awslabs.cdk-mcp-server 0.0.62303__py3-none-any.whl → 0.0.81004__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- awslabs/__init__.py +10 -2
- awslabs/cdk_mcp_server/__init__.py +10 -0
- awslabs/cdk_mcp_server/core/__init__.py +10 -0
- awslabs/cdk_mcp_server/core/resources.py +11 -0
- awslabs/cdk_mcp_server/core/search_utils.py +11 -0
- awslabs/cdk_mcp_server/core/server.py +12 -1
- awslabs/cdk_mcp_server/core/tools.py +154 -0
- awslabs/cdk_mcp_server/data/__init__.py +10 -0
- awslabs/cdk_mcp_server/data/cdk_nag_parser.py +11 -0
- awslabs/cdk_mcp_server/data/construct_descriptions.py +11 -0
- awslabs/cdk_mcp_server/data/genai_cdk_loader.py +11 -0
- awslabs/cdk_mcp_server/data/lambda_powertools_loader.py +17 -4
- awslabs/cdk_mcp_server/data/schema_generator.py +22 -3
- awslabs/cdk_mcp_server/data/solutions_constructs_parser.py +11 -0
- awslabs/cdk_mcp_server/server.py +11 -0
- awslabs/cdk_mcp_server/static/CDK_GENERAL_GUIDANCE.md +108 -66
- awslabs/cdk_mcp_server/static/__init__.py +10 -0
- awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/actiongroups.md +1 -1
- awslabs/cdk_mcp_server/static/lambda_powertools/bedrock.md +1 -1
- {awslabs_cdk_mcp_server-0.0.62303.dist-info → awslabs_cdk_mcp_server-0.0.81004.dist-info}/METADATA +71 -2
- awslabs_cdk_mcp_server-0.0.81004.dist-info/RECORD +51 -0
- awslabs/cdk_mcp_server/static/bedrock/agent/actiongroups.md +0 -137
- awslabs/cdk_mcp_server/static/bedrock/agent/alias.md +0 -39
- awslabs/cdk_mcp_server/static/bedrock/agent/collaboration.md +0 -91
- awslabs/cdk_mcp_server/static/bedrock/agent/creation.md +0 -149
- awslabs/cdk_mcp_server/static/bedrock/agent/custom_orchestration.md +0 -74
- awslabs/cdk_mcp_server/static/bedrock/agent/overview.md +0 -78
- awslabs/cdk_mcp_server/static/bedrock/agent/prompt_override.md +0 -70
- awslabs/cdk_mcp_server/static/bedrock/bedrockguardrails.md +0 -188
- awslabs/cdk_mcp_server/static/bedrock/knowledgebases/chunking.md +0 -137
- awslabs/cdk_mcp_server/static/bedrock/knowledgebases/datasources.md +0 -225
- awslabs/cdk_mcp_server/static/bedrock/knowledgebases/kendra.md +0 -81
- awslabs/cdk_mcp_server/static/bedrock/knowledgebases/overview.md +0 -116
- awslabs/cdk_mcp_server/static/bedrock/knowledgebases/parsing.md +0 -36
- awslabs/cdk_mcp_server/static/bedrock/knowledgebases/transformation.md +0 -30
- awslabs/cdk_mcp_server/static/bedrock/knowledgebases/vector/aurora.md +0 -185
- awslabs/cdk_mcp_server/static/bedrock/knowledgebases/vector/creation.md +0 -80
- awslabs/cdk_mcp_server/static/bedrock/knowledgebases/vector/opensearch.md +0 -56
- awslabs/cdk_mcp_server/static/bedrock/knowledgebases/vector/pinecone.md +0 -66
- awslabs/cdk_mcp_server/static/bedrock/profiles.md +0 -153
- awslabs/cdk_mcp_server/static/opensearch-vectorindex/overview.md +0 -135
- awslabs/cdk_mcp_server/static/opensearchserverless/overview.md +0 -17
- awslabs_cdk_mcp_server-0.0.62303.dist-info/RECORD +0 -72
- {awslabs_cdk_mcp_server-0.0.62303.dist-info → awslabs_cdk_mcp_server-0.0.81004.dist-info}/WHEEL +0 -0
- {awslabs_cdk_mcp_server-0.0.62303.dist-info → awslabs_cdk_mcp_server-0.0.81004.dist-info}/entry_points.txt +0 -0
|
@@ -1,80 +0,0 @@
|
|
|
1
|
-
# Vector Knowledge Base Properties
|
|
2
|
-
|
|
3
|
-
| Name | Type | Required | Description |
|
|
4
|
-
|---|---|---|---|
|
|
5
|
-
| embeddingsModel | BedrockFoundationModel | Yes | The embeddings model for the knowledge base |
|
|
6
|
-
| name | string | No | The name of the knowledge base |
|
|
7
|
-
| vectorType | VectorType | No | The vector type to store vector embeddings |
|
|
8
|
-
| description | string | No | The description of the knowledge base |
|
|
9
|
-
| instruction | string | No | Instructions for agents based on the design and type of information of the Knowledge Base that will impact how Agents interact with the Knowledge Base |
|
|
10
|
-
| existingRole | iam.IRole | No | Existing IAM role with a policy statement granting permission to invoke the specific embeddings model |
|
|
11
|
-
| indexName | string | No | The name of the vector index (only applicable if vectorStore is of type VectorCollection) |
|
|
12
|
-
| vectorField | string | No | The name of the field in the vector index (only applicable if vectorStore is of type VectorCollection) |
|
|
13
|
-
| vectorStore | VectorCollection \| PineconeVectorStore \| AmazonAuroraVectorStore \| ExistingAmazonAuroraVectorStore | No | The vector store for the knowledge base |
|
|
14
|
-
| vectorIndex | VectorIndex | No | The vector index for the OpenSearch Serverless backed knowledge base |
|
|
15
|
-
| knowledgeBaseState | string | No | Specifies whether to use the knowledge base or not when sending an InvokeAgent request |
|
|
16
|
-
| tags | Record<string, string> | No | Tag (KEY-VALUE) bedrock agent resource |
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
### Vector Knowledge Base - Vector Type
|
|
20
|
-
|
|
21
|
-
The data type for the vectors when using a model to convert text into vector embeddings. Embeddings type may impact the availability of some embeddings models and vector stores. The following vector types are available:
|
|
22
|
-
|
|
23
|
-
- Floating point: More precise vector representation of the text, but more costly in storage.
|
|
24
|
-
- Binary: Not as precise vector representation of the text, but not as costly in storage as a standard floating-point (float32). Not all embedding models and vector stores support binary embeddings
|
|
25
|
-
|
|
26
|
-
See [Supported embeddings models](https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base-supported.html) for information on the available models and their vector data types.
|
|
27
|
-
|
|
28
|
-
#### Example
|
|
29
|
-
|
|
30
|
-
##### Typescript
|
|
31
|
-
|
|
32
|
-
```ts
|
|
33
|
-
const app = new cdk.App();
|
|
34
|
-
const stack = new cdk.Stack(app, 'aws-cdk-bedrock-data-sources-integ-test');
|
|
35
|
-
|
|
36
|
-
const kb = new VectorKnowledgeBase(stack, 'MyKnowledgeBase', {
|
|
37
|
-
name: 'MyKnowledgeBase',
|
|
38
|
-
vectorType: bedrock.VectorType.BINARY,
|
|
39
|
-
embeddingsModel: BedrockFoundationModel.COHERE_EMBED_MULTILINGUAL_V3,
|
|
40
|
-
});
|
|
41
|
-
```
|
|
42
|
-
|
|
43
|
-
##### Python
|
|
44
|
-
|
|
45
|
-
```python
|
|
46
|
-
|
|
47
|
-
from aws_cdk import (
|
|
48
|
-
aws_s3 as s3,
|
|
49
|
-
)
|
|
50
|
-
from cdklabs.generative_ai_cdk_constructs import (
|
|
51
|
-
bedrock
|
|
52
|
-
)
|
|
53
|
-
|
|
54
|
-
kb = bedrock.VectorKnowledgeBase(self, 'KnowledgeBase',
|
|
55
|
-
name= 'MyKnowledgeBase',
|
|
56
|
-
vector_type= bedrock.VectorType.BINARY,
|
|
57
|
-
embeddings_model= bedrock.BedrockFoundationModel.COHERE_EMBED_MULTILINGUAL_V3,
|
|
58
|
-
)
|
|
59
|
-
```
|
|
60
|
-
|
|
61
|
-
### Vector Knowledge Base - Data Sources
|
|
62
|
-
|
|
63
|
-
Data sources are the various repositories or systems from which information is extracted and ingested into the
|
|
64
|
-
knowledge base. These sources provide the raw content that will be processed, indexed, and made available for
|
|
65
|
-
querying within the knowledge base system. Data sources can include various types of systems such as document
|
|
66
|
-
management systems, databases, file storage systems, and content management platforms. Suuported Data Sources
|
|
67
|
-
include Amazon S3 buckets, Web Crawlers, SharePoint sites, Salesforce instances, and Confluence spaces.
|
|
68
|
-
|
|
69
|
-
- **Amazon S3**. You can either create a new data source using the `bedrock.S3DataSource(..)` class, or using the
|
|
70
|
-
`kb.addS3DataSource(..)`.
|
|
71
|
-
- **Web Crawler**. You can either create a new data source using the `bedrock.WebCrawlerDataSource(..)` class, or using the
|
|
72
|
-
`kb.addWebCrawlerDataSource(..)`.
|
|
73
|
-
- **Confluence**. You can either create a new data source using the `bedrock.ConfluenceDataSource(..)` class, or using the
|
|
74
|
-
`kb.addConfluenceDataSource(..)`.
|
|
75
|
-
- **SharePoint**. You can either create a new data source using the `bedrock.SharePointDataSource(..)` class, or using the
|
|
76
|
-
`kb.addSharePointDataSource(..)`.
|
|
77
|
-
- **Salesforce**. You can either create a new data source using the `bedrock.SalesforceDataSource(..)` class, or using the
|
|
78
|
-
`kb.addSalesforceDataSource(..)`.
|
|
79
|
-
- **Custom**. You can either create a new data source using the `bedrock.CustomDataSource(..)` class, or using the
|
|
80
|
-
`kb.addCustomDataSource(..)`. This allows you to add your own custom data source to the knowledge base.
|
|
@@ -1,56 +0,0 @@
|
|
|
1
|
-
|
|
2
|
-
# OpenSearch Serverless Vector Store
|
|
3
|
-
|
|
4
|
-
## Example
|
|
5
|
-
|
|
6
|
-
### TypeScript
|
|
7
|
-
|
|
8
|
-
```ts
|
|
9
|
-
import * as s3 from 'aws-cdk-lib/aws-s3';
|
|
10
|
-
import { bedrock } from '@cdklabs/generative-ai-cdk-constructs';
|
|
11
|
-
|
|
12
|
-
const kb = new bedrock.VectorKnowledgeBase(this, 'KnowledgeBase', {
|
|
13
|
-
embeddingsModel: bedrock.BedrockFoundationModel.TITAN_EMBED_TEXT_V1,
|
|
14
|
-
instruction: 'Use this knowledge base to answer questions about books. ' + 'It contains the full text of novels.',
|
|
15
|
-
});
|
|
16
|
-
|
|
17
|
-
const docBucket = new s3.Bucket(this, 'DocBucket');
|
|
18
|
-
|
|
19
|
-
new bedrock.S3DataSource(this, 'DataSource', {
|
|
20
|
-
bucket: docBucket,
|
|
21
|
-
knowledgeBase: kb,
|
|
22
|
-
dataSourceName: 'books',
|
|
23
|
-
chunkingStrategy: bedrock.ChunkingStrategy.fixedSize({
|
|
24
|
-
maxTokens: 500,
|
|
25
|
-
overlapPercentage: 20,
|
|
26
|
-
}),
|
|
27
|
-
});
|
|
28
|
-
```
|
|
29
|
-
|
|
30
|
-
### Python
|
|
31
|
-
|
|
32
|
-
```python
|
|
33
|
-
|
|
34
|
-
from aws_cdk import (
|
|
35
|
-
aws_s3 as s3,
|
|
36
|
-
)
|
|
37
|
-
from cdklabs.generative_ai_cdk_constructs import (
|
|
38
|
-
bedrock
|
|
39
|
-
)
|
|
40
|
-
|
|
41
|
-
kb = bedrock.VectorKnowledgeBase(self, 'KnowledgeBase',
|
|
42
|
-
embeddings_model= bedrock.BedrockFoundationModel.TITAN_EMBED_TEXT_V1,
|
|
43
|
-
instruction= 'Use this knowledge base to answer questions about books. ' +
|
|
44
|
-
'It contains the full text of novels.'
|
|
45
|
-
)
|
|
46
|
-
|
|
47
|
-
docBucket = s3.Bucket(self, 'DockBucket')
|
|
48
|
-
|
|
49
|
-
bedrock.S3DataSource(self, 'DataSource',
|
|
50
|
-
bucket= docBucket,
|
|
51
|
-
knowledge_base=kb,
|
|
52
|
-
data_source_name='books',
|
|
53
|
-
chunking_strategy= bedrock.ChunkingStrategy.FIXED_SIZE,
|
|
54
|
-
)
|
|
55
|
-
|
|
56
|
-
```
|
|
@@ -1,66 +0,0 @@
|
|
|
1
|
-
#### Example of `Pinecone` (manual, you must have Pinecone vector store created):
|
|
2
|
-
|
|
3
|
-
##### TypeScript
|
|
4
|
-
|
|
5
|
-
```ts
|
|
6
|
-
import * as s3 from 'aws-cdk-lib/aws-s3';
|
|
7
|
-
import { pinecone, bedrock } from '@cdklabs/generative-ai-cdk-constructs';
|
|
8
|
-
|
|
9
|
-
const pineconeds = new pinecone.PineconeVectorStore({
|
|
10
|
-
connectionString: 'https://your-index-1234567.svc.gcp-starter.pinecone.io',
|
|
11
|
-
credentialsSecretArn: 'arn:aws:secretsmanager:your-region:123456789876:secret:your-key-name',
|
|
12
|
-
textField: 'question',
|
|
13
|
-
metadataField: 'metadata',
|
|
14
|
-
});
|
|
15
|
-
|
|
16
|
-
const kb = new bedrock.VectorKnowledgeBase(this, 'KnowledgeBase', {
|
|
17
|
-
vectorStore: pineconeds,
|
|
18
|
-
embeddingsModel: bedrock.BedrockFoundationModel.TITAN_EMBED_TEXT_V1,
|
|
19
|
-
instruction: 'Use this knowledge base to answer questions about books. ' + 'It contains the full text of novels.',
|
|
20
|
-
});
|
|
21
|
-
|
|
22
|
-
const docBucket = new s3.Bucket(this, 'DocBucket');
|
|
23
|
-
|
|
24
|
-
new bedrock.S3DataSource(this, 'DataSource', {
|
|
25
|
-
bucket: docBucket,
|
|
26
|
-
knowledgeBase: kb,
|
|
27
|
-
dataSourceName: 'books',
|
|
28
|
-
chunkingStrategy: bedrock.ChunkingStrategy.FIXED_SIZE,
|
|
29
|
-
});
|
|
30
|
-
```
|
|
31
|
-
|
|
32
|
-
##### Python
|
|
33
|
-
|
|
34
|
-
```python
|
|
35
|
-
|
|
36
|
-
from aws_cdk import (
|
|
37
|
-
aws_s3 as s3,
|
|
38
|
-
)
|
|
39
|
-
from cdklabs.generative_ai_cdk_constructs import (
|
|
40
|
-
bedrock,
|
|
41
|
-
pinecone,
|
|
42
|
-
)
|
|
43
|
-
|
|
44
|
-
pineconevs = pinecone.PineconeVectorStore(
|
|
45
|
-
connection_string='https://your-index-1234567.svc.gcp-starter.pinecone.io',
|
|
46
|
-
credentials_secret_arn='arn:aws:secretsmanager:your-region:123456789876:secret:your-key-name',
|
|
47
|
-
text_field='question',
|
|
48
|
-
metadata_field='metadata'
|
|
49
|
-
)
|
|
50
|
-
|
|
51
|
-
kb = bedrock.VectorKnowledgeBase(self, 'KnowledgeBase',
|
|
52
|
-
vector_store= pineconevs,
|
|
53
|
-
embeddings_model= bedrock.BedrockFoundationModel.COHERE_EMBED_ENGLISH_V3,
|
|
54
|
-
instruction= 'Use this knowledge base to answer questions about books. ' +
|
|
55
|
-
'It contains the full text of novels.'
|
|
56
|
-
)
|
|
57
|
-
|
|
58
|
-
docBucket = s3.Bucket(self, 'DockBucket')
|
|
59
|
-
|
|
60
|
-
bedrock.S3DataSource(self, 'DataSource',
|
|
61
|
-
bucket= docBucket,
|
|
62
|
-
knowledge_base=kb,
|
|
63
|
-
data_source_name='books',
|
|
64
|
-
chunking_strategy= bedrock.ChunkingStrategy.FIXED_SIZE,
|
|
65
|
-
)
|
|
66
|
-
```
|
|
@@ -1,153 +0,0 @@
|
|
|
1
|
-
# Bedrock Inference Profiles
|
|
2
|
-
|
|
3
|
-
## System Defined Inference Profiles
|
|
4
|
-
|
|
5
|
-
You can build a CrossRegionInferenceProfile using a system defined inference profile. The inference profile will route requests to the Regions defined in the cross region (system-defined) inference profile that you choose. You can find the system defined inference profiles by navigating to your console (Amazon Bedrock -> Cross-region inference) or programmatically, for instance using [boto3](https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/bedrock/client/list_inference_profiles.html).
|
|
6
|
-
|
|
7
|
-
Before using creating a CrossRegionInferenceProfile, ensure that you have access to the models and regions defined in the inference profiles. For instance, if you see the system defined inference profile "us.anthropic.claude-3-5-sonnet-20241022-v2:0" defined in your region, the table mentions that inference requests will be routed to US East (Virginia) us-east-1, US East (Ohio) us-east-2 and US West (Oregon) us-west-2. Thus, you need to have model access enabled in those regions for the model `anthropic.claude-3-5-sonnet-20241022-v2:0`. You can then create the CrossRegionInferenceProfile as follows:
|
|
8
|
-
|
|
9
|
-
### Examples
|
|
10
|
-
|
|
11
|
-
#### TypeScript
|
|
12
|
-
|
|
13
|
-
```ts
|
|
14
|
-
const cris = bedrock.CrossRegionInferenceProfile.fromConfig({
|
|
15
|
-
geoRegion: bedrock.CrossRegionInferenceProfileRegion.US,
|
|
16
|
-
model: bedrock.BedrockFoundationModel.ANTHROPIC_CLAUDE_3_5_SONNET_V2_0,
|
|
17
|
-
});
|
|
18
|
-
```
|
|
19
|
-
|
|
20
|
-
#### Python
|
|
21
|
-
|
|
22
|
-
```python
|
|
23
|
-
cris = bedrock.CrossRegionInferenceProfile.from_config(
|
|
24
|
-
geo_region= bedrock.CrossRegionInferenceProfileRegion.US,
|
|
25
|
-
model= bedrock.BedrockFoundationModel.ANTHROPIC_CLAUDE_3_5_SONNET_V2_0
|
|
26
|
-
)
|
|
27
|
-
```
|
|
28
|
-
|
|
29
|
-
[View full documentation](https://github.com/awslabs/generative-ai-cdk-constructs/tree/main/src/cdk-lib/bedrock#system-defined-inference-profiles)
|
|
30
|
-
|
|
31
|
-
## Application Inference Profile
|
|
32
|
-
|
|
33
|
-
You can create an application inference profile with one or more Regions to track usage and costs when invoking a model.
|
|
34
|
-
|
|
35
|
-
To create an application inference profile for one Region, specify a foundation model. Usage and costs for requests made to that Region with that model will be tracked.
|
|
36
|
-
|
|
37
|
-
To create an application inference profile for multiple Regions, specify a cross region (system-defined) inference profile. The inference profile will route requests to the Regions defined in the cross region (system-defined) inference profile that you choose. Usage and costs for requests made to the Regions in the inference profile will be tracked. You can find the system defined inference profiles by navigating to your console (Amazon Bedrock -> Cross-region inference) or programmatically, for instance using [boto3](https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/bedrock/client/list_inference_profiles.html):
|
|
38
|
-
|
|
39
|
-
```
|
|
40
|
-
bedrock = session.client("bedrock", region_name="us-east-1")
|
|
41
|
-
bedrock.list_inference_profiles(typeEquals='SYSTEM_DEFINED')
|
|
42
|
-
```
|
|
43
|
-
|
|
44
|
-
Before using application inference profiles, ensure that:
|
|
45
|
-
|
|
46
|
-
- You have appropriate IAM permissions
|
|
47
|
-
- You have access to the models and regions defined in the inference profiles
|
|
48
|
-
- Ensure proper configuration of the required API permissions for inference profile-related actions
|
|
49
|
-
|
|
50
|
-
Specifically the role you are assuming needs to have permissions for following actions in the IAM policy
|
|
51
|
-
|
|
52
|
-
```
|
|
53
|
-
"Action": [
|
|
54
|
-
"bedrock:GetInferenceProfile",
|
|
55
|
-
"bedrock:ListInferenceProfiles",
|
|
56
|
-
"bedrock:DeleteInferenceProfile"
|
|
57
|
-
"bedrock:TagResource",
|
|
58
|
-
"bedrock:UntagResource",
|
|
59
|
-
"bedrock:ListTagsForResource"
|
|
60
|
-
]
|
|
61
|
-
```
|
|
62
|
-
|
|
63
|
-
You can restrict to specific resources by applying "Resources" tag in the IAM policy.
|
|
64
|
-
|
|
65
|
-
```
|
|
66
|
-
"Resource": ["arn:aws:bedrock:*:*:application-inference-profile/*"]
|
|
67
|
-
```
|
|
68
|
-
|
|
69
|
-
### Examples
|
|
70
|
-
|
|
71
|
-
#### TypeScript
|
|
72
|
-
|
|
73
|
-
```ts
|
|
74
|
-
// Create an application inference profile for one Region
|
|
75
|
-
// You can use the 'bedrock.BedrockFoundationModel' or pass the arn as a string
|
|
76
|
-
const appInfProfile1 = new ApplicationInferenceProfile(this, 'myapplicationprofile', {
|
|
77
|
-
inferenceProfileName: 'claude 3 sonnet v1',
|
|
78
|
-
modelSource: bedrock.BedrockFoundationModel.ANTHROPIC_CLAUDE_SONNET_V1_0,
|
|
79
|
-
tags: [{ key: 'test', value: 'test' }],
|
|
80
|
-
});
|
|
81
|
-
|
|
82
|
-
// To create an application inference profile across regions, specify the cross region inference profile
|
|
83
|
-
const cris = bedrock.CrossRegionInferenceProfile.fromConfig({
|
|
84
|
-
geoRegion: bedrock.CrossRegionInferenceProfileRegion.US,
|
|
85
|
-
model: bedrock.BedrockFoundationModel.ANTHROPIC_CLAUDE_3_5_SONNET_V2_0,
|
|
86
|
-
});
|
|
87
|
-
|
|
88
|
-
const appInfProfile2 = new ApplicationInferenceProfile(this, 'myapplicationprofile2', {
|
|
89
|
-
inferenceProfileName: 'claude 3 sonnet v1',
|
|
90
|
-
modelSource: cris,
|
|
91
|
-
});
|
|
92
|
-
|
|
93
|
-
// Import a Cfn L1 construct created application inference profile
|
|
94
|
-
const cfnapp = new CfnApplicationInferenceProfile(this, 'mytestaip3', {
|
|
95
|
-
inferenceProfileName: 'mytest',
|
|
96
|
-
modelSource: {
|
|
97
|
-
copyFrom: 'arn:aws:bedrock:us-east-1::foundation-model/anthropic.claude-3-sonnet-20240229-v1:0',
|
|
98
|
-
},
|
|
99
|
-
});
|
|
100
|
-
|
|
101
|
-
const appInfProfile3 = bedrock.ApplicationInferenceProfile.fromCfnApplicationInferenceProfile(cfnapp);
|
|
102
|
-
|
|
103
|
-
// Import an inference profile through attributes
|
|
104
|
-
const appInfProfile4 = bedrock.ApplicationInferenceProfile.fromApplicationInferenceProfileAttributes(this, 'TestAIP', {
|
|
105
|
-
inferenceProfileArn: 'arn:aws:bedrock:us-east-1:XXXXX:application-inference-profile/ID',
|
|
106
|
-
inferenceProfileIdentifier: 'arn:aws:bedrock:us-east-1:XXXXXXX:application-inference-profile/ID',
|
|
107
|
-
});
|
|
108
|
-
```
|
|
109
|
-
|
|
110
|
-
#### Python
|
|
111
|
-
|
|
112
|
-
```python
|
|
113
|
-
|
|
114
|
-
# Create an application inference profile for one Region
|
|
115
|
-
# You can use the 'bedrock.BedrockFoundationModel' or pass the arn as a string
|
|
116
|
-
appInfProfile1 = bedrock.ApplicationInferenceProfile(self, 'myapplicationprofile',
|
|
117
|
-
inference_profile_name='claude 3 sonnet v1',
|
|
118
|
-
model_source=bedrock.BedrockFoundationModel.ANTHROPIC_CLAUDE_SONNET_V1_0,
|
|
119
|
-
tags=[CfnTag(
|
|
120
|
-
key="key",
|
|
121
|
-
value="value"
|
|
122
|
-
)]
|
|
123
|
-
)
|
|
124
|
-
|
|
125
|
-
# To create an application inference profile across regions, specify the cross region inference profile
|
|
126
|
-
cris = bedrock.CrossRegionInferenceProfile.from_config(
|
|
127
|
-
geo_region= bedrock.CrossRegionInferenceProfileRegion.US,
|
|
128
|
-
model= bedrock.BedrockFoundationModel.ANTHROPIC_CLAUDE_3_5_SONNET_V2_0
|
|
129
|
-
)
|
|
130
|
-
|
|
131
|
-
appInfProfile2 = bedrock.ApplicationInferenceProfile(self, 'myapplicationprofile2',
|
|
132
|
-
inference_profile_name='claude 35 sonnet v2',
|
|
133
|
-
model_source=cris
|
|
134
|
-
)
|
|
135
|
-
|
|
136
|
-
# Import an inference profile through attributes
|
|
137
|
-
appInfProfile3 = bedrock.ApplicationInferenceProfile.from_application_inference_profile_attributes(self, 'TestAIP',
|
|
138
|
-
inference_profile_arn='arn:aws:bedrock:us-east-1:XXXXX:application-inference-profile/ID',
|
|
139
|
-
inference_profile_identifier='arn:aws:bedrock:us-east-1:XXXXXXX:application-inference-profile/ID',
|
|
140
|
-
)
|
|
141
|
-
|
|
142
|
-
# Import a Cfn L1 construct created application inference profile
|
|
143
|
-
cfnaip = CfnApplicationInferenceProfile(this, 'mytestaip4',
|
|
144
|
-
inference_profile_name='mytest',
|
|
145
|
-
model_source= CfnApplicationInferenceProfile.InferenceProfileModelSourceProperty(
|
|
146
|
-
copy_from='arn:aws:bedrock:us-east-1::foundation-model/anthropic.claude-3-sonnet-20240229-v1:0'
|
|
147
|
-
),
|
|
148
|
-
)
|
|
149
|
-
|
|
150
|
-
appInfProfile4 = bedrock.ApplicationInferenceProfile.from_cfn_application_inference_profile(cfnaip);
|
|
151
|
-
```
|
|
152
|
-
|
|
153
|
-
[View full documentation](https://github.com/awslabs/generative-ai-cdk-constructs/tree/main/src/cdk-lib/bedrock#application-inference-profile)
|
|
@@ -1,135 +0,0 @@
|
|
|
1
|
-
# Amazon OpenSearch Vector Index Construct Library
|
|
2
|
-
|
|
3
|
-
## Table of contents
|
|
4
|
-
|
|
5
|
-
- [Amazon OpenSearch Vector Index Construct Library](#amazon-opensearch-vector-index-construct-library)
|
|
6
|
-
- [Table of contents](#table-of-contents)
|
|
7
|
-
- [API](#api)
|
|
8
|
-
- [Vector Index](#vector-index)
|
|
9
|
-
- [Example](#example)
|
|
10
|
-
- [TypeScript](#typescript)
|
|
11
|
-
- [Python](#python)
|
|
12
|
-
- [Default values](#default-values)
|
|
13
|
-
|
|
14
|
-
## API
|
|
15
|
-
|
|
16
|
-
See the [API documentation](../../../apidocs/namespaces/opensearch_vectorindex/README.md).
|
|
17
|
-
|
|
18
|
-
## Vector Index
|
|
19
|
-
|
|
20
|
-
The `VectorIndex` resource connects to OpenSearch and creates an index suitable for use with Amazon Bedrock Knowledge Bases.
|
|
21
|
-
|
|
22
|
-
## Example
|
|
23
|
-
|
|
24
|
-
### TypeScript
|
|
25
|
-
|
|
26
|
-
```ts
|
|
27
|
-
import {
|
|
28
|
-
opensearchserverless,
|
|
29
|
-
opensearch_vectorindex,
|
|
30
|
-
} from '@cdklabs/generative-ai-cdk-constructs';
|
|
31
|
-
|
|
32
|
-
const vectorStore = new opensearchserverless.VectorCollection(
|
|
33
|
-
this,
|
|
34
|
-
'VectorCollection'
|
|
35
|
-
);
|
|
36
|
-
|
|
37
|
-
new opensearch_vectorindex.VectorIndex(this, 'VectorIndex', {
|
|
38
|
-
collection: vectorStore,
|
|
39
|
-
indexName: 'bedrock-knowledge-base-default-index',
|
|
40
|
-
vectorField: 'bedrock-knowledge-base-default-vector',
|
|
41
|
-
vectorDimensions: 1536,
|
|
42
|
-
precision: 'float',
|
|
43
|
-
distanceType: 'l2',
|
|
44
|
-
mappings: [
|
|
45
|
-
{
|
|
46
|
-
mappingField: 'AMAZON_BEDROCK_TEXT_CHUNK',
|
|
47
|
-
dataType: 'text',
|
|
48
|
-
filterable: true,
|
|
49
|
-
},
|
|
50
|
-
{
|
|
51
|
-
mappingField: 'AMAZON_BEDROCK_METADATA',
|
|
52
|
-
dataType: 'text',
|
|
53
|
-
filterable: false,
|
|
54
|
-
},
|
|
55
|
-
],
|
|
56
|
-
analyzer: {
|
|
57
|
-
characterFilters: [opensearchserverless.CharacterFilterType.ICU_NORMALIZER],
|
|
58
|
-
tokenizer: opensearchserverless.TokenizerType.KUROMOJI_TOKENIZER,
|
|
59
|
-
tokenFilters: [
|
|
60
|
-
opensearchserverless.TokenFilterType.KUROMOJI_BASEFORM,
|
|
61
|
-
opensearchserverless.TokenFilterType.JA_STOP,
|
|
62
|
-
],
|
|
63
|
-
},
|
|
64
|
-
});
|
|
65
|
-
```
|
|
66
|
-
|
|
67
|
-
### Python
|
|
68
|
-
|
|
69
|
-
```python
|
|
70
|
-
from cdklabs.generative_ai_cdk_constructs import (
|
|
71
|
-
opensearchserverless,
|
|
72
|
-
opensearch_vectorindex,
|
|
73
|
-
)
|
|
74
|
-
|
|
75
|
-
vectorCollection = opensearchserverless.VectorCollection(self, "VectorCollection")
|
|
76
|
-
|
|
77
|
-
vectorIndex = opensearch_vectorindex.VectorIndex(self, "VectorIndex",
|
|
78
|
-
vector_dimensions= 1536,
|
|
79
|
-
collection=vectorCollection,
|
|
80
|
-
index_name='bedrock-knowledge-base-default-index',
|
|
81
|
-
vector_field='bedrock-knowledge-base-default-vector',
|
|
82
|
-
precision='float',
|
|
83
|
-
distance_type='l2',
|
|
84
|
-
mappings= [
|
|
85
|
-
opensearch_vectorindex.MetadataManagementFieldProps(
|
|
86
|
-
mapping_field='AMAZON_BEDROCK_TEXT_CHUNK',
|
|
87
|
-
data_type='text',
|
|
88
|
-
filterable=True
|
|
89
|
-
),
|
|
90
|
-
opensearch_vectorindex.MetadataManagementFieldProps(
|
|
91
|
-
mapping_field='AMAZON_BEDROCK_METADATA',
|
|
92
|
-
data_type='text',
|
|
93
|
-
filterable=False
|
|
94
|
-
)
|
|
95
|
-
],
|
|
96
|
-
analyzer=opensearchserverless.AnalyzerProps(
|
|
97
|
-
character_filters=[opensearchserverless.CharacterFilterType.ICU_NORMALIZER],
|
|
98
|
-
tokenizer=opensearchserverless.TokenizerType.KUROMOJI_TOKENIZER,
|
|
99
|
-
token_filters=[
|
|
100
|
-
opensearchserverless.TokenFilterType.KUROMOJI_BASEFORM,
|
|
101
|
-
opensearchserverless.TokenFilterType.JA_STOP,
|
|
102
|
-
],
|
|
103
|
-
)
|
|
104
|
-
)
|
|
105
|
-
```
|
|
106
|
-
|
|
107
|
-
## Default values
|
|
108
|
-
|
|
109
|
-
Behind the scenes, the custom resource creates a k-NN vector in the OpenSearch index, allowing to perform different kinds of k-NN search. The knn_vector field is highly configurable and can serve many different k-NN workloads. It is created as follows:
|
|
110
|
-
|
|
111
|
-
Python
|
|
112
|
-
|
|
113
|
-
```py
|
|
114
|
-
"properties": {
|
|
115
|
-
vector_field: {
|
|
116
|
-
"type": "knn_vector",
|
|
117
|
-
"dimension": dimensions,
|
|
118
|
-
"data_type": precision,
|
|
119
|
-
"method": {
|
|
120
|
-
"engine": "faiss",
|
|
121
|
-
"space_type": distance_type,
|
|
122
|
-
"name": "hnsw",
|
|
123
|
-
"parameters": {},
|
|
124
|
-
},
|
|
125
|
-
},
|
|
126
|
-
"id": {
|
|
127
|
-
"type": "text",
|
|
128
|
-
"fields": {"keyword": {"type": "keyword", "ignore_above": 256}},
|
|
129
|
-
},
|
|
130
|
-
},
|
|
131
|
-
```
|
|
132
|
-
|
|
133
|
-
Users can currently configure the ```vector_field```, ```dimension```, ```data_type```, and ```distance_type``` fields through the construct interface.
|
|
134
|
-
|
|
135
|
-
For details on the different settings, you can refer to the [Knn plugin documentation](https://opensearch.org/docs/latest/search-plugins/knn/knn-index/).
|
|
@@ -1,17 +0,0 @@
|
|
|
1
|
-
# Amazon OpenSearch Serverless Construct Library
|
|
2
|
-
|
|
3
|
-
## Table of contents
|
|
4
|
-
|
|
5
|
-
- [API](#api)
|
|
6
|
-
- [Vector Collection](#vector-collection)
|
|
7
|
-
|
|
8
|
-
## API
|
|
9
|
-
See the [API documentation](../../../apidocs/namespaces/opensearchserverless/README.md).
|
|
10
|
-
|
|
11
|
-
## Vector Collection
|
|
12
|
-
|
|
13
|
-
This resource creates an Amazon OpenSearch Serverless collection configured for `VECTORSEARCH`. It creates default encryption, network, and data policies for use with Amazon Bedrock Knowledge Bases. For encryption, it uses the default AWS owned KMS key. It allows network connections from the public internet, but access is restricted to specific IAM principals.
|
|
14
|
-
|
|
15
|
-
### Granting Data Access
|
|
16
|
-
|
|
17
|
-
The `grantDataAccess` method grants the specified role access to read and write the data in the collection.
|
|
@@ -1,72 +0,0 @@
|
|
|
1
|
-
awslabs/__init__.py,sha256=4zfFn3N0BkvQmMTAIvV_QAbKp6GWzrwaUN17YeRoChM,115
|
|
2
|
-
awslabs/cdk_mcp_server/__init__.py,sha256=pssyHoTGWcnlIXiZ9U5LiasJMgCp-g8zwo2aY9jASYU,190
|
|
3
|
-
awslabs/cdk_mcp_server/server.py,sha256=KKNPh9zTvUy6uCAzeR2djtJqFCzDkkihUb-9dP_jVpw,134
|
|
4
|
-
awslabs/cdk_mcp_server/core/__init__.py,sha256=wMYtq0d53XTzMmilxj-crP-I445ijE_8A7MH6wL1Fm8,47
|
|
5
|
-
awslabs/cdk_mcp_server/core/resources.py,sha256=nduzytgmiAb3C-RuqcexWgEl_APUYymTQDmZhkAl-NQ,9593
|
|
6
|
-
awslabs/cdk_mcp_server/core/search_utils.py,sha256=Nz8ftv4w9O_1fvCwIJL36GoBMOtHP9XZnTnVhUxVUko,5585
|
|
7
|
-
awslabs/cdk_mcp_server/core/server.py,sha256=1Zc_n4whZJq9q2_eVrmvqnmNaTKL4ftwbiVHmPJ3JAs,2594
|
|
8
|
-
awslabs/cdk_mcp_server/core/tools.py,sha256=dw_RJ-IvfWsaicj6bp_UvyGjtd2hLicXL4RC5doaVk4,11644
|
|
9
|
-
awslabs/cdk_mcp_server/data/__init__.py,sha256=ksA1se4fyvTIb4K7lND-C66ouriFtjyZU96Q88nl6w4,47
|
|
10
|
-
awslabs/cdk_mcp_server/data/cdk_nag_parser.py,sha256=k3OzuVyoYUivowt_mEO0cp1YwTOgzTmVyg_0mcanDt8,10900
|
|
11
|
-
awslabs/cdk_mcp_server/data/construct_descriptions.py,sha256=br5gOa5M8Nhv3HrHqrHGXCwQRTu4ZeMAo85bEhzCuMM,2605
|
|
12
|
-
awslabs/cdk_mcp_server/data/genai_cdk_loader.py,sha256=Q_-tnYu9VNe9lbAxN6qfvBQWYJJjYXht63ko9x-IH-Y,15507
|
|
13
|
-
awslabs/cdk_mcp_server/data/lambda_powertools_loader.py,sha256=sQfZrmA2hZdd1NSK0hCb5l4kl7jlQ3xhxs28KgEB4Dw,1630
|
|
14
|
-
awslabs/cdk_mcp_server/data/schema_generator.py,sha256=vQaZiasOyVam0NNmtzo6D6hy7ynsndRR2I56OBwQlag,27879
|
|
15
|
-
awslabs/cdk_mcp_server/data/solutions_constructs_parser.py,sha256=SL3ZjvCSALmiQlHEMsoDbnbtKxFAPl-mTurciCgj3G8,27656
|
|
16
|
-
awslabs/cdk_mcp_server/static/CDK_GENERAL_GUIDANCE.md,sha256=E-oIFBGkvHg95u909rJDrGJdo4t7aCeTLZsXQ47Fyhc,9925
|
|
17
|
-
awslabs/cdk_mcp_server/static/CDK_NAG_GUIDANCE.md,sha256=zJtHJp9ruaaJ-xa68k9kDrPmEaXpiWCZZf7JIy8NK0w,5839
|
|
18
|
-
awslabs/cdk_mcp_server/static/__init__.py,sha256=JJ9ptA-cG8muKCoJgjPKUoCc2q2ks8gBJNbjJTHZS3o,194
|
|
19
|
-
awslabs/cdk_mcp_server/static/bedrock/bedrockguardrails.md,sha256=CX00B7XgDpLbVxvf6B-a13O4NERAJMiaPPeTuKK-8Sw,7386
|
|
20
|
-
awslabs/cdk_mcp_server/static/bedrock/profiles.md,sha256=xxPnEkZ0tJAFKomMuAPLm3EtlQFku6MR2nPu4VoyppE,7195
|
|
21
|
-
awslabs/cdk_mcp_server/static/bedrock/agent/actiongroups.md,sha256=qm6UCCfKurtvNO52g1a6H1N9iBZx-KTCf4SbCK2QQXw,4865
|
|
22
|
-
awslabs/cdk_mcp_server/static/bedrock/agent/alias.md,sha256=eyTmjmHyQbuR5CbFpp2qrEcEqw2l9pMupWERRVksVNw,1293
|
|
23
|
-
awslabs/cdk_mcp_server/static/bedrock/agent/collaboration.md,sha256=nNu30F5ydUbb7HtboUWNhp0hOnQMw8q8shCUjMDwT_A,3616
|
|
24
|
-
awslabs/cdk_mcp_server/static/bedrock/agent/creation.md,sha256=BzpVJkRs_q1ZkW8LnIEh7--57OnNmHHdPCygfGJAks0,6216
|
|
25
|
-
awslabs/cdk_mcp_server/static/bedrock/agent/custom_orchestration.md,sha256=ylMTq3PT3vHnrul_boLuQIGQFuk_Y0evdImp_pLY7rY,2983
|
|
26
|
-
awslabs/cdk_mcp_server/static/bedrock/agent/overview.md,sha256=4FLhC3CC01W9Gpw4S0Z6yWPnM86p2nJ_dxQ1yU4Xsxw,2921
|
|
27
|
-
awslabs/cdk_mcp_server/static/bedrock/agent/prompt_override.md,sha256=ypmKxlO5WIYqUh2gYDzo1Mwzso_HwSkzrMHeDU473C8,2520
|
|
28
|
-
awslabs/cdk_mcp_server/static/bedrock/knowledgebases/chunking.md,sha256=xlO23xjesPFGgv_FZm2AkRzQVH3nSFD2GpbddXJX2gM,3201
|
|
29
|
-
awslabs/cdk_mcp_server/static/bedrock/knowledgebases/datasources.md,sha256=iHQ086zHzkqHoKLi7pmyMxf0oH02UVHf_GAid6EMdeE,7147
|
|
30
|
-
awslabs/cdk_mcp_server/static/bedrock/knowledgebases/kendra.md,sha256=sYbhIAaGjuJ2lifP0xvDXacDEVFC24Gl9giAI6RF9bo,2786
|
|
31
|
-
awslabs/cdk_mcp_server/static/bedrock/knowledgebases/overview.md,sha256=AGLS6146UufRTC80EAyAviBhAtb7hFcbMz3tWFviPOc,5167
|
|
32
|
-
awslabs/cdk_mcp_server/static/bedrock/knowledgebases/parsing.md,sha256=AQ6TTO5HxKqhtVdv1bM6GjHyDgOICaNi5NtDT9Dxp10,1155
|
|
33
|
-
awslabs/cdk_mcp_server/static/bedrock/knowledgebases/transformation.md,sha256=I5Lkn0giUr5n0lTxqjtUsoHNkom6AJtxEnvlarH_54Y,813
|
|
34
|
-
awslabs/cdk_mcp_server/static/bedrock/knowledgebases/vector/aurora.md,sha256=CjiJDoaui2H4-nu99Sem4rK_8pQGB_ciI5So5pKWMSQ,5766
|
|
35
|
-
awslabs/cdk_mcp_server/static/bedrock/knowledgebases/vector/creation.md,sha256=jXxrwnor7_YUJc9sYCHjrQnCnHQrVItPI7YttcX-mX8,4491
|
|
36
|
-
awslabs/cdk_mcp_server/static/bedrock/knowledgebases/vector/opensearch.md,sha256=mM8nILHaFaLfHUaIl7c8Eh0NFx8Z5H4yu5LbC-DmnSU,1368
|
|
37
|
-
awslabs/cdk_mcp_server/static/bedrock/knowledgebases/vector/pinecone.md,sha256=OnKjSXB6CHBxnXJFGbsIRqpLyA6_S2AiHOJslxQVaOw,2053
|
|
38
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/bedrockguardrails.md,sha256=CX00B7XgDpLbVxvf6B-a13O4NERAJMiaPPeTuKK-8Sw,7386
|
|
39
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/profiles.md,sha256=xxPnEkZ0tJAFKomMuAPLm3EtlQFku6MR2nPu4VoyppE,7195
|
|
40
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/actiongroups.md,sha256=qm6UCCfKurtvNO52g1a6H1N9iBZx-KTCf4SbCK2QQXw,4865
|
|
41
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/alias.md,sha256=eyTmjmHyQbuR5CbFpp2qrEcEqw2l9pMupWERRVksVNw,1293
|
|
42
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/collaboration.md,sha256=nNu30F5ydUbb7HtboUWNhp0hOnQMw8q8shCUjMDwT_A,3616
|
|
43
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/creation.md,sha256=BzpVJkRs_q1ZkW8LnIEh7--57OnNmHHdPCygfGJAks0,6216
|
|
44
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/custom_orchestration.md,sha256=ylMTq3PT3vHnrul_boLuQIGQFuk_Y0evdImp_pLY7rY,2983
|
|
45
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/overview.md,sha256=4FLhC3CC01W9Gpw4S0Z6yWPnM86p2nJ_dxQ1yU4Xsxw,2921
|
|
46
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/agent/prompt_override.md,sha256=ypmKxlO5WIYqUh2gYDzo1Mwzso_HwSkzrMHeDU473C8,2520
|
|
47
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/chunking.md,sha256=TpLXPJso6c4MhWUepX0WsX3FE6FOIsFBPcE28B-3iKM,3203
|
|
48
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/datasources.md,sha256=iHQ086zHzkqHoKLi7pmyMxf0oH02UVHf_GAid6EMdeE,7147
|
|
49
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/kendra.md,sha256=sYbhIAaGjuJ2lifP0xvDXacDEVFC24Gl9giAI6RF9bo,2786
|
|
50
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/overview.md,sha256=AGLS6146UufRTC80EAyAviBhAtb7hFcbMz3tWFviPOc,5167
|
|
51
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/parsing.md,sha256=AQ6TTO5HxKqhtVdv1bM6GjHyDgOICaNi5NtDT9Dxp10,1155
|
|
52
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/transformation.md,sha256=I5Lkn0giUr5n0lTxqjtUsoHNkom6AJtxEnvlarH_54Y,813
|
|
53
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/vector/aurora.md,sha256=CjiJDoaui2H4-nu99Sem4rK_8pQGB_ciI5So5pKWMSQ,5766
|
|
54
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/vector/creation.md,sha256=jXxrwnor7_YUJc9sYCHjrQnCnHQrVItPI7YttcX-mX8,4491
|
|
55
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/vector/opensearch.md,sha256=mM8nILHaFaLfHUaIl7c8Eh0NFx8Z5H4yu5LbC-DmnSU,1368
|
|
56
|
-
awslabs/cdk_mcp_server/static/genai_cdk/bedrock/knowledgebases/vector/pinecone.md,sha256=OnKjSXB6CHBxnXJFGbsIRqpLyA6_S2AiHOJslxQVaOw,2053
|
|
57
|
-
awslabs/cdk_mcp_server/static/genai_cdk/opensearch-vectorindex/overview.md,sha256=0aSuBwX4ubI5WqwEfrnX1MH2UJlJOzdXZQ003fRIrGM,4121
|
|
58
|
-
awslabs/cdk_mcp_server/static/genai_cdk/opensearchserverless/overview.md,sha256=aUO1BRana_xqUPENP3GQyOSCAvV9mI-ZWls7x0g8ruA,746
|
|
59
|
-
awslabs/cdk_mcp_server/static/lambda_powertools/bedrock.md,sha256=Fu54j6sKHdNCUl8FnrIN02kXoTZzdS1g91lURG0ORA4,4292
|
|
60
|
-
awslabs/cdk_mcp_server/static/lambda_powertools/cdk.md,sha256=XBj-31YcphHb1BjCYz4nRpAfPuVJVRmDYI2K7e6Ti8E,3826
|
|
61
|
-
awslabs/cdk_mcp_server/static/lambda_powertools/dependencies.md,sha256=nZ2Fv54rG1rUmD_YHkM9h5VNvB81-Hk8Qx3ZNQSFZLY,1520
|
|
62
|
-
awslabs/cdk_mcp_server/static/lambda_powertools/index.md,sha256=yivjInZAZ3tENKGrrAv7geICzUvKUTskWuaNj9nuPbI,1819
|
|
63
|
-
awslabs/cdk_mcp_server/static/lambda_powertools/insights.md,sha256=t-lgyx2AstqXuY7LeWyhQxknrPN27-nAcwW-GTjI058,3445
|
|
64
|
-
awslabs/cdk_mcp_server/static/lambda_powertools/logging.md,sha256=6CSgD8QB3Bs4s_x4RnbKwZoWvG6aG4etCnmDH6HU9XY,1797
|
|
65
|
-
awslabs/cdk_mcp_server/static/lambda_powertools/metrics.md,sha256=XpQHtNSQRKN3GUqQWkk1lTfQSRC0LmW6VoX1dlwEvnQ,3182
|
|
66
|
-
awslabs/cdk_mcp_server/static/lambda_powertools/tracing.md,sha256=Q3dSCvgktb9sUsuuQ5ONU2Qdb1OTwbNOYpK--MDzBNw,2539
|
|
67
|
-
awslabs/cdk_mcp_server/static/opensearch-vectorindex/overview.md,sha256=0aSuBwX4ubI5WqwEfrnX1MH2UJlJOzdXZQ003fRIrGM,4121
|
|
68
|
-
awslabs/cdk_mcp_server/static/opensearchserverless/overview.md,sha256=aUO1BRana_xqUPENP3GQyOSCAvV9mI-ZWls7x0g8ruA,746
|
|
69
|
-
awslabs_cdk_mcp_server-0.0.62303.dist-info/METADATA,sha256=FFFL7SlFEWlvq9ThUjvrIJ9aZAs0lM5NUcJImlz1AkU,3638
|
|
70
|
-
awslabs_cdk_mcp_server-0.0.62303.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
71
|
-
awslabs_cdk_mcp_server-0.0.62303.dist-info/entry_points.txt,sha256=LertzmID_mUU1YYZPySAF1IY1zE7ySTvzFxiGyo3VjY,78
|
|
72
|
-
awslabs_cdk_mcp_server-0.0.62303.dist-info/RECORD,,
|
{awslabs_cdk_mcp_server-0.0.62303.dist-info → awslabs_cdk_mcp_server-0.0.81004.dist-info}/WHEEL
RENAMED
|
File without changes
|
|
File without changes
|