT_A,3616
25
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/creation.md,sha256=BzpVJkRs_q1ZkW8LnIEh7--57OnNmHHdPCygfGJAks0,6216
26
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/custom_orchestration.md,sha256=ylMTq3PT3vHnrul_boLuQIGQFuk_Y0evdImp_pLY7rY,2983
27
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/overview.md,sha256=4FLhC3CC01W9Gpw4S0Z6yWPnM86p2nJ_dxQ1yU4Xsxw,2921
28
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/prompt_override.md,sha256=ypmKxlO5WIYqUh2gYDzo1Mwzso_HwSkzrMHeDU473C8,2520
29
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/chunking.md,sha256=TpLXPJso6c4MhWUepX0WsX3FE6FOIsFBPcE28B-3iKM,3203
30
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/datasources.md,sha256=iHQ086zHzkqHoKLi7pmyMxf0oH02UVHf_GAid6EMdeE,7147
31
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/kendra.md,sha256=sYbhIAaGjuJ2lifP0xvDXacDEVFC24Gl9giAI6RF9bo,2786
32
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/overview.md,sha256=AGLS6146UufRTC80EAyAviBhAtb7hFcbMz3tWFviPOc,5167
33
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/parsing.md,sha256=AQ6TTO5HxKqhtVdv1bM6GjHyDgOICaNi5NtDT9Dxp10,1155
34
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/transformation.md,sha256=I5Lkn0giUr5n0lTxqjtUsoHNkom6AJtxEnvlarH_54Y,813
35
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/vector/aurora.md,sha256=CjiJDoaui2H4-nu99Sem4rK_8pQGB_ciI5So5pKWMSQ,5766
36
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/vector/creation.md,sha256=jXxrwnor7_YUJc9sYCHjrQnCnHQrVItPI7YttcX-mX8,4491
37
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/vector/opensearch.md,sha256=mM8nILHaFaLfHUaIl7c8Eh0NFx8Z5H4yu5LbC-DmnSU,1368
38
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/vector/pinecone.md,sha256=VmUGQ8ggMycrqA09RjUot_9gcBMO7H6gYspThGMkEDw,2107
39
- awslabs/cdk_mcp_server/static/genai_cdk/opensearch-vectorindex/overview.md,sha256=0aSuBwX4ubI5WqwEfrnX1MH2UJlJOzdXZQ003fRIrGM,4121
40
- awslabs/cdk_mcp_server/static/genai_cdk/opensearchserverless/overview.md,sha256=aUO1BRana_xqUPENP3GQyOSCAvV9mI-ZWls7x0g8ruA,746
41
- awslabs/cdk_mcp_server/static/lambda_powertools/bedrock.md,sha256=vxYfQvp2UcXSszAB4oQQ7xPY808WjKSPRgOnIA31nLk,4114
42
- awslabs/cdk_mcp_server/static/lambda_powertools/cdk.md,sha256=rcYvoKOEj9R2Ptd5H61spys8j09nLgmpkD_o2niynvs,1900
43
- awslabs/cdk_mcp_server/static/lambda_powertools/dependencies.md,sha256=nZ2Fv54rG1rUmD_YHkM9h5VNvB81-Hk8Qx3ZNQSFZLY,1520
44
- awslabs/cdk_mcp_server/static/lambda_powertools/index.md,sha256=yivjInZAZ3tENKGrrAv7geICzUvKUTskWuaNj9nuPbI,1819
45
- awslabs/cdk_mcp_server/static/lambda_powertools/insights.md,sha256=jcyOHZvKHk2CgJwIu0B5SkP1SRMAhIOQ4FtWHlUs_IE,3212
46
- awslabs/cdk_mcp_server/static/lambda_powertools/logging.md,sha256=6CSgD8QB3Bs4s_x4RnbKwZoWvG6aG4etCnmDH6HU9XY,1797
47
- awslabs/cdk_mcp_server/static/lambda_powertools/metrics.md,sha256=DQlznxRizJep8jphzFgbk7crH5LwWjSjdygP-1K6mxk,2559
48
- awslabs/cdk_mcp_server/static/lambda_powertools/tracing.md,sha256=Q3dSCvgktb9sUsuuQ5ONU2Qdb1OTwbNOYpK--MDzBNw,2539
49
- awslabs_cdk_mcp_server-0.1.1.dist-info/METADATA,sha256=ClR1Gwz__PolO83AtNB9STZWmFM-Ov6R6Ag1hPkKDTs,8682
50
- awslabs_cdk_mcp_server-0.1.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
51
- awslabs_cdk_mcp_server-0.1.1.dist-info/entry_points.txt,sha256=LertzmID_mUU1YYZPySAF1IY1zE7ySTvzFxiGyo3VjY,78
52
- awslabs_cdk_mcp_server-0.1.1.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
53
- awslabs_cdk_mcp_server-0.1.1.dist-info/licenses/NOTICE,sha256=MNXNmhkltaxAzlo-r5BhjfS30nUE7I_w7cyDY8cxDL0,90
54
- awslabs_cdk_mcp_server-0.1.1.dist-info/RECORD,,