aws-cdk-lib 2.165.0__py3-none-any.whl → 2.166.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of aws-cdk-lib might be problematic. Click here for more details.

Files changed (42) hide show
  1. aws_cdk/_jsii/__init__.py +1 -1
  2. aws_cdk/_jsii/{aws-cdk-lib@2.165.0.jsii.tgz → aws-cdk-lib@2.166.0.jsii.tgz} +0 -0
  3. aws_cdk/aws_appsync/__init__.py +2122 -340
  4. aws_cdk/aws_backup/__init__.py +57 -31
  5. aws_cdk/aws_bedrock/__init__.py +982 -191
  6. aws_cdk/aws_codepipeline/__init__.py +98 -5
  7. aws_cdk/aws_codestar/__init__.py +1 -1
  8. aws_cdk/aws_cognito/__init__.py +0 -8
  9. aws_cdk/aws_connect/__init__.py +1 -1
  10. aws_cdk/aws_datasync/__init__.py +9 -7
  11. aws_cdk/aws_devopsguru/__init__.py +2 -2
  12. aws_cdk/aws_dms/__init__.py +762 -0
  13. aws_cdk/aws_dynamodb/__init__.py +13 -8
  14. aws_cdk/aws_ec2/__init__.py +15 -6
  15. aws_cdk/aws_ecs/__init__.py +41 -31
  16. aws_cdk/aws_elasticache/__init__.py +11 -6
  17. aws_cdk/aws_emrserverless/__init__.py +35 -33
  18. aws_cdk/aws_events/__init__.py +25 -30
  19. aws_cdk/aws_kinesis/__init__.py +297 -1
  20. aws_cdk/aws_lambda/__init__.py +3 -3
  21. aws_cdk/aws_m2/__init__.py +58 -58
  22. aws_cdk/aws_mediapackagev2/__init__.py +191 -0
  23. aws_cdk/aws_networkfirewall/__init__.py +14 -5
  24. aws_cdk/aws_opensearchservice/__init__.py +969 -0
  25. aws_cdk/aws_pipes/__init__.py +1 -1
  26. aws_cdk/aws_qbusiness/__init__.py +2 -0
  27. aws_cdk/aws_rds/__init__.py +65 -16
  28. aws_cdk/aws_route53/__init__.py +38 -12
  29. aws_cdk/aws_s3_deployment/__init__.py +13 -7
  30. aws_cdk/aws_sagemaker/__init__.py +61 -25
  31. aws_cdk/aws_secretsmanager/__init__.py +2 -1
  32. aws_cdk/aws_ses/__init__.py +19 -0
  33. aws_cdk/aws_sqs/__init__.py +12 -9
  34. aws_cdk/aws_synthetics/__init__.py +121 -0
  35. aws_cdk/aws_timestream/__init__.py +41 -0
  36. aws_cdk/aws_wisdom/__init__.py +2035 -61
  37. {aws_cdk_lib-2.165.0.dist-info → aws_cdk_lib-2.166.0.dist-info}/METADATA +1 -1
  38. {aws_cdk_lib-2.165.0.dist-info → aws_cdk_lib-2.166.0.dist-info}/RECORD +42 -42
  39. {aws_cdk_lib-2.165.0.dist-info → aws_cdk_lib-2.166.0.dist-info}/LICENSE +0 -0
  40. {aws_cdk_lib-2.165.0.dist-info → aws_cdk_lib-2.166.0.dist-info}/NOTICE +0 -0
  41. {aws_cdk_lib-2.165.0.dist-info → aws_cdk_lib-2.166.0.dist-info}/WHEEL +0 -0
  42. {aws_cdk_lib-2.165.0.dist-info → aws_cdk_lib-2.166.0.dist-info}/top_level.txt +0 -0
@@ -2834,6 +2834,463 @@ class CfnAgentProps:
2834
2834
  )
2835
2835
 
2836
2836
 
2837
+ @jsii.implements(_IInspectable_c2943556, _ITaggableV2_4e6798f8)
2838
+ class CfnApplicationInferenceProfile(
2839
+ _CfnResource_9df397a6,
2840
+ metaclass=jsii.JSIIMeta,
2841
+ jsii_type="aws-cdk-lib.aws_bedrock.CfnApplicationInferenceProfile",
2842
+ ):
2843
+ '''Definition of AWS::Bedrock::ApplicationInferenceProfile Resource Type.
2844
+
2845
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-bedrock-applicationinferenceprofile.html
2846
+ :cloudformationResource: AWS::Bedrock::ApplicationInferenceProfile
2847
+ :exampleMetadata: fixture=_generated
2848
+
2849
+ Example::
2850
+
2851
+ # The code below shows an example of how to instantiate this type.
2852
+ # The values are placeholders you should change.
2853
+ from aws_cdk import aws_bedrock as bedrock
2854
+
2855
+ cfn_application_inference_profile = bedrock.CfnApplicationInferenceProfile(self, "MyCfnApplicationInferenceProfile",
2856
+ inference_profile_name="inferenceProfileName",
2857
+
2858
+ # the properties below are optional
2859
+ description="description",
2860
+ model_source=bedrock.CfnApplicationInferenceProfile.InferenceProfileModelSourceProperty(
2861
+ copy_from="copyFrom"
2862
+ ),
2863
+ tags=[CfnTag(
2864
+ key="key",
2865
+ value="value"
2866
+ )]
2867
+ )
2868
+ '''
2869
+
2870
+ def __init__(
2871
+ self,
2872
+ scope: _constructs_77d1e7e8.Construct,
2873
+ id: builtins.str,
2874
+ *,
2875
+ inference_profile_name: builtins.str,
2876
+ description: typing.Optional[builtins.str] = None,
2877
+ model_source: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union["CfnApplicationInferenceProfile.InferenceProfileModelSourceProperty", typing.Dict[builtins.str, typing.Any]]]] = None,
2878
+ tags: typing.Optional[typing.Sequence[typing.Union[_CfnTag_f6864754, typing.Dict[builtins.str, typing.Any]]]] = None,
2879
+ ) -> None:
2880
+ '''
2881
+ :param scope: Scope in which this resource is defined.
2882
+ :param id: Construct identifier for this resource (unique in its scope).
2883
+ :param inference_profile_name:
2884
+ :param description: Description of the inference profile.
2885
+ :param model_source: Various ways to encode a list of models in a CreateInferenceProfile request.
2886
+ :param tags: List of Tags.
2887
+ '''
2888
+ if __debug__:
2889
+ type_hints = typing.get_type_hints(_typecheckingstub__a2222de49518232a3824d971182922daf44d6255370c3805992fca295b2904ad)
2890
+ check_type(argname="argument scope", value=scope, expected_type=type_hints["scope"])
2891
+ check_type(argname="argument id", value=id, expected_type=type_hints["id"])
2892
+ props = CfnApplicationInferenceProfileProps(
2893
+ inference_profile_name=inference_profile_name,
2894
+ description=description,
2895
+ model_source=model_source,
2896
+ tags=tags,
2897
+ )
2898
+
2899
+ jsii.create(self.__class__, self, [scope, id, props])
2900
+
2901
+ @jsii.member(jsii_name="inspect")
2902
+ def inspect(self, inspector: _TreeInspector_488e0dd5) -> None:
2903
+ '''Examines the CloudFormation resource and discloses attributes.
2904
+
2905
+ :param inspector: tree inspector to collect and process attributes.
2906
+ '''
2907
+ if __debug__:
2908
+ type_hints = typing.get_type_hints(_typecheckingstub__4d2e339334daf20f2a812f78dadefad7c0714dbaaafdfe61e138ba0cfb3f07e2)
2909
+ check_type(argname="argument inspector", value=inspector, expected_type=type_hints["inspector"])
2910
+ return typing.cast(None, jsii.invoke(self, "inspect", [inspector]))
2911
+
2912
+ @jsii.member(jsii_name="renderProperties")
2913
+ def _render_properties(
2914
+ self,
2915
+ props: typing.Mapping[builtins.str, typing.Any],
2916
+ ) -> typing.Mapping[builtins.str, typing.Any]:
2917
+ '''
2918
+ :param props: -
2919
+ '''
2920
+ if __debug__:
2921
+ type_hints = typing.get_type_hints(_typecheckingstub__d0b7fff48c27eff9823a04431a3cb684b46b8434a66cf5f1941f73cf8eba5762)
2922
+ check_type(argname="argument props", value=props, expected_type=type_hints["props"])
2923
+ return typing.cast(typing.Mapping[builtins.str, typing.Any], jsii.invoke(self, "renderProperties", [props]))
2924
+
2925
+ @jsii.python.classproperty
2926
+ @jsii.member(jsii_name="CFN_RESOURCE_TYPE_NAME")
2927
+ def CFN_RESOURCE_TYPE_NAME(cls) -> builtins.str:
2928
+ '''The CloudFormation resource type name for this resource class.'''
2929
+ return typing.cast(builtins.str, jsii.sget(cls, "CFN_RESOURCE_TYPE_NAME"))
2930
+
2931
+ @builtins.property
2932
+ @jsii.member(jsii_name="attrCreatedAt")
2933
+ def attr_created_at(self) -> builtins.str:
2934
+ '''Time Stamp.
2935
+
2936
+ :cloudformationAttribute: CreatedAt
2937
+ '''
2938
+ return typing.cast(builtins.str, jsii.get(self, "attrCreatedAt"))
2939
+
2940
+ @builtins.property
2941
+ @jsii.member(jsii_name="attrInferenceProfileArn")
2942
+ def attr_inference_profile_arn(self) -> builtins.str:
2943
+ '''
2944
+ :cloudformationAttribute: InferenceProfileArn
2945
+ '''
2946
+ return typing.cast(builtins.str, jsii.get(self, "attrInferenceProfileArn"))
2947
+
2948
+ @builtins.property
2949
+ @jsii.member(jsii_name="attrInferenceProfileId")
2950
+ def attr_inference_profile_id(self) -> builtins.str:
2951
+ '''
2952
+ :cloudformationAttribute: InferenceProfileId
2953
+ '''
2954
+ return typing.cast(builtins.str, jsii.get(self, "attrInferenceProfileId"))
2955
+
2956
+ @builtins.property
2957
+ @jsii.member(jsii_name="attrInferenceProfileIdentifier")
2958
+ def attr_inference_profile_identifier(self) -> builtins.str:
2959
+ '''Inference profile identifier.
2960
+
2961
+ Supports both system-defined inference profile ids, and inference profile ARNs.
2962
+
2963
+ :cloudformationAttribute: InferenceProfileIdentifier
2964
+ '''
2965
+ return typing.cast(builtins.str, jsii.get(self, "attrInferenceProfileIdentifier"))
2966
+
2967
+ @builtins.property
2968
+ @jsii.member(jsii_name="attrModels")
2969
+ def attr_models(self) -> _IResolvable_da3f097b:
2970
+ '''List of model configuration.
2971
+
2972
+ :cloudformationAttribute: Models
2973
+ '''
2974
+ return typing.cast(_IResolvable_da3f097b, jsii.get(self, "attrModels"))
2975
+
2976
+ @builtins.property
2977
+ @jsii.member(jsii_name="attrStatus")
2978
+ def attr_status(self) -> builtins.str:
2979
+ '''Status of the Inference Profile.
2980
+
2981
+ :cloudformationAttribute: Status
2982
+ '''
2983
+ return typing.cast(builtins.str, jsii.get(self, "attrStatus"))
2984
+
2985
+ @builtins.property
2986
+ @jsii.member(jsii_name="attrType")
2987
+ def attr_type(self) -> builtins.str:
2988
+ '''Type of the Inference Profile.
2989
+
2990
+ :cloudformationAttribute: Type
2991
+ '''
2992
+ return typing.cast(builtins.str, jsii.get(self, "attrType"))
2993
+
2994
+ @builtins.property
2995
+ @jsii.member(jsii_name="attrUpdatedAt")
2996
+ def attr_updated_at(self) -> builtins.str:
2997
+ '''Time Stamp.
2998
+
2999
+ :cloudformationAttribute: UpdatedAt
3000
+ '''
3001
+ return typing.cast(builtins.str, jsii.get(self, "attrUpdatedAt"))
3002
+
3003
+ @builtins.property
3004
+ @jsii.member(jsii_name="cdkTagManager")
3005
+ def cdk_tag_manager(self) -> _TagManager_0a598cb3:
3006
+ '''Tag Manager which manages the tags for this resource.'''
3007
+ return typing.cast(_TagManager_0a598cb3, jsii.get(self, "cdkTagManager"))
3008
+
3009
+ @builtins.property
3010
+ @jsii.member(jsii_name="cfnProperties")
3011
+ def _cfn_properties(self) -> typing.Mapping[builtins.str, typing.Any]:
3012
+ return typing.cast(typing.Mapping[builtins.str, typing.Any], jsii.get(self, "cfnProperties"))
3013
+
3014
+ @builtins.property
3015
+ @jsii.member(jsii_name="inferenceProfileName")
3016
+ def inference_profile_name(self) -> builtins.str:
3017
+ return typing.cast(builtins.str, jsii.get(self, "inferenceProfileName"))
3018
+
3019
+ @inference_profile_name.setter
3020
+ def inference_profile_name(self, value: builtins.str) -> None:
3021
+ if __debug__:
3022
+ type_hints = typing.get_type_hints(_typecheckingstub__6aae972c3170b196c6e4fa5bf8d0dd4b8b0b49a1c0f56c506e744e0442f85c7c)
3023
+ check_type(argname="argument value", value=value, expected_type=type_hints["value"])
3024
+ jsii.set(self, "inferenceProfileName", value) # pyright: ignore[reportArgumentType]
3025
+
3026
+ @builtins.property
3027
+ @jsii.member(jsii_name="description")
3028
+ def description(self) -> typing.Optional[builtins.str]:
3029
+ '''Description of the inference profile.'''
3030
+ return typing.cast(typing.Optional[builtins.str], jsii.get(self, "description"))
3031
+
3032
+ @description.setter
3033
+ def description(self, value: typing.Optional[builtins.str]) -> None:
3034
+ if __debug__:
3035
+ type_hints = typing.get_type_hints(_typecheckingstub__2c6572f5531b0a792b64f808b10a21a42b92c9f7be81c2527cca65319dc19869)
3036
+ check_type(argname="argument value", value=value, expected_type=type_hints["value"])
3037
+ jsii.set(self, "description", value) # pyright: ignore[reportArgumentType]
3038
+
3039
+ @builtins.property
3040
+ @jsii.member(jsii_name="modelSource")
3041
+ def model_source(
3042
+ self,
3043
+ ) -> typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnApplicationInferenceProfile.InferenceProfileModelSourceProperty"]]:
3044
+ '''Various ways to encode a list of models in a CreateInferenceProfile request.'''
3045
+ return typing.cast(typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnApplicationInferenceProfile.InferenceProfileModelSourceProperty"]], jsii.get(self, "modelSource"))
3046
+
3047
+ @model_source.setter
3048
+ def model_source(
3049
+ self,
3050
+ value: typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnApplicationInferenceProfile.InferenceProfileModelSourceProperty"]],
3051
+ ) -> None:
3052
+ if __debug__:
3053
+ type_hints = typing.get_type_hints(_typecheckingstub__2237f6f7b3816378634fc620ae2448fa846fa47396f09bc7c0b5e8a0902d65ae)
3054
+ check_type(argname="argument value", value=value, expected_type=type_hints["value"])
3055
+ jsii.set(self, "modelSource", value) # pyright: ignore[reportArgumentType]
3056
+
3057
+ @builtins.property
3058
+ @jsii.member(jsii_name="tags")
3059
+ def tags(self) -> typing.Optional[typing.List[_CfnTag_f6864754]]:
3060
+ '''List of Tags.'''
3061
+ return typing.cast(typing.Optional[typing.List[_CfnTag_f6864754]], jsii.get(self, "tags"))
3062
+
3063
+ @tags.setter
3064
+ def tags(self, value: typing.Optional[typing.List[_CfnTag_f6864754]]) -> None:
3065
+ if __debug__:
3066
+ type_hints = typing.get_type_hints(_typecheckingstub__e13f50624dfcb2d9c61a18114e7992a8def4ddd2f6f340c352ac98a5668d7eea)
3067
+ check_type(argname="argument value", value=value, expected_type=type_hints["value"])
3068
+ jsii.set(self, "tags", value) # pyright: ignore[reportArgumentType]
3069
+
3070
+ @jsii.data_type(
3071
+ jsii_type="aws-cdk-lib.aws_bedrock.CfnApplicationInferenceProfile.InferenceProfileModelProperty",
3072
+ jsii_struct_bases=[],
3073
+ name_mapping={"model_arn": "modelArn"},
3074
+ )
3075
+ class InferenceProfileModelProperty:
3076
+ def __init__(self, *, model_arn: typing.Optional[builtins.str] = None) -> None:
3077
+ '''Model configuration.
3078
+
3079
+ :param model_arn: ARN for Foundation Models in Bedrock. These models can be used as base models for model customization jobs
3080
+
3081
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-applicationinferenceprofile-inferenceprofilemodel.html
3082
+ :exampleMetadata: fixture=_generated
3083
+
3084
+ Example::
3085
+
3086
+ # The code below shows an example of how to instantiate this type.
3087
+ # The values are placeholders you should change.
3088
+ from aws_cdk import aws_bedrock as bedrock
3089
+
3090
+ inference_profile_model_property = bedrock.CfnApplicationInferenceProfile.InferenceProfileModelProperty(
3091
+ model_arn="modelArn"
3092
+ )
3093
+ '''
3094
+ if __debug__:
3095
+ type_hints = typing.get_type_hints(_typecheckingstub__ef9de36422391b892f90691f22e956a086a03a2e131a35b0986b5b63d905255f)
3096
+ check_type(argname="argument model_arn", value=model_arn, expected_type=type_hints["model_arn"])
3097
+ self._values: typing.Dict[builtins.str, typing.Any] = {}
3098
+ if model_arn is not None:
3099
+ self._values["model_arn"] = model_arn
3100
+
3101
+ @builtins.property
3102
+ def model_arn(self) -> typing.Optional[builtins.str]:
3103
+ '''ARN for Foundation Models in Bedrock.
3104
+
3105
+ These models can be used as base models for model customization jobs
3106
+
3107
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-applicationinferenceprofile-inferenceprofilemodel.html#cfn-bedrock-applicationinferenceprofile-inferenceprofilemodel-modelarn
3108
+ '''
3109
+ result = self._values.get("model_arn")
3110
+ return typing.cast(typing.Optional[builtins.str], result)
3111
+
3112
+ def __eq__(self, rhs: typing.Any) -> builtins.bool:
3113
+ return isinstance(rhs, self.__class__) and rhs._values == self._values
3114
+
3115
+ def __ne__(self, rhs: typing.Any) -> builtins.bool:
3116
+ return not (rhs == self)
3117
+
3118
+ def __repr__(self) -> str:
3119
+ return "InferenceProfileModelProperty(%s)" % ", ".join(
3120
+ k + "=" + repr(v) for k, v in self._values.items()
3121
+ )
3122
+
3123
+ @jsii.data_type(
3124
+ jsii_type="aws-cdk-lib.aws_bedrock.CfnApplicationInferenceProfile.InferenceProfileModelSourceProperty",
3125
+ jsii_struct_bases=[],
3126
+ name_mapping={"copy_from": "copyFrom"},
3127
+ )
3128
+ class InferenceProfileModelSourceProperty:
3129
+ def __init__(self, *, copy_from: builtins.str) -> None:
3130
+ '''Various ways to encode a list of models in a CreateInferenceProfile request.
3131
+
3132
+ :param copy_from: Source arns for a custom inference profile to copy its regional load balancing config from. This can either be a foundation model or predefined inference profile ARN.
3133
+
3134
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-applicationinferenceprofile-inferenceprofilemodelsource.html
3135
+ :exampleMetadata: fixture=_generated
3136
+
3137
+ Example::
3138
+
3139
+ # The code below shows an example of how to instantiate this type.
3140
+ # The values are placeholders you should change.
3141
+ from aws_cdk import aws_bedrock as bedrock
3142
+
3143
+ inference_profile_model_source_property = bedrock.CfnApplicationInferenceProfile.InferenceProfileModelSourceProperty(
3144
+ copy_from="copyFrom"
3145
+ )
3146
+ '''
3147
+ if __debug__:
3148
+ type_hints = typing.get_type_hints(_typecheckingstub__4170b8c8243e2096b7c99037eb0c8874b28fe6d08432e8c6fd045defb2d99d81)
3149
+ check_type(argname="argument copy_from", value=copy_from, expected_type=type_hints["copy_from"])
3150
+ self._values: typing.Dict[builtins.str, typing.Any] = {
3151
+ "copy_from": copy_from,
3152
+ }
3153
+
3154
+ @builtins.property
3155
+ def copy_from(self) -> builtins.str:
3156
+ '''Source arns for a custom inference profile to copy its regional load balancing config from.
3157
+
3158
+ This
3159
+ can either be a foundation model or predefined inference profile ARN.
3160
+
3161
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-applicationinferenceprofile-inferenceprofilemodelsource.html#cfn-bedrock-applicationinferenceprofile-inferenceprofilemodelsource-copyfrom
3162
+ '''
3163
+ result = self._values.get("copy_from")
3164
+ assert result is not None, "Required property 'copy_from' is missing"
3165
+ return typing.cast(builtins.str, result)
3166
+
3167
+ def __eq__(self, rhs: typing.Any) -> builtins.bool:
3168
+ return isinstance(rhs, self.__class__) and rhs._values == self._values
3169
+
3170
+ def __ne__(self, rhs: typing.Any) -> builtins.bool:
3171
+ return not (rhs == self)
3172
+
3173
+ def __repr__(self) -> str:
3174
+ return "InferenceProfileModelSourceProperty(%s)" % ", ".join(
3175
+ k + "=" + repr(v) for k, v in self._values.items()
3176
+ )
3177
+
3178
+
3179
+ @jsii.data_type(
3180
+ jsii_type="aws-cdk-lib.aws_bedrock.CfnApplicationInferenceProfileProps",
3181
+ jsii_struct_bases=[],
3182
+ name_mapping={
3183
+ "inference_profile_name": "inferenceProfileName",
3184
+ "description": "description",
3185
+ "model_source": "modelSource",
3186
+ "tags": "tags",
3187
+ },
3188
+ )
3189
+ class CfnApplicationInferenceProfileProps:
3190
+ def __init__(
3191
+ self,
3192
+ *,
3193
+ inference_profile_name: builtins.str,
3194
+ description: typing.Optional[builtins.str] = None,
3195
+ model_source: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnApplicationInferenceProfile.InferenceProfileModelSourceProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
3196
+ tags: typing.Optional[typing.Sequence[typing.Union[_CfnTag_f6864754, typing.Dict[builtins.str, typing.Any]]]] = None,
3197
+ ) -> None:
3198
+ '''Properties for defining a ``CfnApplicationInferenceProfile``.
3199
+
3200
+ :param inference_profile_name:
3201
+ :param description: Description of the inference profile.
3202
+ :param model_source: Various ways to encode a list of models in a CreateInferenceProfile request.
3203
+ :param tags: List of Tags.
3204
+
3205
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-bedrock-applicationinferenceprofile.html
3206
+ :exampleMetadata: fixture=_generated
3207
+
3208
+ Example::
3209
+
3210
+ # The code below shows an example of how to instantiate this type.
3211
+ # The values are placeholders you should change.
3212
+ from aws_cdk import aws_bedrock as bedrock
3213
+
3214
+ cfn_application_inference_profile_props = bedrock.CfnApplicationInferenceProfileProps(
3215
+ inference_profile_name="inferenceProfileName",
3216
+
3217
+ # the properties below are optional
3218
+ description="description",
3219
+ model_source=bedrock.CfnApplicationInferenceProfile.InferenceProfileModelSourceProperty(
3220
+ copy_from="copyFrom"
3221
+ ),
3222
+ tags=[CfnTag(
3223
+ key="key",
3224
+ value="value"
3225
+ )]
3226
+ )
3227
+ '''
3228
+ if __debug__:
3229
+ type_hints = typing.get_type_hints(_typecheckingstub__396027668dce29a45dd42acb9bb8358fa9135a15e45d6925e8a78acced3bd78d)
3230
+ check_type(argname="argument inference_profile_name", value=inference_profile_name, expected_type=type_hints["inference_profile_name"])
3231
+ check_type(argname="argument description", value=description, expected_type=type_hints["description"])
3232
+ check_type(argname="argument model_source", value=model_source, expected_type=type_hints["model_source"])
3233
+ check_type(argname="argument tags", value=tags, expected_type=type_hints["tags"])
3234
+ self._values: typing.Dict[builtins.str, typing.Any] = {
3235
+ "inference_profile_name": inference_profile_name,
3236
+ }
3237
+ if description is not None:
3238
+ self._values["description"] = description
3239
+ if model_source is not None:
3240
+ self._values["model_source"] = model_source
3241
+ if tags is not None:
3242
+ self._values["tags"] = tags
3243
+
3244
+ @builtins.property
3245
+ def inference_profile_name(self) -> builtins.str:
3246
+ '''
3247
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-bedrock-applicationinferenceprofile.html#cfn-bedrock-applicationinferenceprofile-inferenceprofilename
3248
+ '''
3249
+ result = self._values.get("inference_profile_name")
3250
+ assert result is not None, "Required property 'inference_profile_name' is missing"
3251
+ return typing.cast(builtins.str, result)
3252
+
3253
+ @builtins.property
3254
+ def description(self) -> typing.Optional[builtins.str]:
3255
+ '''Description of the inference profile.
3256
+
3257
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-bedrock-applicationinferenceprofile.html#cfn-bedrock-applicationinferenceprofile-description
3258
+ '''
3259
+ result = self._values.get("description")
3260
+ return typing.cast(typing.Optional[builtins.str], result)
3261
+
3262
+ @builtins.property
3263
+ def model_source(
3264
+ self,
3265
+ ) -> typing.Optional[typing.Union[_IResolvable_da3f097b, CfnApplicationInferenceProfile.InferenceProfileModelSourceProperty]]:
3266
+ '''Various ways to encode a list of models in a CreateInferenceProfile request.
3267
+
3268
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-bedrock-applicationinferenceprofile.html#cfn-bedrock-applicationinferenceprofile-modelsource
3269
+ '''
3270
+ result = self._values.get("model_source")
3271
+ return typing.cast(typing.Optional[typing.Union[_IResolvable_da3f097b, CfnApplicationInferenceProfile.InferenceProfileModelSourceProperty]], result)
3272
+
3273
+ @builtins.property
3274
+ def tags(self) -> typing.Optional[typing.List[_CfnTag_f6864754]]:
3275
+ '''List of Tags.
3276
+
3277
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-bedrock-applicationinferenceprofile.html#cfn-bedrock-applicationinferenceprofile-tags
3278
+ '''
3279
+ result = self._values.get("tags")
3280
+ return typing.cast(typing.Optional[typing.List[_CfnTag_f6864754]], result)
3281
+
3282
+ def __eq__(self, rhs: typing.Any) -> builtins.bool:
3283
+ return isinstance(rhs, self.__class__) and rhs._values == self._values
3284
+
3285
+ def __ne__(self, rhs: typing.Any) -> builtins.bool:
3286
+ return not (rhs == self)
3287
+
3288
+ def __repr__(self) -> str:
3289
+ return "CfnApplicationInferenceProfileProps(%s)" % ", ".join(
3290
+ k + "=" + repr(v) for k, v in self._values.items()
3291
+ )
3292
+
3293
+
2837
3294
  @jsii.implements(_IInspectable_c2943556)
2838
3295
  class CfnDataSource(
2839
3296
  _CfnResource_9df397a6,
@@ -6871,6 +7328,10 @@ class CfnFlow(
6871
7328
  knowledge_base_id="knowledgeBaseId",
6872
7329
 
6873
7330
  # the properties below are optional
7331
+ guardrail_configuration=bedrock.CfnFlow.GuardrailConfigurationProperty(
7332
+ guardrail_identifier="guardrailIdentifier",
7333
+ guardrail_version="guardrailVersion"
7334
+ ),
6874
7335
  model_id="modelId"
6875
7336
  ),
6876
7337
  lambda_function=bedrock.CfnFlow.LambdaFunctionFlowNodeConfigurationProperty(
@@ -6903,7 +7364,6 @@ class CfnFlow(
6903
7364
  max_tokens=123,
6904
7365
  stop_sequences=["stopSequences"],
6905
7366
  temperature=123,
6906
- top_k=123,
6907
7367
  top_p=123
6908
7368
  )
6909
7369
  )
@@ -6911,6 +7371,12 @@ class CfnFlow(
6911
7371
  resource=bedrock.CfnFlow.PromptFlowNodeResourceConfigurationProperty(
6912
7372
  prompt_arn="promptArn"
6913
7373
  )
7374
+ ),
7375
+
7376
+ # the properties below are optional
7377
+ guardrail_configuration=bedrock.CfnFlow.GuardrailConfigurationProperty(
7378
+ guardrail_identifier="guardrailIdentifier",
7379
+ guardrail_version="guardrailVersion"
6914
7380
  )
6915
7381
  ),
6916
7382
  retrieval=bedrock.CfnFlow.RetrievalFlowNodeConfigurationProperty(
@@ -7881,6 +8347,10 @@ class CfnFlow(
7881
8347
  knowledge_base_id="knowledgeBaseId",
7882
8348
 
7883
8349
  # the properties below are optional
8350
+ guardrail_configuration=bedrock.CfnFlow.GuardrailConfigurationProperty(
8351
+ guardrail_identifier="guardrailIdentifier",
8352
+ guardrail_version="guardrailVersion"
8353
+ ),
7884
8354
  model_id="modelId"
7885
8355
  ),
7886
8356
  lambda_function=bedrock.CfnFlow.LambdaFunctionFlowNodeConfigurationProperty(
@@ -7913,7 +8383,6 @@ class CfnFlow(
7913
8383
  max_tokens=123,
7914
8384
  stop_sequences=["stopSequences"],
7915
8385
  temperature=123,
7916
- top_k=123,
7917
8386
  top_p=123
7918
8387
  )
7919
8388
  )
@@ -7921,6 +8390,12 @@ class CfnFlow(
7921
8390
  resource=bedrock.CfnFlow.PromptFlowNodeResourceConfigurationProperty(
7922
8391
  prompt_arn="promptArn"
7923
8392
  )
8393
+ ),
8394
+
8395
+ # the properties below are optional
8396
+ guardrail_configuration=bedrock.CfnFlow.GuardrailConfigurationProperty(
8397
+ guardrail_identifier="guardrailIdentifier",
8398
+ guardrail_version="guardrailVersion"
7924
8399
  )
7925
8400
  ),
7926
8401
  retrieval=bedrock.CfnFlow.RetrievalFlowNodeConfigurationProperty(
@@ -8078,6 +8553,10 @@ class CfnFlow(
8078
8553
  knowledge_base_id="knowledgeBaseId",
8079
8554
 
8080
8555
  # the properties below are optional
8556
+ guardrail_configuration=bedrock.CfnFlow.GuardrailConfigurationProperty(
8557
+ guardrail_identifier="guardrailIdentifier",
8558
+ guardrail_version="guardrailVersion"
8559
+ ),
8081
8560
  model_id="modelId"
8082
8561
  ),
8083
8562
  lambda_function=bedrock.CfnFlow.LambdaFunctionFlowNodeConfigurationProperty(
@@ -8110,7 +8589,6 @@ class CfnFlow(
8110
8589
  max_tokens=123,
8111
8590
  stop_sequences=["stopSequences"],
8112
8591
  temperature=123,
8113
- top_k=123,
8114
8592
  top_p=123
8115
8593
  )
8116
8594
  )
@@ -8118,6 +8596,12 @@ class CfnFlow(
8118
8596
  resource=bedrock.CfnFlow.PromptFlowNodeResourceConfigurationProperty(
8119
8597
  prompt_arn="promptArn"
8120
8598
  )
8599
+ ),
8600
+
8601
+ # the properties below are optional
8602
+ guardrail_configuration=bedrock.CfnFlow.GuardrailConfigurationProperty(
8603
+ guardrail_identifier="guardrailIdentifier",
8604
+ guardrail_version="guardrailVersion"
8121
8605
  )
8122
8606
  ),
8123
8607
  retrieval=bedrock.CfnFlow.RetrievalFlowNodeConfigurationProperty(
@@ -8562,6 +9046,10 @@ class CfnFlow(
8562
9046
  knowledge_base_id="knowledgeBaseId",
8563
9047
 
8564
9048
  # the properties below are optional
9049
+ guardrail_configuration=bedrock.CfnFlow.GuardrailConfigurationProperty(
9050
+ guardrail_identifier="guardrailIdentifier",
9051
+ guardrail_version="guardrailVersion"
9052
+ ),
8565
9053
  model_id="modelId"
8566
9054
  ),
8567
9055
  lambda_function=bedrock.CfnFlow.LambdaFunctionFlowNodeConfigurationProperty(
@@ -8594,7 +9082,6 @@ class CfnFlow(
8594
9082
  max_tokens=123,
8595
9083
  stop_sequences=["stopSequences"],
8596
9084
  temperature=123,
8597
- top_k=123,
8598
9085
  top_p=123
8599
9086
  )
8600
9087
  )
@@ -8602,6 +9089,12 @@ class CfnFlow(
8602
9089
  resource=bedrock.CfnFlow.PromptFlowNodeResourceConfigurationProperty(
8603
9090
  prompt_arn="promptArn"
8604
9091
  )
9092
+ ),
9093
+
9094
+ # the properties below are optional
9095
+ guardrail_configuration=bedrock.CfnFlow.GuardrailConfigurationProperty(
9096
+ guardrail_identifier="guardrailIdentifier",
9097
+ guardrail_version="guardrailVersion"
8605
9098
  )
8606
9099
  ),
8607
9100
  retrieval=bedrock.CfnFlow.RetrievalFlowNodeConfigurationProperty(
@@ -8771,16 +9264,94 @@ class CfnFlow(
8771
9264
  k + "=" + repr(v) for k, v in self._values.items()
8772
9265
  )
8773
9266
 
9267
+ @jsii.data_type(
9268
+ jsii_type="aws-cdk-lib.aws_bedrock.CfnFlow.GuardrailConfigurationProperty",
9269
+ jsii_struct_bases=[],
9270
+ name_mapping={
9271
+ "guardrail_identifier": "guardrailIdentifier",
9272
+ "guardrail_version": "guardrailVersion",
9273
+ },
9274
+ )
9275
+ class GuardrailConfigurationProperty:
9276
+ def __init__(
9277
+ self,
9278
+ *,
9279
+ guardrail_identifier: typing.Optional[builtins.str] = None,
9280
+ guardrail_version: typing.Optional[builtins.str] = None,
9281
+ ) -> None:
9282
+ '''Configuration information for a guardrail that you use with the `Converse <https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_Converse.html>`_ operation.
9283
+
9284
+ :param guardrail_identifier: The identifier for the guardrail.
9285
+ :param guardrail_version: The version of the guardrail.
9286
+
9287
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flow-guardrailconfiguration.html
9288
+ :exampleMetadata: fixture=_generated
9289
+
9290
+ Example::
9291
+
9292
+ # The code below shows an example of how to instantiate this type.
9293
+ # The values are placeholders you should change.
9294
+ from aws_cdk import aws_bedrock as bedrock
9295
+
9296
+ guardrail_configuration_property = bedrock.CfnFlow.GuardrailConfigurationProperty(
9297
+ guardrail_identifier="guardrailIdentifier",
9298
+ guardrail_version="guardrailVersion"
9299
+ )
9300
+ '''
9301
+ if __debug__:
9302
+ type_hints = typing.get_type_hints(_typecheckingstub__7a58b1756431d0127fbde4a9b98f71b8bd861fde50f58d8b27f6621481f6898a)
9303
+ check_type(argname="argument guardrail_identifier", value=guardrail_identifier, expected_type=type_hints["guardrail_identifier"])
9304
+ check_type(argname="argument guardrail_version", value=guardrail_version, expected_type=type_hints["guardrail_version"])
9305
+ self._values: typing.Dict[builtins.str, typing.Any] = {}
9306
+ if guardrail_identifier is not None:
9307
+ self._values["guardrail_identifier"] = guardrail_identifier
9308
+ if guardrail_version is not None:
9309
+ self._values["guardrail_version"] = guardrail_version
9310
+
9311
+ @builtins.property
9312
+ def guardrail_identifier(self) -> typing.Optional[builtins.str]:
9313
+ '''The identifier for the guardrail.
9314
+
9315
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flow-guardrailconfiguration.html#cfn-bedrock-flow-guardrailconfiguration-guardrailidentifier
9316
+ '''
9317
+ result = self._values.get("guardrail_identifier")
9318
+ return typing.cast(typing.Optional[builtins.str], result)
9319
+
9320
+ @builtins.property
9321
+ def guardrail_version(self) -> typing.Optional[builtins.str]:
9322
+ '''The version of the guardrail.
9323
+
9324
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flow-guardrailconfiguration.html#cfn-bedrock-flow-guardrailconfiguration-guardrailversion
9325
+ '''
9326
+ result = self._values.get("guardrail_version")
9327
+ return typing.cast(typing.Optional[builtins.str], result)
9328
+
9329
+ def __eq__(self, rhs: typing.Any) -> builtins.bool:
9330
+ return isinstance(rhs, self.__class__) and rhs._values == self._values
9331
+
9332
+ def __ne__(self, rhs: typing.Any) -> builtins.bool:
9333
+ return not (rhs == self)
9334
+
9335
+ def __repr__(self) -> str:
9336
+ return "GuardrailConfigurationProperty(%s)" % ", ".join(
9337
+ k + "=" + repr(v) for k, v in self._values.items()
9338
+ )
9339
+
8774
9340
  @jsii.data_type(
8775
9341
  jsii_type="aws-cdk-lib.aws_bedrock.CfnFlow.KnowledgeBaseFlowNodeConfigurationProperty",
8776
9342
  jsii_struct_bases=[],
8777
- name_mapping={"knowledge_base_id": "knowledgeBaseId", "model_id": "modelId"},
9343
+ name_mapping={
9344
+ "knowledge_base_id": "knowledgeBaseId",
9345
+ "guardrail_configuration": "guardrailConfiguration",
9346
+ "model_id": "modelId",
9347
+ },
8778
9348
  )
8779
9349
  class KnowledgeBaseFlowNodeConfigurationProperty:
8780
9350
  def __init__(
8781
9351
  self,
8782
9352
  *,
8783
9353
  knowledge_base_id: builtins.str,
9354
+ guardrail_configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union["CfnFlow.GuardrailConfigurationProperty", typing.Dict[builtins.str, typing.Any]]]] = None,
8784
9355
  model_id: typing.Optional[builtins.str] = None,
8785
9356
  ) -> None:
8786
9357
  '''Contains configurations for a knowledge base node in a flow.
@@ -8788,6 +9359,7 @@ class CfnFlow(
8788
9359
  This node takes a query as the input and returns, as the output, the retrieved responses directly (as an array) or a response generated based on the retrieved responses. For more information, see `Node types in Amazon Bedrock works <https://docs.aws.amazon.com/bedrock/latest/userguide/flows-nodes.html>`_ in the Amazon Bedrock User Guide.
8789
9360
 
8790
9361
  :param knowledge_base_id: The unique identifier of the knowledge base to query.
9362
+ :param guardrail_configuration: Configuration for a guardrail.
8791
9363
  :param model_id: The unique identifier of the model or `inference profile <https://docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference.html>`_ to use to generate a response from the query results. Omit this field if you want to return the retrieved results as an array.
8792
9364
 
8793
9365
  :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flow-knowledgebaseflownodeconfiguration.html
@@ -8803,16 +9375,23 @@ class CfnFlow(
8803
9375
  knowledge_base_id="knowledgeBaseId",
8804
9376
 
8805
9377
  # the properties below are optional
9378
+ guardrail_configuration=bedrock.CfnFlow.GuardrailConfigurationProperty(
9379
+ guardrail_identifier="guardrailIdentifier",
9380
+ guardrail_version="guardrailVersion"
9381
+ ),
8806
9382
  model_id="modelId"
8807
9383
  )
8808
9384
  '''
8809
9385
  if __debug__:
8810
9386
  type_hints = typing.get_type_hints(_typecheckingstub__004ed148a98b01e41f3efd077553224d0e5ce97fd3842fc0c6be6c28accdc6cc)
8811
9387
  check_type(argname="argument knowledge_base_id", value=knowledge_base_id, expected_type=type_hints["knowledge_base_id"])
9388
+ check_type(argname="argument guardrail_configuration", value=guardrail_configuration, expected_type=type_hints["guardrail_configuration"])
8812
9389
  check_type(argname="argument model_id", value=model_id, expected_type=type_hints["model_id"])
8813
9390
  self._values: typing.Dict[builtins.str, typing.Any] = {
8814
9391
  "knowledge_base_id": knowledge_base_id,
8815
9392
  }
9393
+ if guardrail_configuration is not None:
9394
+ self._values["guardrail_configuration"] = guardrail_configuration
8816
9395
  if model_id is not None:
8817
9396
  self._values["model_id"] = model_id
8818
9397
 
@@ -8826,6 +9405,17 @@ class CfnFlow(
8826
9405
  assert result is not None, "Required property 'knowledge_base_id' is missing"
8827
9406
  return typing.cast(builtins.str, result)
8828
9407
 
9408
+ @builtins.property
9409
+ def guardrail_configuration(
9410
+ self,
9411
+ ) -> typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnFlow.GuardrailConfigurationProperty"]]:
9412
+ '''Configuration for a guardrail.
9413
+
9414
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flow-knowledgebaseflownodeconfiguration.html#cfn-bedrock-flow-knowledgebaseflownodeconfiguration-guardrailconfiguration
9415
+ '''
9416
+ result = self._values.get("guardrail_configuration")
9417
+ return typing.cast(typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnFlow.GuardrailConfigurationProperty"]], result)
9418
+
8829
9419
  @builtins.property
8830
9420
  def model_id(self) -> typing.Optional[builtins.str]:
8831
9421
  '''The unique identifier of the model or `inference profile <https://docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference.html>`_ to use to generate a response from the query results. Omit this field if you want to return the retrieved results as an array.
@@ -8976,19 +9566,24 @@ class CfnFlow(
8976
9566
  @jsii.data_type(
8977
9567
  jsii_type="aws-cdk-lib.aws_bedrock.CfnFlow.PromptFlowNodeConfigurationProperty",
8978
9568
  jsii_struct_bases=[],
8979
- name_mapping={"source_configuration": "sourceConfiguration"},
9569
+ name_mapping={
9570
+ "source_configuration": "sourceConfiguration",
9571
+ "guardrail_configuration": "guardrailConfiguration",
9572
+ },
8980
9573
  )
8981
9574
  class PromptFlowNodeConfigurationProperty:
8982
9575
  def __init__(
8983
9576
  self,
8984
9577
  *,
8985
9578
  source_configuration: typing.Union[_IResolvable_da3f097b, typing.Union["CfnFlow.PromptFlowNodeSourceConfigurationProperty", typing.Dict[builtins.str, typing.Any]]],
9579
+ guardrail_configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union["CfnFlow.GuardrailConfigurationProperty", typing.Dict[builtins.str, typing.Any]]]] = None,
8986
9580
  ) -> None:
8987
9581
  '''Contains configurations for a prompt node in the flow.
8988
9582
 
8989
9583
  You can use a prompt from Prompt management or you can define one in this node. If the prompt contains variables, the inputs into this node will fill in the variables. The output from this node is the response generated by the model. For more information, see `Node types in Amazon Bedrock works <https://docs.aws.amazon.com/bedrock/latest/userguide/flows-nodes.html>`_ in the Amazon Bedrock User Guide.
8990
9584
 
8991
9585
  :param source_configuration: Specifies whether the prompt is from Prompt management or defined inline.
9586
+ :param guardrail_configuration: Configuration for a guardrail.
8992
9587
 
8993
9588
  :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flow-promptflownodeconfiguration.html
8994
9589
  :exampleMetadata: fixture=_generated
@@ -9021,7 +9616,6 @@ class CfnFlow(
9021
9616
  max_tokens=123,
9022
9617
  stop_sequences=["stopSequences"],
9023
9618
  temperature=123,
9024
- top_k=123,
9025
9619
  top_p=123
9026
9620
  )
9027
9621
  )
@@ -9029,15 +9623,24 @@ class CfnFlow(
9029
9623
  resource=bedrock.CfnFlow.PromptFlowNodeResourceConfigurationProperty(
9030
9624
  prompt_arn="promptArn"
9031
9625
  )
9626
+ ),
9627
+
9628
+ # the properties below are optional
9629
+ guardrail_configuration=bedrock.CfnFlow.GuardrailConfigurationProperty(
9630
+ guardrail_identifier="guardrailIdentifier",
9631
+ guardrail_version="guardrailVersion"
9032
9632
  )
9033
9633
  )
9034
9634
  '''
9035
9635
  if __debug__:
9036
9636
  type_hints = typing.get_type_hints(_typecheckingstub__b9e2aaf75cba4595f32ad6457fae055981f8fb7d76d181537ab0d3241fa7866d)
9037
9637
  check_type(argname="argument source_configuration", value=source_configuration, expected_type=type_hints["source_configuration"])
9638
+ check_type(argname="argument guardrail_configuration", value=guardrail_configuration, expected_type=type_hints["guardrail_configuration"])
9038
9639
  self._values: typing.Dict[builtins.str, typing.Any] = {
9039
9640
  "source_configuration": source_configuration,
9040
9641
  }
9642
+ if guardrail_configuration is not None:
9643
+ self._values["guardrail_configuration"] = guardrail_configuration
9041
9644
 
9042
9645
  @builtins.property
9043
9646
  def source_configuration(
@@ -9051,6 +9654,17 @@ class CfnFlow(
9051
9654
  assert result is not None, "Required property 'source_configuration' is missing"
9052
9655
  return typing.cast(typing.Union[_IResolvable_da3f097b, "CfnFlow.PromptFlowNodeSourceConfigurationProperty"], result)
9053
9656
 
9657
+ @builtins.property
9658
+ def guardrail_configuration(
9659
+ self,
9660
+ ) -> typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnFlow.GuardrailConfigurationProperty"]]:
9661
+ '''Configuration for a guardrail.
9662
+
9663
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flow-promptflownodeconfiguration.html#cfn-bedrock-flow-promptflownodeconfiguration-guardrailconfiguration
9664
+ '''
9665
+ result = self._values.get("guardrail_configuration")
9666
+ return typing.cast(typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnFlow.GuardrailConfigurationProperty"]], result)
9667
+
9054
9668
  def __eq__(self, rhs: typing.Any) -> builtins.bool:
9055
9669
  return isinstance(rhs, self.__class__) and rhs._values == self._values
9056
9670
 
@@ -9117,7 +9731,6 @@ class CfnFlow(
9117
9731
  max_tokens=123,
9118
9732
  stop_sequences=["stopSequences"],
9119
9733
  temperature=123,
9120
- top_k=123,
9121
9734
  top_p=123
9122
9735
  )
9123
9736
  )
@@ -9290,7 +9903,6 @@ class CfnFlow(
9290
9903
  max_tokens=123,
9291
9904
  stop_sequences=["stopSequences"],
9292
9905
  temperature=123,
9293
- top_k=123,
9294
9906
  top_p=123
9295
9907
  )
9296
9908
  )
@@ -9372,7 +9984,6 @@ class CfnFlow(
9372
9984
  max_tokens=123,
9373
9985
  stop_sequences=["stopSequences"],
9374
9986
  temperature=123,
9375
- top_k=123,
9376
9987
  top_p=123
9377
9988
  )
9378
9989
  )
@@ -9465,7 +10076,6 @@ class CfnFlow(
9465
10076
  "max_tokens": "maxTokens",
9466
10077
  "stop_sequences": "stopSequences",
9467
10078
  "temperature": "temperature",
9468
- "top_k": "topK",
9469
10079
  "top_p": "topP",
9470
10080
  },
9471
10081
  )
@@ -9476,7 +10086,6 @@ class CfnFlow(
9476
10086
  max_tokens: typing.Optional[jsii.Number] = None,
9477
10087
  stop_sequences: typing.Optional[typing.Sequence[builtins.str]] = None,
9478
10088
  temperature: typing.Optional[jsii.Number] = None,
9479
- top_k: typing.Optional[jsii.Number] = None,
9480
10089
  top_p: typing.Optional[jsii.Number] = None,
9481
10090
  ) -> None:
9482
10091
  '''Contains inference configurations related to model inference for a prompt.
@@ -9486,7 +10095,6 @@ class CfnFlow(
9486
10095
  :param max_tokens: The maximum number of tokens to return in the response.
9487
10096
  :param stop_sequences: A list of strings that define sequences after which the model will stop generating.
9488
10097
  :param temperature: Controls the randomness of the response. Choose a lower value for more predictable outputs and a higher value for more surprising outputs.
9489
- :param top_k: Sample from the k most likely next tokens.
9490
10098
  :param top_p: The percentage of most-likely candidates that the model considers for the next token.
9491
10099
 
9492
10100
  :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flow-promptmodelinferenceconfiguration.html
@@ -9502,7 +10110,6 @@ class CfnFlow(
9502
10110
  max_tokens=123,
9503
10111
  stop_sequences=["stopSequences"],
9504
10112
  temperature=123,
9505
- top_k=123,
9506
10113
  top_p=123
9507
10114
  )
9508
10115
  '''
@@ -9511,7 +10118,6 @@ class CfnFlow(
9511
10118
  check_type(argname="argument max_tokens", value=max_tokens, expected_type=type_hints["max_tokens"])
9512
10119
  check_type(argname="argument stop_sequences", value=stop_sequences, expected_type=type_hints["stop_sequences"])
9513
10120
  check_type(argname="argument temperature", value=temperature, expected_type=type_hints["temperature"])
9514
- check_type(argname="argument top_k", value=top_k, expected_type=type_hints["top_k"])
9515
10121
  check_type(argname="argument top_p", value=top_p, expected_type=type_hints["top_p"])
9516
10122
  self._values: typing.Dict[builtins.str, typing.Any] = {}
9517
10123
  if max_tokens is not None:
@@ -9520,8 +10126,6 @@ class CfnFlow(
9520
10126
  self._values["stop_sequences"] = stop_sequences
9521
10127
  if temperature is not None:
9522
10128
  self._values["temperature"] = temperature
9523
- if top_k is not None:
9524
- self._values["top_k"] = top_k
9525
10129
  if top_p is not None:
9526
10130
  self._values["top_p"] = top_p
9527
10131
 
@@ -9554,15 +10158,6 @@ class CfnFlow(
9554
10158
  result = self._values.get("temperature")
9555
10159
  return typing.cast(typing.Optional[jsii.Number], result)
9556
10160
 
9557
- @builtins.property
9558
- def top_k(self) -> typing.Optional[jsii.Number]:
9559
- '''Sample from the k most likely next tokens.
9560
-
9561
- :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flow-promptmodelinferenceconfiguration.html#cfn-bedrock-flow-promptmodelinferenceconfiguration-topk
9562
- '''
9563
- result = self._values.get("top_k")
9564
- return typing.cast(typing.Optional[jsii.Number], result)
9565
-
9566
10161
  @builtins.property
9567
10162
  def top_p(self) -> typing.Optional[jsii.Number]:
9568
10163
  '''The percentage of most-likely candidates that the model considers for the next token.
@@ -10697,6 +11292,10 @@ class CfnFlowProps:
10697
11292
  knowledge_base_id="knowledgeBaseId",
10698
11293
 
10699
11294
  # the properties below are optional
11295
+ guardrail_configuration=bedrock.CfnFlow.GuardrailConfigurationProperty(
11296
+ guardrail_identifier="guardrailIdentifier",
11297
+ guardrail_version="guardrailVersion"
11298
+ ),
10700
11299
  model_id="modelId"
10701
11300
  ),
10702
11301
  lambda_function=bedrock.CfnFlow.LambdaFunctionFlowNodeConfigurationProperty(
@@ -10729,7 +11328,6 @@ class CfnFlowProps:
10729
11328
  max_tokens=123,
10730
11329
  stop_sequences=["stopSequences"],
10731
11330
  temperature=123,
10732
- top_k=123,
10733
11331
  top_p=123
10734
11332
  )
10735
11333
  )
@@ -10737,6 +11335,12 @@ class CfnFlowProps:
10737
11335
  resource=bedrock.CfnFlow.PromptFlowNodeResourceConfigurationProperty(
10738
11336
  prompt_arn="promptArn"
10739
11337
  )
11338
+ ),
11339
+
11340
+ # the properties below are optional
11341
+ guardrail_configuration=bedrock.CfnFlow.GuardrailConfigurationProperty(
11342
+ guardrail_identifier="guardrailIdentifier",
11343
+ guardrail_version="guardrailVersion"
10740
11344
  )
10741
11345
  ),
10742
11346
  retrieval=bedrock.CfnFlow.RetrievalFlowNodeConfigurationProperty(
@@ -11733,6 +12337,10 @@ class CfnFlowVersion(
11733
12337
  knowledge_base_id="knowledgeBaseId",
11734
12338
 
11735
12339
  # the properties below are optional
12340
+ guardrail_configuration=bedrock.CfnFlowVersion.GuardrailConfigurationProperty(
12341
+ guardrail_identifier="guardrailIdentifier",
12342
+ guardrail_version="guardrailVersion"
12343
+ ),
11736
12344
  model_id="modelId"
11737
12345
  ),
11738
12346
  lambda_function=bedrock.CfnFlowVersion.LambdaFunctionFlowNodeConfigurationProperty(
@@ -11765,7 +12373,6 @@ class CfnFlowVersion(
11765
12373
  max_tokens=123,
11766
12374
  stop_sequences=["stopSequences"],
11767
12375
  temperature=123,
11768
- top_k=123,
11769
12376
  top_p=123
11770
12377
  )
11771
12378
  )
@@ -11773,6 +12380,12 @@ class CfnFlowVersion(
11773
12380
  resource=bedrock.CfnFlowVersion.PromptFlowNodeResourceConfigurationProperty(
11774
12381
  prompt_arn="promptArn"
11775
12382
  )
12383
+ ),
12384
+
12385
+ # the properties below are optional
12386
+ guardrail_configuration=bedrock.CfnFlowVersion.GuardrailConfigurationProperty(
12387
+ guardrail_identifier="guardrailIdentifier",
12388
+ guardrail_version="guardrailVersion"
11776
12389
  )
11777
12390
  ),
11778
12391
  retrieval=bedrock.CfnFlowVersion.RetrievalFlowNodeConfigurationProperty(
@@ -11930,6 +12543,10 @@ class CfnFlowVersion(
11930
12543
  knowledge_base_id="knowledgeBaseId",
11931
12544
 
11932
12545
  # the properties below are optional
12546
+ guardrail_configuration=bedrock.CfnFlowVersion.GuardrailConfigurationProperty(
12547
+ guardrail_identifier="guardrailIdentifier",
12548
+ guardrail_version="guardrailVersion"
12549
+ ),
11933
12550
  model_id="modelId"
11934
12551
  ),
11935
12552
  lambda_function=bedrock.CfnFlowVersion.LambdaFunctionFlowNodeConfigurationProperty(
@@ -11962,7 +12579,6 @@ class CfnFlowVersion(
11962
12579
  max_tokens=123,
11963
12580
  stop_sequences=["stopSequences"],
11964
12581
  temperature=123,
11965
- top_k=123,
11966
12582
  top_p=123
11967
12583
  )
11968
12584
  )
@@ -11970,6 +12586,12 @@ class CfnFlowVersion(
11970
12586
  resource=bedrock.CfnFlowVersion.PromptFlowNodeResourceConfigurationProperty(
11971
12587
  prompt_arn="promptArn"
11972
12588
  )
12589
+ ),
12590
+
12591
+ # the properties below are optional
12592
+ guardrail_configuration=bedrock.CfnFlowVersion.GuardrailConfigurationProperty(
12593
+ guardrail_identifier="guardrailIdentifier",
12594
+ guardrail_version="guardrailVersion"
11973
12595
  )
11974
12596
  ),
11975
12597
  retrieval=bedrock.CfnFlowVersion.RetrievalFlowNodeConfigurationProperty(
@@ -12414,6 +13036,10 @@ class CfnFlowVersion(
12414
13036
  knowledge_base_id="knowledgeBaseId",
12415
13037
 
12416
13038
  # the properties below are optional
13039
+ guardrail_configuration=bedrock.CfnFlowVersion.GuardrailConfigurationProperty(
13040
+ guardrail_identifier="guardrailIdentifier",
13041
+ guardrail_version="guardrailVersion"
13042
+ ),
12417
13043
  model_id="modelId"
12418
13044
  ),
12419
13045
  lambda_function=bedrock.CfnFlowVersion.LambdaFunctionFlowNodeConfigurationProperty(
@@ -12446,7 +13072,6 @@ class CfnFlowVersion(
12446
13072
  max_tokens=123,
12447
13073
  stop_sequences=["stopSequences"],
12448
13074
  temperature=123,
12449
- top_k=123,
12450
13075
  top_p=123
12451
13076
  )
12452
13077
  )
@@ -12454,6 +13079,12 @@ class CfnFlowVersion(
12454
13079
  resource=bedrock.CfnFlowVersion.PromptFlowNodeResourceConfigurationProperty(
12455
13080
  prompt_arn="promptArn"
12456
13081
  )
13082
+ ),
13083
+
13084
+ # the properties below are optional
13085
+ guardrail_configuration=bedrock.CfnFlowVersion.GuardrailConfigurationProperty(
13086
+ guardrail_identifier="guardrailIdentifier",
13087
+ guardrail_version="guardrailVersion"
12457
13088
  )
12458
13089
  ),
12459
13090
  retrieval=bedrock.CfnFlowVersion.RetrievalFlowNodeConfigurationProperty(
@@ -12566,16 +13197,94 @@ class CfnFlowVersion(
12566
13197
  k + "=" + repr(v) for k, v in self._values.items()
12567
13198
  )
12568
13199
 
13200
+ @jsii.data_type(
13201
+ jsii_type="aws-cdk-lib.aws_bedrock.CfnFlowVersion.GuardrailConfigurationProperty",
13202
+ jsii_struct_bases=[],
13203
+ name_mapping={
13204
+ "guardrail_identifier": "guardrailIdentifier",
13205
+ "guardrail_version": "guardrailVersion",
13206
+ },
13207
+ )
13208
+ class GuardrailConfigurationProperty:
13209
+ def __init__(
13210
+ self,
13211
+ *,
13212
+ guardrail_identifier: typing.Optional[builtins.str] = None,
13213
+ guardrail_version: typing.Optional[builtins.str] = None,
13214
+ ) -> None:
13215
+ '''Configuration information for a guardrail that you use with the `Converse <https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_Converse.html>`_ operation.
13216
+
13217
+ :param guardrail_identifier: The identifier for the guardrail.
13218
+ :param guardrail_version: The version of the guardrail.
13219
+
13220
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flowversion-guardrailconfiguration.html
13221
+ :exampleMetadata: fixture=_generated
13222
+
13223
+ Example::
13224
+
13225
+ # The code below shows an example of how to instantiate this type.
13226
+ # The values are placeholders you should change.
13227
+ from aws_cdk import aws_bedrock as bedrock
13228
+
13229
+ guardrail_configuration_property = bedrock.CfnFlowVersion.GuardrailConfigurationProperty(
13230
+ guardrail_identifier="guardrailIdentifier",
13231
+ guardrail_version="guardrailVersion"
13232
+ )
13233
+ '''
13234
+ if __debug__:
13235
+ type_hints = typing.get_type_hints(_typecheckingstub__e730caca77d30abef7bb7cb2c01702883c895d80378652c3f9f4bd88643dc186)
13236
+ check_type(argname="argument guardrail_identifier", value=guardrail_identifier, expected_type=type_hints["guardrail_identifier"])
13237
+ check_type(argname="argument guardrail_version", value=guardrail_version, expected_type=type_hints["guardrail_version"])
13238
+ self._values: typing.Dict[builtins.str, typing.Any] = {}
13239
+ if guardrail_identifier is not None:
13240
+ self._values["guardrail_identifier"] = guardrail_identifier
13241
+ if guardrail_version is not None:
13242
+ self._values["guardrail_version"] = guardrail_version
13243
+
13244
+ @builtins.property
13245
+ def guardrail_identifier(self) -> typing.Optional[builtins.str]:
13246
+ '''The identifier for the guardrail.
13247
+
13248
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flowversion-guardrailconfiguration.html#cfn-bedrock-flowversion-guardrailconfiguration-guardrailidentifier
13249
+ '''
13250
+ result = self._values.get("guardrail_identifier")
13251
+ return typing.cast(typing.Optional[builtins.str], result)
13252
+
13253
+ @builtins.property
13254
+ def guardrail_version(self) -> typing.Optional[builtins.str]:
13255
+ '''The version of the guardrail.
13256
+
13257
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flowversion-guardrailconfiguration.html#cfn-bedrock-flowversion-guardrailconfiguration-guardrailversion
13258
+ '''
13259
+ result = self._values.get("guardrail_version")
13260
+ return typing.cast(typing.Optional[builtins.str], result)
13261
+
13262
+ def __eq__(self, rhs: typing.Any) -> builtins.bool:
13263
+ return isinstance(rhs, self.__class__) and rhs._values == self._values
13264
+
13265
+ def __ne__(self, rhs: typing.Any) -> builtins.bool:
13266
+ return not (rhs == self)
13267
+
13268
+ def __repr__(self) -> str:
13269
+ return "GuardrailConfigurationProperty(%s)" % ", ".join(
13270
+ k + "=" + repr(v) for k, v in self._values.items()
13271
+ )
13272
+
12569
13273
  @jsii.data_type(
12570
13274
  jsii_type="aws-cdk-lib.aws_bedrock.CfnFlowVersion.KnowledgeBaseFlowNodeConfigurationProperty",
12571
13275
  jsii_struct_bases=[],
12572
- name_mapping={"knowledge_base_id": "knowledgeBaseId", "model_id": "modelId"},
13276
+ name_mapping={
13277
+ "knowledge_base_id": "knowledgeBaseId",
13278
+ "guardrail_configuration": "guardrailConfiguration",
13279
+ "model_id": "modelId",
13280
+ },
12573
13281
  )
12574
13282
  class KnowledgeBaseFlowNodeConfigurationProperty:
12575
13283
  def __init__(
12576
13284
  self,
12577
13285
  *,
12578
13286
  knowledge_base_id: builtins.str,
13287
+ guardrail_configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union["CfnFlowVersion.GuardrailConfigurationProperty", typing.Dict[builtins.str, typing.Any]]]] = None,
12579
13288
  model_id: typing.Optional[builtins.str] = None,
12580
13289
  ) -> None:
12581
13290
  '''Contains configurations for a knowledge base node in a flow.
@@ -12583,6 +13292,7 @@ class CfnFlowVersion(
12583
13292
  This node takes a query as the input and returns, as the output, the retrieved responses directly (as an array) or a response generated based on the retrieved responses. For more information, see `Node types in Amazon Bedrock works <https://docs.aws.amazon.com/bedrock/latest/userguide/flows-nodes.html>`_ in the Amazon Bedrock User Guide.
12584
13293
 
12585
13294
  :param knowledge_base_id: The unique identifier of the knowledge base to query.
13295
+ :param guardrail_configuration: Configuration for a guardrail.
12586
13296
  :param model_id: The unique identifier of the model or `inference profile <https://docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference.html>`_ to use to generate a response from the query results. Omit this field if you want to return the retrieved results as an array.
12587
13297
 
12588
13298
  :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flowversion-knowledgebaseflownodeconfiguration.html
@@ -12598,16 +13308,23 @@ class CfnFlowVersion(
12598
13308
  knowledge_base_id="knowledgeBaseId",
12599
13309
 
12600
13310
  # the properties below are optional
13311
+ guardrail_configuration=bedrock.CfnFlowVersion.GuardrailConfigurationProperty(
13312
+ guardrail_identifier="guardrailIdentifier",
13313
+ guardrail_version="guardrailVersion"
13314
+ ),
12601
13315
  model_id="modelId"
12602
13316
  )
12603
13317
  '''
12604
13318
  if __debug__:
12605
13319
  type_hints = typing.get_type_hints(_typecheckingstub__17b9fe30408d688aaf08f87e21950af81c63d804d7021f8f66de0b47e6aa51be)
12606
13320
  check_type(argname="argument knowledge_base_id", value=knowledge_base_id, expected_type=type_hints["knowledge_base_id"])
13321
+ check_type(argname="argument guardrail_configuration", value=guardrail_configuration, expected_type=type_hints["guardrail_configuration"])
12607
13322
  check_type(argname="argument model_id", value=model_id, expected_type=type_hints["model_id"])
12608
13323
  self._values: typing.Dict[builtins.str, typing.Any] = {
12609
13324
  "knowledge_base_id": knowledge_base_id,
12610
13325
  }
13326
+ if guardrail_configuration is not None:
13327
+ self._values["guardrail_configuration"] = guardrail_configuration
12611
13328
  if model_id is not None:
12612
13329
  self._values["model_id"] = model_id
12613
13330
 
@@ -12621,6 +13338,17 @@ class CfnFlowVersion(
12621
13338
  assert result is not None, "Required property 'knowledge_base_id' is missing"
12622
13339
  return typing.cast(builtins.str, result)
12623
13340
 
13341
+ @builtins.property
13342
+ def guardrail_configuration(
13343
+ self,
13344
+ ) -> typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnFlowVersion.GuardrailConfigurationProperty"]]:
13345
+ '''Configuration for a guardrail.
13346
+
13347
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flowversion-knowledgebaseflownodeconfiguration.html#cfn-bedrock-flowversion-knowledgebaseflownodeconfiguration-guardrailconfiguration
13348
+ '''
13349
+ result = self._values.get("guardrail_configuration")
13350
+ return typing.cast(typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnFlowVersion.GuardrailConfigurationProperty"]], result)
13351
+
12624
13352
  @builtins.property
12625
13353
  def model_id(self) -> typing.Optional[builtins.str]:
12626
13354
  '''The unique identifier of the model or `inference profile <https://docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference.html>`_ to use to generate a response from the query results. Omit this field if you want to return the retrieved results as an array.
@@ -12771,19 +13499,24 @@ class CfnFlowVersion(
12771
13499
  @jsii.data_type(
12772
13500
  jsii_type="aws-cdk-lib.aws_bedrock.CfnFlowVersion.PromptFlowNodeConfigurationProperty",
12773
13501
  jsii_struct_bases=[],
12774
- name_mapping={"source_configuration": "sourceConfiguration"},
13502
+ name_mapping={
13503
+ "source_configuration": "sourceConfiguration",
13504
+ "guardrail_configuration": "guardrailConfiguration",
13505
+ },
12775
13506
  )
12776
13507
  class PromptFlowNodeConfigurationProperty:
12777
13508
  def __init__(
12778
13509
  self,
12779
13510
  *,
12780
13511
  source_configuration: typing.Union[_IResolvable_da3f097b, typing.Union["CfnFlowVersion.PromptFlowNodeSourceConfigurationProperty", typing.Dict[builtins.str, typing.Any]]],
13512
+ guardrail_configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union["CfnFlowVersion.GuardrailConfigurationProperty", typing.Dict[builtins.str, typing.Any]]]] = None,
12781
13513
  ) -> None:
12782
13514
  '''Contains configurations for a prompt node in the flow.
12783
13515
 
12784
13516
  You can use a prompt from Prompt management or you can define one in this node. If the prompt contains variables, the inputs into this node will fill in the variables. The output from this node is the response generated by the model. For more information, see `Node types in Amazon Bedrock works <https://docs.aws.amazon.com/bedrock/latest/userguide/flows-nodes.html>`_ in the Amazon Bedrock User Guide.
12785
13517
 
12786
13518
  :param source_configuration: Specifies whether the prompt is from Prompt management or defined inline.
13519
+ :param guardrail_configuration: Configuration for a guardrail.
12787
13520
 
12788
13521
  :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flowversion-promptflownodeconfiguration.html
12789
13522
  :exampleMetadata: fixture=_generated
@@ -12816,7 +13549,6 @@ class CfnFlowVersion(
12816
13549
  max_tokens=123,
12817
13550
  stop_sequences=["stopSequences"],
12818
13551
  temperature=123,
12819
- top_k=123,
12820
13552
  top_p=123
12821
13553
  )
12822
13554
  )
@@ -12824,15 +13556,24 @@ class CfnFlowVersion(
12824
13556
  resource=bedrock.CfnFlowVersion.PromptFlowNodeResourceConfigurationProperty(
12825
13557
  prompt_arn="promptArn"
12826
13558
  )
13559
+ ),
13560
+
13561
+ # the properties below are optional
13562
+ guardrail_configuration=bedrock.CfnFlowVersion.GuardrailConfigurationProperty(
13563
+ guardrail_identifier="guardrailIdentifier",
13564
+ guardrail_version="guardrailVersion"
12827
13565
  )
12828
13566
  )
12829
13567
  '''
12830
13568
  if __debug__:
12831
13569
  type_hints = typing.get_type_hints(_typecheckingstub__62c4630f7833caba0eae680e960eadd4fb8eef6ef080839f7a47f079f386a1be)
12832
13570
  check_type(argname="argument source_configuration", value=source_configuration, expected_type=type_hints["source_configuration"])
13571
+ check_type(argname="argument guardrail_configuration", value=guardrail_configuration, expected_type=type_hints["guardrail_configuration"])
12833
13572
  self._values: typing.Dict[builtins.str, typing.Any] = {
12834
13573
  "source_configuration": source_configuration,
12835
13574
  }
13575
+ if guardrail_configuration is not None:
13576
+ self._values["guardrail_configuration"] = guardrail_configuration
12836
13577
 
12837
13578
  @builtins.property
12838
13579
  def source_configuration(
@@ -12846,6 +13587,17 @@ class CfnFlowVersion(
12846
13587
  assert result is not None, "Required property 'source_configuration' is missing"
12847
13588
  return typing.cast(typing.Union[_IResolvable_da3f097b, "CfnFlowVersion.PromptFlowNodeSourceConfigurationProperty"], result)
12848
13589
 
13590
+ @builtins.property
13591
+ def guardrail_configuration(
13592
+ self,
13593
+ ) -> typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnFlowVersion.GuardrailConfigurationProperty"]]:
13594
+ '''Configuration for a guardrail.
13595
+
13596
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flowversion-promptflownodeconfiguration.html#cfn-bedrock-flowversion-promptflownodeconfiguration-guardrailconfiguration
13597
+ '''
13598
+ result = self._values.get("guardrail_configuration")
13599
+ return typing.cast(typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnFlowVersion.GuardrailConfigurationProperty"]], result)
13600
+
12849
13601
  def __eq__(self, rhs: typing.Any) -> builtins.bool:
12850
13602
  return isinstance(rhs, self.__class__) and rhs._values == self._values
12851
13603
 
@@ -12912,7 +13664,6 @@ class CfnFlowVersion(
12912
13664
  max_tokens=123,
12913
13665
  stop_sequences=["stopSequences"],
12914
13666
  temperature=123,
12915
- top_k=123,
12916
13667
  top_p=123
12917
13668
  )
12918
13669
  )
@@ -13085,7 +13836,6 @@ class CfnFlowVersion(
13085
13836
  max_tokens=123,
13086
13837
  stop_sequences=["stopSequences"],
13087
13838
  temperature=123,
13088
- top_k=123,
13089
13839
  top_p=123
13090
13840
  )
13091
13841
  )
@@ -13167,7 +13917,6 @@ class CfnFlowVersion(
13167
13917
  max_tokens=123,
13168
13918
  stop_sequences=["stopSequences"],
13169
13919
  temperature=123,
13170
- top_k=123,
13171
13920
  top_p=123
13172
13921
  )
13173
13922
  )
@@ -13260,7 +14009,6 @@ class CfnFlowVersion(
13260
14009
  "max_tokens": "maxTokens",
13261
14010
  "stop_sequences": "stopSequences",
13262
14011
  "temperature": "temperature",
13263
- "top_k": "topK",
13264
14012
  "top_p": "topP",
13265
14013
  },
13266
14014
  )
@@ -13271,7 +14019,6 @@ class CfnFlowVersion(
13271
14019
  max_tokens: typing.Optional[jsii.Number] = None,
13272
14020
  stop_sequences: typing.Optional[typing.Sequence[builtins.str]] = None,
13273
14021
  temperature: typing.Optional[jsii.Number] = None,
13274
- top_k: typing.Optional[jsii.Number] = None,
13275
14022
  top_p: typing.Optional[jsii.Number] = None,
13276
14023
  ) -> None:
13277
14024
  '''Contains inference configurations related to model inference for a prompt.
@@ -13281,7 +14028,6 @@ class CfnFlowVersion(
13281
14028
  :param max_tokens: The maximum number of tokens to return in the response.
13282
14029
  :param stop_sequences: A list of strings that define sequences after which the model will stop generating.
13283
14030
  :param temperature: Controls the randomness of the response. Choose a lower value for more predictable outputs and a higher value for more surprising outputs.
13284
- :param top_k: Sample from the k most likely next tokens.
13285
14031
  :param top_p: The percentage of most-likely candidates that the model considers for the next token.
13286
14032
 
13287
14033
  :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flowversion-promptmodelinferenceconfiguration.html
@@ -13297,7 +14043,6 @@ class CfnFlowVersion(
13297
14043
  max_tokens=123,
13298
14044
  stop_sequences=["stopSequences"],
13299
14045
  temperature=123,
13300
- top_k=123,
13301
14046
  top_p=123
13302
14047
  )
13303
14048
  '''
@@ -13306,7 +14051,6 @@ class CfnFlowVersion(
13306
14051
  check_type(argname="argument max_tokens", value=max_tokens, expected_type=type_hints["max_tokens"])
13307
14052
  check_type(argname="argument stop_sequences", value=stop_sequences, expected_type=type_hints["stop_sequences"])
13308
14053
  check_type(argname="argument temperature", value=temperature, expected_type=type_hints["temperature"])
13309
- check_type(argname="argument top_k", value=top_k, expected_type=type_hints["top_k"])
13310
14054
  check_type(argname="argument top_p", value=top_p, expected_type=type_hints["top_p"])
13311
14055
  self._values: typing.Dict[builtins.str, typing.Any] = {}
13312
14056
  if max_tokens is not None:
@@ -13315,8 +14059,6 @@ class CfnFlowVersion(
13315
14059
  self._values["stop_sequences"] = stop_sequences
13316
14060
  if temperature is not None:
13317
14061
  self._values["temperature"] = temperature
13318
- if top_k is not None:
13319
- self._values["top_k"] = top_k
13320
14062
  if top_p is not None:
13321
14063
  self._values["top_p"] = top_p
13322
14064
 
@@ -13349,15 +14091,6 @@ class CfnFlowVersion(
13349
14091
  result = self._values.get("temperature")
13350
14092
  return typing.cast(typing.Optional[jsii.Number], result)
13351
14093
 
13352
- @builtins.property
13353
- def top_k(self) -> typing.Optional[jsii.Number]:
13354
- '''Sample from the k most likely next tokens.
13355
-
13356
- :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-flowversion-promptmodelinferenceconfiguration.html#cfn-bedrock-flowversion-promptmodelinferenceconfiguration-topk
13357
- '''
13358
- result = self._values.get("top_k")
13359
- return typing.cast(typing.Optional[jsii.Number], result)
13360
-
13361
14094
  @builtins.property
13362
14095
  def top_p(self) -> typing.Optional[jsii.Number]:
13363
14096
  '''The percentage of most-likely candidates that the model considers for the next token.
@@ -17510,30 +18243,17 @@ class CfnPrompt(
17510
18243
  from aws_cdk import aws_bedrock as bedrock
17511
18244
 
17512
18245
  cfn_prompt = bedrock.CfnPrompt(self, "MyCfnPrompt",
17513
- name="name",
17514
-
17515
- # the properties below are optional
17516
- customer_encryption_key_arn="customerEncryptionKeyArn",
17517
- default_variant="defaultVariant",
17518
- description="description",
17519
- tags={
17520
- "tags_key": "tags"
17521
- },
17522
- variants=[bedrock.CfnPrompt.PromptVariantProperty(
17523
- name="name",
17524
- template_type="templateType",
17525
-
17526
- # the properties below are optional
17527
- inference_configuration=bedrock.CfnPrompt.PromptInferenceConfigurationProperty(
17528
- text=bedrock.CfnPrompt.PromptModelInferenceConfigurationProperty(
17529
- max_tokens=123,
17530
- stop_sequences=["stopSequences"],
17531
- temperature=123,
17532
- top_k=123,
17533
- top_p=123
17534
- )
17535
- ),
17536
- model_id="modelId",
18246
+ name="name",
18247
+
18248
+ # the properties below are optional
18249
+ customer_encryption_key_arn="customerEncryptionKeyArn",
18250
+ default_variant="defaultVariant",
18251
+ description="description",
18252
+ tags={
18253
+ "tags_key": "tags"
18254
+ },
18255
+ variants=[bedrock.CfnPrompt.PromptVariantProperty(
18256
+ name="name",
17537
18257
  template_configuration=bedrock.CfnPrompt.PromptTemplateConfigurationProperty(
17538
18258
  text=bedrock.CfnPrompt.TextPromptTemplateConfigurationProperty(
17539
18259
  input_variables=[bedrock.CfnPrompt.PromptInputVariableProperty(
@@ -17548,7 +18268,19 @@ class CfnPrompt(
17548
18268
  version="version"
17549
18269
  )
17550
18270
  )
17551
- )
18271
+ ),
18272
+ template_type="templateType",
18273
+
18274
+ # the properties below are optional
18275
+ inference_configuration=bedrock.CfnPrompt.PromptInferenceConfigurationProperty(
18276
+ text=bedrock.CfnPrompt.PromptModelInferenceConfigurationProperty(
18277
+ max_tokens=123,
18278
+ stop_sequences=["stopSequences"],
18279
+ temperature=123,
18280
+ top_p=123
18281
+ )
18282
+ ),
18283
+ model_id="modelId"
17552
18284
  )]
17553
18285
  )
17554
18286
  '''
@@ -17794,7 +18526,6 @@ class CfnPrompt(
17794
18526
  max_tokens=123,
17795
18527
  stop_sequences=["stopSequences"],
17796
18528
  temperature=123,
17797
- top_k=123,
17798
18529
  top_p=123
17799
18530
  )
17800
18531
  )
@@ -17887,7 +18618,6 @@ class CfnPrompt(
17887
18618
  "max_tokens": "maxTokens",
17888
18619
  "stop_sequences": "stopSequences",
17889
18620
  "temperature": "temperature",
17890
- "top_k": "topK",
17891
18621
  "top_p": "topP",
17892
18622
  },
17893
18623
  )
@@ -17898,7 +18628,6 @@ class CfnPrompt(
17898
18628
  max_tokens: typing.Optional[jsii.Number] = None,
17899
18629
  stop_sequences: typing.Optional[typing.Sequence[builtins.str]] = None,
17900
18630
  temperature: typing.Optional[jsii.Number] = None,
17901
- top_k: typing.Optional[jsii.Number] = None,
17902
18631
  top_p: typing.Optional[jsii.Number] = None,
17903
18632
  ) -> None:
17904
18633
  '''Contains inference configurations related to model inference for a prompt.
@@ -17908,7 +18637,6 @@ class CfnPrompt(
17908
18637
  :param max_tokens: The maximum number of tokens to return in the response.
17909
18638
  :param stop_sequences: A list of strings that define sequences after which the model will stop generating.
17910
18639
  :param temperature: Controls the randomness of the response. Choose a lower value for more predictable outputs and a higher value for more surprising outputs.
17911
- :param top_k: Sample from the k most likely next tokens.
17912
18640
  :param top_p: The percentage of most-likely candidates that the model considers for the next token.
17913
18641
 
17914
18642
  :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-prompt-promptmodelinferenceconfiguration.html
@@ -17924,7 +18652,6 @@ class CfnPrompt(
17924
18652
  max_tokens=123,
17925
18653
  stop_sequences=["stopSequences"],
17926
18654
  temperature=123,
17927
- top_k=123,
17928
18655
  top_p=123
17929
18656
  )
17930
18657
  '''
@@ -17933,7 +18660,6 @@ class CfnPrompt(
17933
18660
  check_type(argname="argument max_tokens", value=max_tokens, expected_type=type_hints["max_tokens"])
17934
18661
  check_type(argname="argument stop_sequences", value=stop_sequences, expected_type=type_hints["stop_sequences"])
17935
18662
  check_type(argname="argument temperature", value=temperature, expected_type=type_hints["temperature"])
17936
- check_type(argname="argument top_k", value=top_k, expected_type=type_hints["top_k"])
17937
18663
  check_type(argname="argument top_p", value=top_p, expected_type=type_hints["top_p"])
17938
18664
  self._values: typing.Dict[builtins.str, typing.Any] = {}
17939
18665
  if max_tokens is not None:
@@ -17942,8 +18668,6 @@ class CfnPrompt(
17942
18668
  self._values["stop_sequences"] = stop_sequences
17943
18669
  if temperature is not None:
17944
18670
  self._values["temperature"] = temperature
17945
- if top_k is not None:
17946
- self._values["top_k"] = top_k
17947
18671
  if top_p is not None:
17948
18672
  self._values["top_p"] = top_p
17949
18673
 
@@ -17976,15 +18700,6 @@ class CfnPrompt(
17976
18700
  result = self._values.get("temperature")
17977
18701
  return typing.cast(typing.Optional[jsii.Number], result)
17978
18702
 
17979
- @builtins.property
17980
- def top_k(self) -> typing.Optional[jsii.Number]:
17981
- '''Sample from the k most likely next tokens.
17982
-
17983
- :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-prompt-promptmodelinferenceconfiguration.html#cfn-bedrock-prompt-promptmodelinferenceconfiguration-topk
17984
- '''
17985
- result = self._values.get("top_k")
17986
- return typing.cast(typing.Optional[jsii.Number], result)
17987
-
17988
18703
  @builtins.property
17989
18704
  def top_p(self) -> typing.Optional[jsii.Number]:
17990
18705
  '''The percentage of most-likely candidates that the model considers for the next token.
@@ -18082,10 +18797,10 @@ class CfnPrompt(
18082
18797
  jsii_struct_bases=[],
18083
18798
  name_mapping={
18084
18799
  "name": "name",
18800
+ "template_configuration": "templateConfiguration",
18085
18801
  "template_type": "templateType",
18086
18802
  "inference_configuration": "inferenceConfiguration",
18087
18803
  "model_id": "modelId",
18088
- "template_configuration": "templateConfiguration",
18089
18804
  },
18090
18805
  )
18091
18806
  class PromptVariantProperty:
@@ -18093,18 +18808,18 @@ class CfnPrompt(
18093
18808
  self,
18094
18809
  *,
18095
18810
  name: builtins.str,
18811
+ template_configuration: typing.Union[_IResolvable_da3f097b, typing.Union["CfnPrompt.PromptTemplateConfigurationProperty", typing.Dict[builtins.str, typing.Any]]],
18096
18812
  template_type: builtins.str,
18097
18813
  inference_configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union["CfnPrompt.PromptInferenceConfigurationProperty", typing.Dict[builtins.str, typing.Any]]]] = None,
18098
18814
  model_id: typing.Optional[builtins.str] = None,
18099
- template_configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union["CfnPrompt.PromptTemplateConfigurationProperty", typing.Dict[builtins.str, typing.Any]]]] = None,
18100
18815
  ) -> None:
18101
18816
  '''Contains details about a variant of the prompt.
18102
18817
 
18103
18818
  :param name: The name of the prompt variant.
18819
+ :param template_configuration: Contains configurations for the prompt template.
18104
18820
  :param template_type: The type of prompt template to use.
18105
18821
  :param inference_configuration: Contains inference configurations for the prompt variant.
18106
18822
  :param model_id: The unique identifier of the model or `inference profile <https://docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference.html>`_ with which to run inference on the prompt.
18107
- :param template_configuration: Contains configurations for the prompt template.
18108
18823
 
18109
18824
  :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-prompt-promptvariant.html
18110
18825
  :exampleMetadata: fixture=_generated
@@ -18117,19 +18832,6 @@ class CfnPrompt(
18117
18832
 
18118
18833
  prompt_variant_property = bedrock.CfnPrompt.PromptVariantProperty(
18119
18834
  name="name",
18120
- template_type="templateType",
18121
-
18122
- # the properties below are optional
18123
- inference_configuration=bedrock.CfnPrompt.PromptInferenceConfigurationProperty(
18124
- text=bedrock.CfnPrompt.PromptModelInferenceConfigurationProperty(
18125
- max_tokens=123,
18126
- stop_sequences=["stopSequences"],
18127
- temperature=123,
18128
- top_k=123,
18129
- top_p=123
18130
- )
18131
- ),
18132
- model_id="modelId",
18133
18835
  template_configuration=bedrock.CfnPrompt.PromptTemplateConfigurationProperty(
18134
18836
  text=bedrock.CfnPrompt.TextPromptTemplateConfigurationProperty(
18135
18837
  input_variables=[bedrock.CfnPrompt.PromptInputVariableProperty(
@@ -18144,26 +18846,37 @@ class CfnPrompt(
18144
18846
  version="version"
18145
18847
  )
18146
18848
  )
18147
- )
18849
+ ),
18850
+ template_type="templateType",
18851
+
18852
+ # the properties below are optional
18853
+ inference_configuration=bedrock.CfnPrompt.PromptInferenceConfigurationProperty(
18854
+ text=bedrock.CfnPrompt.PromptModelInferenceConfigurationProperty(
18855
+ max_tokens=123,
18856
+ stop_sequences=["stopSequences"],
18857
+ temperature=123,
18858
+ top_p=123
18859
+ )
18860
+ ),
18861
+ model_id="modelId"
18148
18862
  )
18149
18863
  '''
18150
18864
  if __debug__:
18151
18865
  type_hints = typing.get_type_hints(_typecheckingstub__84ac4a525676aedbb60bd913121b2941e7f39f8599421758678b789b5ad67a98)
18152
18866
  check_type(argname="argument name", value=name, expected_type=type_hints["name"])
18867
+ check_type(argname="argument template_configuration", value=template_configuration, expected_type=type_hints["template_configuration"])
18153
18868
  check_type(argname="argument template_type", value=template_type, expected_type=type_hints["template_type"])
18154
18869
  check_type(argname="argument inference_configuration", value=inference_configuration, expected_type=type_hints["inference_configuration"])
18155
18870
  check_type(argname="argument model_id", value=model_id, expected_type=type_hints["model_id"])
18156
- check_type(argname="argument template_configuration", value=template_configuration, expected_type=type_hints["template_configuration"])
18157
18871
  self._values: typing.Dict[builtins.str, typing.Any] = {
18158
18872
  "name": name,
18873
+ "template_configuration": template_configuration,
18159
18874
  "template_type": template_type,
18160
18875
  }
18161
18876
  if inference_configuration is not None:
18162
18877
  self._values["inference_configuration"] = inference_configuration
18163
18878
  if model_id is not None:
18164
18879
  self._values["model_id"] = model_id
18165
- if template_configuration is not None:
18166
- self._values["template_configuration"] = template_configuration
18167
18880
 
18168
18881
  @builtins.property
18169
18882
  def name(self) -> builtins.str:
@@ -18175,6 +18888,18 @@ class CfnPrompt(
18175
18888
  assert result is not None, "Required property 'name' is missing"
18176
18889
  return typing.cast(builtins.str, result)
18177
18890
 
18891
+ @builtins.property
18892
+ def template_configuration(
18893
+ self,
18894
+ ) -> typing.Union[_IResolvable_da3f097b, "CfnPrompt.PromptTemplateConfigurationProperty"]:
18895
+ '''Contains configurations for the prompt template.
18896
+
18897
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-prompt-promptvariant.html#cfn-bedrock-prompt-promptvariant-templateconfiguration
18898
+ '''
18899
+ result = self._values.get("template_configuration")
18900
+ assert result is not None, "Required property 'template_configuration' is missing"
18901
+ return typing.cast(typing.Union[_IResolvable_da3f097b, "CfnPrompt.PromptTemplateConfigurationProperty"], result)
18902
+
18178
18903
  @builtins.property
18179
18904
  def template_type(self) -> builtins.str:
18180
18905
  '''The type of prompt template to use.
@@ -18205,17 +18930,6 @@ class CfnPrompt(
18205
18930
  result = self._values.get("model_id")
18206
18931
  return typing.cast(typing.Optional[builtins.str], result)
18207
18932
 
18208
- @builtins.property
18209
- def template_configuration(
18210
- self,
18211
- ) -> typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnPrompt.PromptTemplateConfigurationProperty"]]:
18212
- '''Contains configurations for the prompt template.
18213
-
18214
- :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-prompt-promptvariant.html#cfn-bedrock-prompt-promptvariant-templateconfiguration
18215
- '''
18216
- result = self._values.get("template_configuration")
18217
- return typing.cast(typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnPrompt.PromptTemplateConfigurationProperty"]], result)
18218
-
18219
18933
  def __eq__(self, rhs: typing.Any) -> builtins.bool:
18220
18934
  return isinstance(rhs, self.__class__) and rhs._values == self._values
18221
18935
 
@@ -18472,19 +19186,6 @@ class CfnPromptProps:
18472
19186
  },
18473
19187
  variants=[bedrock.CfnPrompt.PromptVariantProperty(
18474
19188
  name="name",
18475
- template_type="templateType",
18476
-
18477
- # the properties below are optional
18478
- inference_configuration=bedrock.CfnPrompt.PromptInferenceConfigurationProperty(
18479
- text=bedrock.CfnPrompt.PromptModelInferenceConfigurationProperty(
18480
- max_tokens=123,
18481
- stop_sequences=["stopSequences"],
18482
- temperature=123,
18483
- top_k=123,
18484
- top_p=123
18485
- )
18486
- ),
18487
- model_id="modelId",
18488
19189
  template_configuration=bedrock.CfnPrompt.PromptTemplateConfigurationProperty(
18489
19190
  text=bedrock.CfnPrompt.TextPromptTemplateConfigurationProperty(
18490
19191
  input_variables=[bedrock.CfnPrompt.PromptInputVariableProperty(
@@ -18499,7 +19200,19 @@ class CfnPromptProps:
18499
19200
  version="version"
18500
19201
  )
18501
19202
  )
18502
- )
19203
+ ),
19204
+ template_type="templateType",
19205
+
19206
+ # the properties below are optional
19207
+ inference_configuration=bedrock.CfnPrompt.PromptInferenceConfigurationProperty(
19208
+ text=bedrock.CfnPrompt.PromptModelInferenceConfigurationProperty(
19209
+ max_tokens=123,
19210
+ stop_sequences=["stopSequences"],
19211
+ temperature=123,
19212
+ top_p=123
19213
+ )
19214
+ ),
19215
+ model_id="modelId"
18503
19216
  )]
18504
19217
  )
18505
19218
  '''
@@ -18851,7 +19564,6 @@ class CfnPromptVersion(
18851
19564
  max_tokens=123,
18852
19565
  stop_sequences=["stopSequences"],
18853
19566
  temperature=123,
18854
- top_k=123,
18855
19567
  top_p=123
18856
19568
  )
18857
19569
  )
@@ -18944,7 +19656,6 @@ class CfnPromptVersion(
18944
19656
  "max_tokens": "maxTokens",
18945
19657
  "stop_sequences": "stopSequences",
18946
19658
  "temperature": "temperature",
18947
- "top_k": "topK",
18948
19659
  "top_p": "topP",
18949
19660
  },
18950
19661
  )
@@ -18955,7 +19666,6 @@ class CfnPromptVersion(
18955
19666
  max_tokens: typing.Optional[jsii.Number] = None,
18956
19667
  stop_sequences: typing.Optional[typing.Sequence[builtins.str]] = None,
18957
19668
  temperature: typing.Optional[jsii.Number] = None,
18958
- top_k: typing.Optional[jsii.Number] = None,
18959
19669
  top_p: typing.Optional[jsii.Number] = None,
18960
19670
  ) -> None:
18961
19671
  '''Contains inference configurations related to model inference for a prompt.
@@ -18965,7 +19675,6 @@ class CfnPromptVersion(
18965
19675
  :param max_tokens: The maximum number of tokens to return in the response.
18966
19676
  :param stop_sequences: A list of strings that define sequences after which the model will stop generating.
18967
19677
  :param temperature: Controls the randomness of the response. Choose a lower value for more predictable outputs and a higher value for more surprising outputs.
18968
- :param top_k: Sample from the k most likely next tokens.
18969
19678
  :param top_p: The percentage of most-likely candidates that the model considers for the next token.
18970
19679
 
18971
19680
  :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-promptversion-promptmodelinferenceconfiguration.html
@@ -18981,7 +19690,6 @@ class CfnPromptVersion(
18981
19690
  max_tokens=123,
18982
19691
  stop_sequences=["stopSequences"],
18983
19692
  temperature=123,
18984
- top_k=123,
18985
19693
  top_p=123
18986
19694
  )
18987
19695
  '''
@@ -18990,7 +19698,6 @@ class CfnPromptVersion(
18990
19698
  check_type(argname="argument max_tokens", value=max_tokens, expected_type=type_hints["max_tokens"])
18991
19699
  check_type(argname="argument stop_sequences", value=stop_sequences, expected_type=type_hints["stop_sequences"])
18992
19700
  check_type(argname="argument temperature", value=temperature, expected_type=type_hints["temperature"])
18993
- check_type(argname="argument top_k", value=top_k, expected_type=type_hints["top_k"])
18994
19701
  check_type(argname="argument top_p", value=top_p, expected_type=type_hints["top_p"])
18995
19702
  self._values: typing.Dict[builtins.str, typing.Any] = {}
18996
19703
  if max_tokens is not None:
@@ -18999,8 +19706,6 @@ class CfnPromptVersion(
18999
19706
  self._values["stop_sequences"] = stop_sequences
19000
19707
  if temperature is not None:
19001
19708
  self._values["temperature"] = temperature
19002
- if top_k is not None:
19003
- self._values["top_k"] = top_k
19004
19709
  if top_p is not None:
19005
19710
  self._values["top_p"] = top_p
19006
19711
 
@@ -19033,15 +19738,6 @@ class CfnPromptVersion(
19033
19738
  result = self._values.get("temperature")
19034
19739
  return typing.cast(typing.Optional[jsii.Number], result)
19035
19740
 
19036
- @builtins.property
19037
- def top_k(self) -> typing.Optional[jsii.Number]:
19038
- '''Sample from the k most likely next tokens.
19039
-
19040
- :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-promptversion-promptmodelinferenceconfiguration.html#cfn-bedrock-promptversion-promptmodelinferenceconfiguration-topk
19041
- '''
19042
- result = self._values.get("top_k")
19043
- return typing.cast(typing.Optional[jsii.Number], result)
19044
-
19045
19741
  @builtins.property
19046
19742
  def top_p(self) -> typing.Optional[jsii.Number]:
19047
19743
  '''The percentage of most-likely candidates that the model considers for the next token.
@@ -19134,10 +19830,10 @@ class CfnPromptVersion(
19134
19830
  jsii_struct_bases=[],
19135
19831
  name_mapping={
19136
19832
  "name": "name",
19833
+ "template_configuration": "templateConfiguration",
19137
19834
  "template_type": "templateType",
19138
19835
  "inference_configuration": "inferenceConfiguration",
19139
19836
  "model_id": "modelId",
19140
- "template_configuration": "templateConfiguration",
19141
19837
  },
19142
19838
  )
19143
19839
  class PromptVariantProperty:
@@ -19145,18 +19841,18 @@ class CfnPromptVersion(
19145
19841
  self,
19146
19842
  *,
19147
19843
  name: builtins.str,
19844
+ template_configuration: typing.Union[_IResolvable_da3f097b, typing.Union["CfnPromptVersion.PromptTemplateConfigurationProperty", typing.Dict[builtins.str, typing.Any]]],
19148
19845
  template_type: builtins.str,
19149
19846
  inference_configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union["CfnPromptVersion.PromptInferenceConfigurationProperty", typing.Dict[builtins.str, typing.Any]]]] = None,
19150
19847
  model_id: typing.Optional[builtins.str] = None,
19151
- template_configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union["CfnPromptVersion.PromptTemplateConfigurationProperty", typing.Dict[builtins.str, typing.Any]]]] = None,
19152
19848
  ) -> None:
19153
19849
  '''Contains details about a variant of the prompt.
19154
19850
 
19155
19851
  :param name: The name of the prompt variant.
19852
+ :param template_configuration: Contains configurations for the prompt template.
19156
19853
  :param template_type: The type of prompt template to use.
19157
19854
  :param inference_configuration: Contains inference configurations for the prompt variant.
19158
19855
  :param model_id: The unique identifier of the model or `inference profile <https://docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference.html>`_ with which to run inference on the prompt.
19159
- :param template_configuration: Contains configurations for the prompt template.
19160
19856
 
19161
19857
  :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-promptversion-promptvariant.html
19162
19858
  :exampleMetadata: fixture=_generated
@@ -19169,6 +19865,16 @@ class CfnPromptVersion(
19169
19865
 
19170
19866
  prompt_variant_property = bedrock.CfnPromptVersion.PromptVariantProperty(
19171
19867
  name="name",
19868
+ template_configuration=bedrock.CfnPromptVersion.PromptTemplateConfigurationProperty(
19869
+ text=bedrock.CfnPromptVersion.TextPromptTemplateConfigurationProperty(
19870
+ text="text",
19871
+
19872
+ # the properties below are optional
19873
+ input_variables=[bedrock.CfnPromptVersion.PromptInputVariableProperty(
19874
+ name="name"
19875
+ )]
19876
+ )
19877
+ ),
19172
19878
  template_type="templateType",
19173
19879
 
19174
19880
  # the properties below are optional
@@ -19177,40 +19883,28 @@ class CfnPromptVersion(
19177
19883
  max_tokens=123,
19178
19884
  stop_sequences=["stopSequences"],
19179
19885
  temperature=123,
19180
- top_k=123,
19181
19886
  top_p=123
19182
19887
  )
19183
19888
  ),
19184
- model_id="modelId",
19185
- template_configuration=bedrock.CfnPromptVersion.PromptTemplateConfigurationProperty(
19186
- text=bedrock.CfnPromptVersion.TextPromptTemplateConfigurationProperty(
19187
- text="text",
19188
-
19189
- # the properties below are optional
19190
- input_variables=[bedrock.CfnPromptVersion.PromptInputVariableProperty(
19191
- name="name"
19192
- )]
19193
- )
19194
- )
19889
+ model_id="modelId"
19195
19890
  )
19196
19891
  '''
19197
19892
  if __debug__:
19198
19893
  type_hints = typing.get_type_hints(_typecheckingstub__0527e63017fac779f764e66c7e3ec7544382203f5ff233de501b3fde25894461)
19199
19894
  check_type(argname="argument name", value=name, expected_type=type_hints["name"])
19895
+ check_type(argname="argument template_configuration", value=template_configuration, expected_type=type_hints["template_configuration"])
19200
19896
  check_type(argname="argument template_type", value=template_type, expected_type=type_hints["template_type"])
19201
19897
  check_type(argname="argument inference_configuration", value=inference_configuration, expected_type=type_hints["inference_configuration"])
19202
19898
  check_type(argname="argument model_id", value=model_id, expected_type=type_hints["model_id"])
19203
- check_type(argname="argument template_configuration", value=template_configuration, expected_type=type_hints["template_configuration"])
19204
19899
  self._values: typing.Dict[builtins.str, typing.Any] = {
19205
19900
  "name": name,
19901
+ "template_configuration": template_configuration,
19206
19902
  "template_type": template_type,
19207
19903
  }
19208
19904
  if inference_configuration is not None:
19209
19905
  self._values["inference_configuration"] = inference_configuration
19210
19906
  if model_id is not None:
19211
19907
  self._values["model_id"] = model_id
19212
- if template_configuration is not None:
19213
- self._values["template_configuration"] = template_configuration
19214
19908
 
19215
19909
  @builtins.property
19216
19910
  def name(self) -> builtins.str:
@@ -19222,6 +19916,18 @@ class CfnPromptVersion(
19222
19916
  assert result is not None, "Required property 'name' is missing"
19223
19917
  return typing.cast(builtins.str, result)
19224
19918
 
19919
+ @builtins.property
19920
+ def template_configuration(
19921
+ self,
19922
+ ) -> typing.Union[_IResolvable_da3f097b, "CfnPromptVersion.PromptTemplateConfigurationProperty"]:
19923
+ '''Contains configurations for the prompt template.
19924
+
19925
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-promptversion-promptvariant.html#cfn-bedrock-promptversion-promptvariant-templateconfiguration
19926
+ '''
19927
+ result = self._values.get("template_configuration")
19928
+ assert result is not None, "Required property 'template_configuration' is missing"
19929
+ return typing.cast(typing.Union[_IResolvable_da3f097b, "CfnPromptVersion.PromptTemplateConfigurationProperty"], result)
19930
+
19225
19931
  @builtins.property
19226
19932
  def template_type(self) -> builtins.str:
19227
19933
  '''The type of prompt template to use.
@@ -19252,17 +19958,6 @@ class CfnPromptVersion(
19252
19958
  result = self._values.get("model_id")
19253
19959
  return typing.cast(typing.Optional[builtins.str], result)
19254
19960
 
19255
- @builtins.property
19256
- def template_configuration(
19257
- self,
19258
- ) -> typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnPromptVersion.PromptTemplateConfigurationProperty"]]:
19259
- '''Contains configurations for the prompt template.
19260
-
19261
- :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-bedrock-promptversion-promptvariant.html#cfn-bedrock-promptversion-promptvariant-templateconfiguration
19262
- '''
19263
- result = self._values.get("template_configuration")
19264
- return typing.cast(typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnPromptVersion.PromptTemplateConfigurationProperty"]], result)
19265
-
19266
19961
  def __eq__(self, rhs: typing.Any) -> builtins.bool:
19267
19962
  return isinstance(rhs, self.__class__) and rhs._values == self._values
19268
19963
 
@@ -19644,6 +20339,12 @@ class FoundationModelIdentifier(
19644
20339
  '''Base model "amazon.titan-tg1-large".'''
19645
20340
  return typing.cast("FoundationModelIdentifier", jsii.sget(cls, "AMAZON_TITAN_TG1_LARGE"))
19646
20341
 
20342
+ @jsii.python.classproperty
20343
+ @jsii.member(jsii_name="ANTHROPIC_CLAUDE_3_5_HAIKU_20241022_V1_0")
20344
+ def ANTHROPIC_CLAUDE_3_5_HAIKU_20241022_V1_0(cls) -> "FoundationModelIdentifier":
20345
+ '''Base model "anthropic.claude-3-5-haiku-20241022-v1:0".'''
20346
+ return typing.cast("FoundationModelIdentifier", jsii.sget(cls, "ANTHROPIC_CLAUDE_3_5_HAIKU_20241022_V1_0"))
20347
+
19647
20348
  @jsii.python.classproperty
19648
20349
  @jsii.member(jsii_name="ANTHROPIC_CLAUDE_3_5_SONNET_20240620_V1_0")
19649
20350
  def ANTHROPIC_CLAUDE_3_5_SONNET_20240620_V1_0(cls) -> "FoundationModelIdentifier":
@@ -20175,6 +20876,8 @@ __all__ = [
20175
20876
  "CfnAgentAlias",
20176
20877
  "CfnAgentAliasProps",
20177
20878
  "CfnAgentProps",
20879
+ "CfnApplicationInferenceProfile",
20880
+ "CfnApplicationInferenceProfileProps",
20178
20881
  "CfnDataSource",
20179
20882
  "CfnDataSourceProps",
20180
20883
  "CfnFlow",
@@ -20540,6 +21243,78 @@ def _typecheckingstub__b4f714080f6d4f9b0a3fe85a8425a8ba69698695e35d6fbd9d710ca5d
20540
21243
  """Type checking stubs"""
20541
21244
  pass
20542
21245
 
21246
+ def _typecheckingstub__a2222de49518232a3824d971182922daf44d6255370c3805992fca295b2904ad(
21247
+ scope: _constructs_77d1e7e8.Construct,
21248
+ id: builtins.str,
21249
+ *,
21250
+ inference_profile_name: builtins.str,
21251
+ description: typing.Optional[builtins.str] = None,
21252
+ model_source: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnApplicationInferenceProfile.InferenceProfileModelSourceProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
21253
+ tags: typing.Optional[typing.Sequence[typing.Union[_CfnTag_f6864754, typing.Dict[builtins.str, typing.Any]]]] = None,
21254
+ ) -> None:
21255
+ """Type checking stubs"""
21256
+ pass
21257
+
21258
+ def _typecheckingstub__4d2e339334daf20f2a812f78dadefad7c0714dbaaafdfe61e138ba0cfb3f07e2(
21259
+ inspector: _TreeInspector_488e0dd5,
21260
+ ) -> None:
21261
+ """Type checking stubs"""
21262
+ pass
21263
+
21264
+ def _typecheckingstub__d0b7fff48c27eff9823a04431a3cb684b46b8434a66cf5f1941f73cf8eba5762(
21265
+ props: typing.Mapping[builtins.str, typing.Any],
21266
+ ) -> None:
21267
+ """Type checking stubs"""
21268
+ pass
21269
+
21270
+ def _typecheckingstub__6aae972c3170b196c6e4fa5bf8d0dd4b8b0b49a1c0f56c506e744e0442f85c7c(
21271
+ value: builtins.str,
21272
+ ) -> None:
21273
+ """Type checking stubs"""
21274
+ pass
21275
+
21276
+ def _typecheckingstub__2c6572f5531b0a792b64f808b10a21a42b92c9f7be81c2527cca65319dc19869(
21277
+ value: typing.Optional[builtins.str],
21278
+ ) -> None:
21279
+ """Type checking stubs"""
21280
+ pass
21281
+
21282
+ def _typecheckingstub__2237f6f7b3816378634fc620ae2448fa846fa47396f09bc7c0b5e8a0902d65ae(
21283
+ value: typing.Optional[typing.Union[_IResolvable_da3f097b, CfnApplicationInferenceProfile.InferenceProfileModelSourceProperty]],
21284
+ ) -> None:
21285
+ """Type checking stubs"""
21286
+ pass
21287
+
21288
+ def _typecheckingstub__e13f50624dfcb2d9c61a18114e7992a8def4ddd2f6f340c352ac98a5668d7eea(
21289
+ value: typing.Optional[typing.List[_CfnTag_f6864754]],
21290
+ ) -> None:
21291
+ """Type checking stubs"""
21292
+ pass
21293
+
21294
+ def _typecheckingstub__ef9de36422391b892f90691f22e956a086a03a2e131a35b0986b5b63d905255f(
21295
+ *,
21296
+ model_arn: typing.Optional[builtins.str] = None,
21297
+ ) -> None:
21298
+ """Type checking stubs"""
21299
+ pass
21300
+
21301
+ def _typecheckingstub__4170b8c8243e2096b7c99037eb0c8874b28fe6d08432e8c6fd045defb2d99d81(
21302
+ *,
21303
+ copy_from: builtins.str,
21304
+ ) -> None:
21305
+ """Type checking stubs"""
21306
+ pass
21307
+
21308
+ def _typecheckingstub__396027668dce29a45dd42acb9bb8358fa9135a15e45d6925e8a78acced3bd78d(
21309
+ *,
21310
+ inference_profile_name: builtins.str,
21311
+ description: typing.Optional[builtins.str] = None,
21312
+ model_source: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnApplicationInferenceProfile.InferenceProfileModelSourceProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
21313
+ tags: typing.Optional[typing.Sequence[typing.Union[_CfnTag_f6864754, typing.Dict[builtins.str, typing.Any]]]] = None,
21314
+ ) -> None:
21315
+ """Type checking stubs"""
21316
+ pass
21317
+
20543
21318
  def _typecheckingstub__8b6230da788965416b3262c41917eaab2193b3cfccf7a03f313a8c19186a6b75(
20544
21319
  scope: _constructs_77d1e7e8.Construct,
20545
21320
  id: builtins.str,
@@ -21121,9 +21896,18 @@ def _typecheckingstub__3eab89f770734deb893367e044b113c86911377a918b039f1ba9310a3
21121
21896
  """Type checking stubs"""
21122
21897
  pass
21123
21898
 
21899
+ def _typecheckingstub__7a58b1756431d0127fbde4a9b98f71b8bd861fde50f58d8b27f6621481f6898a(
21900
+ *,
21901
+ guardrail_identifier: typing.Optional[builtins.str] = None,
21902
+ guardrail_version: typing.Optional[builtins.str] = None,
21903
+ ) -> None:
21904
+ """Type checking stubs"""
21905
+ pass
21906
+
21124
21907
  def _typecheckingstub__004ed148a98b01e41f3efd077553224d0e5ce97fd3842fc0c6be6c28accdc6cc(
21125
21908
  *,
21126
21909
  knowledge_base_id: builtins.str,
21910
+ guardrail_configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnFlow.GuardrailConfigurationProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
21127
21911
  model_id: typing.Optional[builtins.str] = None,
21128
21912
  ) -> None:
21129
21913
  """Type checking stubs"""
@@ -21147,6 +21931,7 @@ def _typecheckingstub__38478491ab5facb49d25af7399145bf3032f8b76fc619392d4da744bd
21147
21931
  def _typecheckingstub__b9e2aaf75cba4595f32ad6457fae055981f8fb7d76d181537ab0d3241fa7866d(
21148
21932
  *,
21149
21933
  source_configuration: typing.Union[_IResolvable_da3f097b, typing.Union[CfnFlow.PromptFlowNodeSourceConfigurationProperty, typing.Dict[builtins.str, typing.Any]]],
21934
+ guardrail_configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnFlow.GuardrailConfigurationProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
21150
21935
  ) -> None:
21151
21936
  """Type checking stubs"""
21152
21937
  pass
@@ -21195,7 +21980,6 @@ def _typecheckingstub__4b72bde5473c072da139578869709761ca3585ad0bf7391b769225231
21195
21980
  max_tokens: typing.Optional[jsii.Number] = None,
21196
21981
  stop_sequences: typing.Optional[typing.Sequence[builtins.str]] = None,
21197
21982
  temperature: typing.Optional[jsii.Number] = None,
21198
- top_k: typing.Optional[jsii.Number] = None,
21199
21983
  top_p: typing.Optional[jsii.Number] = None,
21200
21984
  ) -> None:
21201
21985
  """Type checking stubs"""
@@ -21500,9 +22284,18 @@ def _typecheckingstub__9b55ad1cfa9b68dc6dff2440039243220846238d1a04de053105a499f
21500
22284
  """Type checking stubs"""
21501
22285
  pass
21502
22286
 
22287
+ def _typecheckingstub__e730caca77d30abef7bb7cb2c01702883c895d80378652c3f9f4bd88643dc186(
22288
+ *,
22289
+ guardrail_identifier: typing.Optional[builtins.str] = None,
22290
+ guardrail_version: typing.Optional[builtins.str] = None,
22291
+ ) -> None:
22292
+ """Type checking stubs"""
22293
+ pass
22294
+
21503
22295
  def _typecheckingstub__17b9fe30408d688aaf08f87e21950af81c63d804d7021f8f66de0b47e6aa51be(
21504
22296
  *,
21505
22297
  knowledge_base_id: builtins.str,
22298
+ guardrail_configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnFlowVersion.GuardrailConfigurationProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
21506
22299
  model_id: typing.Optional[builtins.str] = None,
21507
22300
  ) -> None:
21508
22301
  """Type checking stubs"""
@@ -21526,6 +22319,7 @@ def _typecheckingstub__5ed3b9d7d58ce0e3983c2d3d2353ab30d7ce6785a86992996e15622f2
21526
22319
  def _typecheckingstub__62c4630f7833caba0eae680e960eadd4fb8eef6ef080839f7a47f079f386a1be(
21527
22320
  *,
21528
22321
  source_configuration: typing.Union[_IResolvable_da3f097b, typing.Union[CfnFlowVersion.PromptFlowNodeSourceConfigurationProperty, typing.Dict[builtins.str, typing.Any]]],
22322
+ guardrail_configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnFlowVersion.GuardrailConfigurationProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
21529
22323
  ) -> None:
21530
22324
  """Type checking stubs"""
21531
22325
  pass
@@ -21574,7 +22368,6 @@ def _typecheckingstub__296008f3af7867aca83108accdbdf386a68d143c6a178bb785d89777b
21574
22368
  max_tokens: typing.Optional[jsii.Number] = None,
21575
22369
  stop_sequences: typing.Optional[typing.Sequence[builtins.str]] = None,
21576
22370
  temperature: typing.Optional[jsii.Number] = None,
21577
- top_k: typing.Optional[jsii.Number] = None,
21578
22371
  top_p: typing.Optional[jsii.Number] = None,
21579
22372
  ) -> None:
21580
22373
  """Type checking stubs"""
@@ -22149,7 +22942,6 @@ def _typecheckingstub__d348efba187570a443093419bc85fbc24f754a9496fbfc85e29bb7e40
22149
22942
  max_tokens: typing.Optional[jsii.Number] = None,
22150
22943
  stop_sequences: typing.Optional[typing.Sequence[builtins.str]] = None,
22151
22944
  temperature: typing.Optional[jsii.Number] = None,
22152
- top_k: typing.Optional[jsii.Number] = None,
22153
22945
  top_p: typing.Optional[jsii.Number] = None,
22154
22946
  ) -> None:
22155
22947
  """Type checking stubs"""
@@ -22165,10 +22957,10 @@ def _typecheckingstub__fde740ede958bf60edc6a98392bd083868fd4fd5f6ba5698705fc5e13
22165
22957
  def _typecheckingstub__84ac4a525676aedbb60bd913121b2941e7f39f8599421758678b789b5ad67a98(
22166
22958
  *,
22167
22959
  name: builtins.str,
22960
+ template_configuration: typing.Union[_IResolvable_da3f097b, typing.Union[CfnPrompt.PromptTemplateConfigurationProperty, typing.Dict[builtins.str, typing.Any]]],
22168
22961
  template_type: builtins.str,
22169
22962
  inference_configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnPrompt.PromptInferenceConfigurationProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
22170
22963
  model_id: typing.Optional[builtins.str] = None,
22171
- template_configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnPrompt.PromptTemplateConfigurationProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
22172
22964
  ) -> None:
22173
22965
  """Type checking stubs"""
22174
22966
  pass
@@ -22263,7 +23055,6 @@ def _typecheckingstub__b58a287b31d21450a61de44a5befbea1f8751449646ed0bbe2b063a20
22263
23055
  max_tokens: typing.Optional[jsii.Number] = None,
22264
23056
  stop_sequences: typing.Optional[typing.Sequence[builtins.str]] = None,
22265
23057
  temperature: typing.Optional[jsii.Number] = None,
22266
- top_k: typing.Optional[jsii.Number] = None,
22267
23058
  top_p: typing.Optional[jsii.Number] = None,
22268
23059
  ) -> None:
22269
23060
  """Type checking stubs"""
@@ -22279,10 +23070,10 @@ def _typecheckingstub__9e84f158eefe2c7ea195f2b73e039de98ab2e293bd6d8b830e0e8b2f1
22279
23070
  def _typecheckingstub__0527e63017fac779f764e66c7e3ec7544382203f5ff233de501b3fde25894461(
22280
23071
  *,
22281
23072
  name: builtins.str,
23073
+ template_configuration: typing.Union[_IResolvable_da3f097b, typing.Union[CfnPromptVersion.PromptTemplateConfigurationProperty, typing.Dict[builtins.str, typing.Any]]],
22282
23074
  template_type: builtins.str,
22283
23075
  inference_configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnPromptVersion.PromptInferenceConfigurationProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
22284
23076
  model_id: typing.Optional[builtins.str] = None,
22285
- template_configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnPromptVersion.PromptTemplateConfigurationProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
22286
23077
  ) -> None:
22287
23078
  """Type checking stubs"""
22288
23079
  pass