aws-cdk-lib 2.203.1__py3-none-any.whl → 2.205.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of aws-cdk-lib might be problematic. Click here for more details.

Files changed (62) hide show
  1. aws_cdk/__init__.py +208 -92
  2. aws_cdk/_jsii/__init__.py +1 -1
  3. aws_cdk/_jsii/{aws-cdk-lib@2.203.1.jsii.tgz → aws-cdk-lib@2.205.0.jsii.tgz} +0 -0
  4. aws_cdk/aws_aiops/__init__.py +89 -39
  5. aws_cdk/aws_apigateway/__init__.py +164 -0
  6. aws_cdk/aws_apigatewayv2/__init__.py +412 -0
  7. aws_cdk/aws_applicationautoscaling/__init__.py +2 -2
  8. aws_cdk/aws_arczonalshift/__init__.py +4 -1
  9. aws_cdk/aws_b2bi/__init__.py +32 -16
  10. aws_cdk/aws_bedrock/__init__.py +198 -10
  11. aws_cdk/aws_cassandra/__init__.py +156 -0
  12. aws_cdk/aws_certificatemanager/__init__.py +28 -0
  13. aws_cdk/aws_chatbot/__init__.py +28 -0
  14. aws_cdk/aws_cloudformation/__init__.py +74 -72
  15. aws_cdk/aws_cloudfront/__init__.py +1273 -485
  16. aws_cdk/aws_cloudfront/experimental/__init__.py +32 -0
  17. aws_cdk/aws_cloudfront_origins/__init__.py +26 -21
  18. aws_cdk/aws_cloudwatch/__init__.py +278 -23
  19. aws_cdk/aws_codebuild/__init__.py +300 -36
  20. aws_cdk/aws_datasync/__init__.py +2 -2
  21. aws_cdk/aws_docdb/__init__.py +78 -0
  22. aws_cdk/aws_dynamodb/__init__.py +523 -37
  23. aws_cdk/aws_ec2/__init__.py +126 -30
  24. aws_cdk/aws_ecs/__init__.py +64 -19
  25. aws_cdk/aws_elasticloadbalancingv2/__init__.py +724 -0
  26. aws_cdk/aws_elasticsearch/__init__.py +260 -0
  27. aws_cdk/aws_emrserverless/__init__.py +5 -5
  28. aws_cdk/aws_events/__init__.py +58 -3
  29. aws_cdk/aws_events_targets/__init__.py +7 -2
  30. aws_cdk/aws_evs/__init__.py +7 -7
  31. aws_cdk/aws_fsx/__init__.py +138 -78
  32. aws_cdk/aws_gamelift/__init__.py +19 -0
  33. aws_cdk/aws_glue/__init__.py +3 -3
  34. aws_cdk/aws_iot/__init__.py +1 -1
  35. aws_cdk/aws_kinesis/__init__.py +391 -13
  36. aws_cdk/aws_kinesisfirehose/__init__.py +128 -1
  37. aws_cdk/aws_lambda/__init__.py +144 -0
  38. aws_cdk/aws_lex/__init__.py +36 -19
  39. aws_cdk/aws_logs/__init__.py +58 -0
  40. aws_cdk/aws_neptune/__init__.py +12 -12
  41. aws_cdk/aws_odb/__init__.py +4049 -0
  42. aws_cdk/aws_omics/__init__.py +1 -1
  43. aws_cdk/aws_opensearchservice/__init__.py +260 -0
  44. aws_cdk/aws_qbusiness/__init__.py +471 -4
  45. aws_cdk/aws_quicksight/__init__.py +185 -16
  46. aws_cdk/aws_rds/__init__.py +553 -17
  47. aws_cdk/aws_redshiftserverless/__init__.py +72 -45
  48. aws_cdk/aws_route53/__init__.py +41 -19
  49. aws_cdk/aws_s3tables/__init__.py +1005 -0
  50. aws_cdk/aws_sagemaker/__init__.py +20 -0
  51. aws_cdk/aws_scheduler/__init__.py +210 -0
  52. aws_cdk/aws_sns/__init__.py +164 -0
  53. aws_cdk/aws_sqs/__init__.py +164 -0
  54. aws_cdk/aws_stepfunctions/__init__.py +288 -0
  55. aws_cdk/aws_synthetics/__init__.py +159 -37
  56. aws_cdk/aws_transfer/__init__.py +23 -1
  57. {aws_cdk_lib-2.203.1.dist-info → aws_cdk_lib-2.205.0.dist-info}/METADATA +2 -2
  58. {aws_cdk_lib-2.203.1.dist-info → aws_cdk_lib-2.205.0.dist-info}/RECORD +62 -61
  59. {aws_cdk_lib-2.203.1.dist-info → aws_cdk_lib-2.205.0.dist-info}/LICENSE +0 -0
  60. {aws_cdk_lib-2.203.1.dist-info → aws_cdk_lib-2.205.0.dist-info}/NOTICE +0 -0
  61. {aws_cdk_lib-2.203.1.dist-info → aws_cdk_lib-2.205.0.dist-info}/WHEEL +0 -0
  62. {aws_cdk_lib-2.203.1.dist-info → aws_cdk_lib-2.205.0.dist-info}/top_level.txt +0 -0
@@ -1041,6 +1041,7 @@ class CfnContainerFleet(
1041
1041
  )],
1042
1042
  log_configuration=gamelift.CfnContainerFleet.LogConfigurationProperty(
1043
1043
  log_destination="logDestination",
1044
+ log_group_arn="logGroupArn",
1044
1045
  s3_bucket_name="s3BucketName"
1045
1046
  ),
1046
1047
  metric_groups=["metricGroups"],
@@ -2155,6 +2156,7 @@ class CfnContainerFleet(
2155
2156
  jsii_struct_bases=[],
2156
2157
  name_mapping={
2157
2158
  "log_destination": "logDestination",
2159
+ "log_group_arn": "logGroupArn",
2158
2160
  "s3_bucket_name": "s3BucketName",
2159
2161
  },
2160
2162
  )
@@ -2163,6 +2165,7 @@ class CfnContainerFleet(
2163
2165
  self,
2164
2166
  *,
2165
2167
  log_destination: typing.Optional[builtins.str] = None,
2168
+ log_group_arn: typing.Optional[builtins.str] = None,
2166
2169
  s3_bucket_name: typing.Optional[builtins.str] = None,
2167
2170
  ) -> None:
2168
2171
  '''A method for collecting container logs for the fleet.
@@ -2170,6 +2173,7 @@ class CfnContainerFleet(
2170
2173
  Amazon GameLift Servers saves all standard output for each container in logs, including game session logs. You can select from the following methods:
2171
2174
 
2172
2175
  :param log_destination: The type of log collection to use for a fleet. - ``CLOUDWATCH`` -- (default value) Send logs to an Amazon CloudWatch log group that you define. Each container emits a log stream, which is organized in the log group. - ``S3`` -- Store logs in an Amazon S3 bucket that you define. This bucket must reside in the fleet's home AWS Region. - ``NONE`` -- Don't collect container logs.
2176
+ :param log_group_arn: If log destination is ``CLOUDWATCH`` , logs are sent to the specified log group in Amazon CloudWatch.
2173
2177
  :param s3_bucket_name: If log destination is ``S3`` , logs are sent to the specified Amazon S3 bucket name.
2174
2178
 
2175
2179
  :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-gamelift-containerfleet-logconfiguration.html
@@ -2183,16 +2187,20 @@ class CfnContainerFleet(
2183
2187
 
2184
2188
  log_configuration_property = gamelift.CfnContainerFleet.LogConfigurationProperty(
2185
2189
  log_destination="logDestination",
2190
+ log_group_arn="logGroupArn",
2186
2191
  s3_bucket_name="s3BucketName"
2187
2192
  )
2188
2193
  '''
2189
2194
  if __debug__:
2190
2195
  type_hints = typing.get_type_hints(_typecheckingstub__287854cb20cec032892a9072e611adf774cd43dcc343c3ffdda539be73bce563)
2191
2196
  check_type(argname="argument log_destination", value=log_destination, expected_type=type_hints["log_destination"])
2197
+ check_type(argname="argument log_group_arn", value=log_group_arn, expected_type=type_hints["log_group_arn"])
2192
2198
  check_type(argname="argument s3_bucket_name", value=s3_bucket_name, expected_type=type_hints["s3_bucket_name"])
2193
2199
  self._values: typing.Dict[builtins.str, typing.Any] = {}
2194
2200
  if log_destination is not None:
2195
2201
  self._values["log_destination"] = log_destination
2202
+ if log_group_arn is not None:
2203
+ self._values["log_group_arn"] = log_group_arn
2196
2204
  if s3_bucket_name is not None:
2197
2205
  self._values["s3_bucket_name"] = s3_bucket_name
2198
2206
 
@@ -2209,6 +2217,15 @@ class CfnContainerFleet(
2209
2217
  result = self._values.get("log_destination")
2210
2218
  return typing.cast(typing.Optional[builtins.str], result)
2211
2219
 
2220
+ @builtins.property
2221
+ def log_group_arn(self) -> typing.Optional[builtins.str]:
2222
+ '''If log destination is ``CLOUDWATCH`` , logs are sent to the specified log group in Amazon CloudWatch.
2223
+
2224
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-gamelift-containerfleet-logconfiguration.html#cfn-gamelift-containerfleet-logconfiguration-loggrouparn
2225
+ '''
2226
+ result = self._values.get("log_group_arn")
2227
+ return typing.cast(typing.Optional[builtins.str], result)
2228
+
2212
2229
  @builtins.property
2213
2230
  def s3_bucket_name(self) -> typing.Optional[builtins.str]:
2214
2231
  '''If log destination is ``S3`` , logs are sent to the specified Amazon S3 bucket name.
@@ -2617,6 +2634,7 @@ class CfnContainerFleetProps:
2617
2634
  )],
2618
2635
  log_configuration=gamelift.CfnContainerFleet.LogConfigurationProperty(
2619
2636
  log_destination="logDestination",
2637
+ log_group_arn="logGroupArn",
2620
2638
  s3_bucket_name="s3BucketName"
2621
2639
  ),
2622
2640
  metric_groups=["metricGroups"],
@@ -11015,6 +11033,7 @@ def _typecheckingstub__6f0d55ebb1c8fdd9364a92df8152f6c91294e481bedd64b3458f3dff3
11015
11033
  def _typecheckingstub__287854cb20cec032892a9072e611adf774cd43dcc343c3ffdda539be73bce563(
11016
11034
  *,
11017
11035
  log_destination: typing.Optional[builtins.str] = None,
11036
+ log_group_arn: typing.Optional[builtins.str] = None,
11018
11037
  s3_bucket_name: typing.Optional[builtins.str] = None,
11019
11038
  ) -> None:
11020
11039
  """Type checking stubs"""
@@ -7154,7 +7154,7 @@ class CfnJob(
7154
7154
  :param security_configuration: The name of the ``SecurityConfiguration`` structure to be used with this job.
7155
7155
  :param tags: The tags to use with this job.
7156
7156
  :param timeout: The job timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours).
7157
- :param worker_type: The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs. - For the ``G.1X`` worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs. - For the ``G.2X`` worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs. - For the ``G.4X`` worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or later Spark ETL jobs in the following AWS Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm). - For the ``G.8X`` worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or later Spark ETL jobs, in the same AWS Regions as supported for the ``G.4X`` worker type. - For the ``G.025X`` worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for AWS Glue version 3.0 or later streaming jobs. - For the ``Z.2X`` worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
7157
+ :param worker_type: The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs. - For the ``G.1X`` worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs. - For the ``G.2X`` worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs. - For the ``G.4X`` worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or later Spark ETL jobs in the following AWS Regions: US East (Ohio), US East (N. Virginia), US West (N. California), US West (Oregon), Asia Pacific (Mumbai), Asia Pacific (Seoul), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), Europe (London), Europe (Spain), Europe (Stockholm), and South America (São Paulo). - For the ``G.8X`` worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or later Spark ETL jobs, in the same AWS Regions as supported for the ``G.4X`` worker type. - For the ``G.025X`` worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for AWS Glue version 3.0 or later streaming jobs. - For the ``Z.2X`` worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
7158
7158
  '''
7159
7159
  if __debug__:
7160
7160
  type_hints = typing.get_type_hints(_typecheckingstub__2bea698eff4ea1d2bc08b1ab842f318f77ba719c0241a0959453e26989b5b53e)
@@ -7919,7 +7919,7 @@ class CfnJobProps:
7919
7919
  :param security_configuration: The name of the ``SecurityConfiguration`` structure to be used with this job.
7920
7920
  :param tags: The tags to use with this job.
7921
7921
  :param timeout: The job timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours).
7922
- :param worker_type: The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs. - For the ``G.1X`` worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs. - For the ``G.2X`` worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs. - For the ``G.4X`` worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or later Spark ETL jobs in the following AWS Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm). - For the ``G.8X`` worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or later Spark ETL jobs, in the same AWS Regions as supported for the ``G.4X`` worker type. - For the ``G.025X`` worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for AWS Glue version 3.0 or later streaming jobs. - For the ``Z.2X`` worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
7922
+ :param worker_type: The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs. - For the ``G.1X`` worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs. - For the ``G.2X`` worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs. - For the ``G.4X`` worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or later Spark ETL jobs in the following AWS Regions: US East (Ohio), US East (N. Virginia), US West (N. California), US West (Oregon), Asia Pacific (Mumbai), Asia Pacific (Seoul), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), Europe (London), Europe (Spain), Europe (Stockholm), and South America (São Paulo). - For the ``G.8X`` worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or later Spark ETL jobs, in the same AWS Regions as supported for the ``G.4X`` worker type. - For the ``G.025X`` worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for AWS Glue version 3.0 or later streaming jobs. - For the ``Z.2X`` worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
7923
7923
 
7924
7924
  :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-glue-job.html
7925
7925
  :exampleMetadata: fixture=_generated
@@ -8308,7 +8308,7 @@ class CfnJobProps:
8308
8308
 
8309
8309
  - For the ``G.1X`` worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
8310
8310
  - For the ``G.2X`` worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
8311
- - For the ``G.4X`` worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or later Spark ETL jobs in the following AWS Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
8311
+ - For the ``G.4X`` worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or later Spark ETL jobs in the following AWS Regions: US East (Ohio), US East (N. Virginia), US West (N. California), US West (Oregon), Asia Pacific (Mumbai), Asia Pacific (Seoul), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), Europe (London), Europe (Spain), Europe (Stockholm), and South America (São Paulo).
8312
8312
  - For the ``G.8X`` worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for AWS Glue version 3.0 or later Spark ETL jobs, in the same AWS Regions as supported for the ``G.4X`` worker type.
8313
8313
  - For the ``G.025X`` worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for AWS Glue version 3.0 or later streaming jobs.
8314
8314
  - For the ``Z.2X`` worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
@@ -7712,7 +7712,7 @@ class CfnLogging(
7712
7712
 
7713
7713
  .. epigraph::
7714
7714
 
7715
- If you already set the log function of AWS IoT Core , you can't deploy the AWS Cloud Development Kit (AWS CDK) to change the logging settings. You can change the logging settings by either:
7715
+ If you already set the log function of AWS IoT Core , you can't deploy the Cloud Development Kit to change the logging settings. You can change the logging settings by either:
7716
7716
 
7717
7717
  - Importing the existing logging resource into your AWS CloudFormation stack, such as with the `infrastructure as code generator (IaC generator) <https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/generate-IaC.html>`_ .
7718
7718
  - Calling ``aws iot set-v2-logging-options --disable-all-logs`` before creating a new CloudFormation stack. This command disables all AWS IoT logging. As a result, no AWS IoT logs will be delivered to Amazon CloudWatch until you re-enable logging.