aws-cdk-lib 2.138.0__py3-none-any.whl → 2.139.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of aws-cdk-lib might be problematic. Click here for more details.
- aws_cdk/_jsii/__init__.py +1 -1
- aws_cdk/_jsii/{aws-cdk-lib@2.138.0.jsii.tgz → aws-cdk-lib@2.139.1.jsii.tgz} +0 -0
- aws_cdk/aws_apigateway/__init__.py +29 -16
- aws_cdk/aws_appconfig/__init__.py +289 -44
- aws_cdk/aws_appintegrations/__init__.py +55 -6
- aws_cdk/aws_autoscaling/__init__.py +62 -60
- aws_cdk/aws_backup/__init__.py +34 -42
- aws_cdk/aws_batch/__init__.py +9 -3
- aws_cdk/aws_bedrock/__init__.py +4144 -0
- aws_cdk/aws_cloudwatch/__init__.py +120 -0
- aws_cdk/aws_datazone/__init__.py +22 -0
- aws_cdk/aws_dms/__init__.py +2 -4
- aws_cdk/aws_ec2/__init__.py +123 -84
- aws_cdk/aws_ecr/__init__.py +630 -0
- aws_cdk/aws_ecs/__init__.py +121 -19
- aws_cdk/aws_efs/__init__.py +592 -0
- aws_cdk/aws_elasticloadbalancingv2/__init__.py +23 -8
- aws_cdk/aws_events_targets/__init__.py +17 -4
- aws_cdk/aws_kms/__init__.py +44 -0
- aws_cdk/aws_lambda/__init__.py +9 -0
- aws_cdk/aws_oam/__init__.py +204 -0
- aws_cdk/aws_rds/__init__.py +15 -11
- aws_cdk/aws_redshiftserverless/__init__.py +157 -0
- aws_cdk/aws_securitylake/__init__.py +160 -105
- aws_cdk/aws_ses_actions/__init__.py +155 -0
- aws_cdk/aws_ssm/__init__.py +5 -2
- aws_cdk/aws_timestream/__init__.py +1045 -0
- aws_cdk/aws_transfer/__init__.py +15 -6
- aws_cdk/aws_wisdom/__init__.py +2 -2
- aws_cdk/custom_resources/__init__.py +440 -0
- aws_cdk/cx_api/__init__.py +17 -0
- {aws_cdk_lib-2.138.0.dist-info → aws_cdk_lib-2.139.1.dist-info}/METADATA +1 -1
- {aws_cdk_lib-2.138.0.dist-info → aws_cdk_lib-2.139.1.dist-info}/RECORD +37 -37
- {aws_cdk_lib-2.138.0.dist-info → aws_cdk_lib-2.139.1.dist-info}/LICENSE +0 -0
- {aws_cdk_lib-2.138.0.dist-info → aws_cdk_lib-2.139.1.dist-info}/NOTICE +0 -0
- {aws_cdk_lib-2.138.0.dist-info → aws_cdk_lib-2.139.1.dist-info}/WHEEL +0 -0
- {aws_cdk_lib-2.138.0.dist-info → aws_cdk_lib-2.139.1.dist-info}/top_level.txt +0 -0
|
@@ -2875,6 +2875,9 @@ class CfnAnomalyDetector(
|
|
|
2875
2875
|
name="name",
|
|
2876
2876
|
value="value"
|
|
2877
2877
|
)],
|
|
2878
|
+
metric_characteristics=cloudwatch.CfnAnomalyDetector.MetricCharacteristicsProperty(
|
|
2879
|
+
periodic_spikes=False
|
|
2880
|
+
),
|
|
2878
2881
|
metric_math_anomaly_detector=cloudwatch.CfnAnomalyDetector.MetricMathAnomalyDetectorProperty(
|
|
2879
2882
|
metric_data_queries=[cloudwatch.CfnAnomalyDetector.MetricDataQueryProperty(
|
|
2880
2883
|
id="id",
|
|
@@ -2927,6 +2930,7 @@ class CfnAnomalyDetector(
|
|
|
2927
2930
|
*,
|
|
2928
2931
|
configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union["CfnAnomalyDetector.ConfigurationProperty", typing.Dict[builtins.str, typing.Any]]]] = None,
|
|
2929
2932
|
dimensions: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Sequence[typing.Union[_IResolvable_da3f097b, typing.Union["CfnAnomalyDetector.DimensionProperty", typing.Dict[builtins.str, typing.Any]]]]]] = None,
|
|
2933
|
+
metric_characteristics: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union["CfnAnomalyDetector.MetricCharacteristicsProperty", typing.Dict[builtins.str, typing.Any]]]] = None,
|
|
2930
2934
|
metric_math_anomaly_detector: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union["CfnAnomalyDetector.MetricMathAnomalyDetectorProperty", typing.Dict[builtins.str, typing.Any]]]] = None,
|
|
2931
2935
|
metric_name: typing.Optional[builtins.str] = None,
|
|
2932
2936
|
namespace: typing.Optional[builtins.str] = None,
|
|
@@ -2938,6 +2942,7 @@ class CfnAnomalyDetector(
|
|
|
2938
2942
|
:param id: Construct identifier for this resource (unique in its scope).
|
|
2939
2943
|
:param configuration: Specifies details about how the anomaly detection model is to be trained, including time ranges to exclude when training and updating the model. The configuration can also include the time zone to use for the metric.
|
|
2940
2944
|
:param dimensions: The dimensions of the metric associated with the anomaly detection band.
|
|
2945
|
+
:param metric_characteristics: Use this object to include parameters to provide information about your metric to CloudWatch to help it build more accurate anomaly detection models. Currently, it includes the ``PeriodicSpikes`` parameter.
|
|
2941
2946
|
:param metric_math_anomaly_detector: The CloudWatch metric math expression for this anomaly detector.
|
|
2942
2947
|
:param metric_name: The name of the metric associated with the anomaly detection band.
|
|
2943
2948
|
:param namespace: The namespace of the metric associated with the anomaly detection band.
|
|
@@ -2951,6 +2956,7 @@ class CfnAnomalyDetector(
|
|
|
2951
2956
|
props = CfnAnomalyDetectorProps(
|
|
2952
2957
|
configuration=configuration,
|
|
2953
2958
|
dimensions=dimensions,
|
|
2959
|
+
metric_characteristics=metric_characteristics,
|
|
2954
2960
|
metric_math_anomaly_detector=metric_math_anomaly_detector,
|
|
2955
2961
|
metric_name=metric_name,
|
|
2956
2962
|
namespace=namespace,
|
|
@@ -3039,6 +3045,24 @@ class CfnAnomalyDetector(
|
|
|
3039
3045
|
check_type(argname="argument value", value=value, expected_type=type_hints["value"])
|
|
3040
3046
|
jsii.set(self, "dimensions", value)
|
|
3041
3047
|
|
|
3048
|
+
@builtins.property
|
|
3049
|
+
@jsii.member(jsii_name="metricCharacteristics")
|
|
3050
|
+
def metric_characteristics(
|
|
3051
|
+
self,
|
|
3052
|
+
) -> typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnAnomalyDetector.MetricCharacteristicsProperty"]]:
|
|
3053
|
+
'''Use this object to include parameters to provide information about your metric to CloudWatch to help it build more accurate anomaly detection models.'''
|
|
3054
|
+
return typing.cast(typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnAnomalyDetector.MetricCharacteristicsProperty"]], jsii.get(self, "metricCharacteristics"))
|
|
3055
|
+
|
|
3056
|
+
@metric_characteristics.setter
|
|
3057
|
+
def metric_characteristics(
|
|
3058
|
+
self,
|
|
3059
|
+
value: typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnAnomalyDetector.MetricCharacteristicsProperty"]],
|
|
3060
|
+
) -> None:
|
|
3061
|
+
if __debug__:
|
|
3062
|
+
type_hints = typing.get_type_hints(_typecheckingstub__730fad039b3befd0235c3dce81008e3d9f65ab635fe956e8ed48f3ba7060aaba)
|
|
3063
|
+
check_type(argname="argument value", value=value, expected_type=type_hints["value"])
|
|
3064
|
+
jsii.set(self, "metricCharacteristics", value)
|
|
3065
|
+
|
|
3042
3066
|
@builtins.property
|
|
3043
3067
|
@jsii.member(jsii_name="metricMathAnomalyDetector")
|
|
3044
3068
|
def metric_math_anomaly_detector(
|
|
@@ -3272,6 +3296,65 @@ class CfnAnomalyDetector(
|
|
|
3272
3296
|
k + "=" + repr(v) for k, v in self._values.items()
|
|
3273
3297
|
)
|
|
3274
3298
|
|
|
3299
|
+
@jsii.data_type(
|
|
3300
|
+
jsii_type="aws-cdk-lib.aws_cloudwatch.CfnAnomalyDetector.MetricCharacteristicsProperty",
|
|
3301
|
+
jsii_struct_bases=[],
|
|
3302
|
+
name_mapping={"periodic_spikes": "periodicSpikes"},
|
|
3303
|
+
)
|
|
3304
|
+
class MetricCharacteristicsProperty:
|
|
3305
|
+
def __init__(
|
|
3306
|
+
self,
|
|
3307
|
+
*,
|
|
3308
|
+
periodic_spikes: typing.Optional[typing.Union[builtins.bool, _IResolvable_da3f097b]] = None,
|
|
3309
|
+
) -> None:
|
|
3310
|
+
'''This object includes parameters that you can use to provide information to CloudWatch to help it build more accurate anomaly detection models.
|
|
3311
|
+
|
|
3312
|
+
:param periodic_spikes: Set this parameter to true if values for this metric consistently include spikes that should not be considered to be anomalies. With this set to true, CloudWatch will expect to see spikes that occurred consistently during the model training period, and won't flag future similar spikes as anomalies.
|
|
3313
|
+
|
|
3314
|
+
:see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-anomalydetector-metriccharacteristics.html
|
|
3315
|
+
:exampleMetadata: fixture=_generated
|
|
3316
|
+
|
|
3317
|
+
Example::
|
|
3318
|
+
|
|
3319
|
+
# The code below shows an example of how to instantiate this type.
|
|
3320
|
+
# The values are placeholders you should change.
|
|
3321
|
+
from aws_cdk import aws_cloudwatch as cloudwatch
|
|
3322
|
+
|
|
3323
|
+
metric_characteristics_property = cloudwatch.CfnAnomalyDetector.MetricCharacteristicsProperty(
|
|
3324
|
+
periodic_spikes=False
|
|
3325
|
+
)
|
|
3326
|
+
'''
|
|
3327
|
+
if __debug__:
|
|
3328
|
+
type_hints = typing.get_type_hints(_typecheckingstub__782bb184e35a5f89f30dd279aa12cf0d77b7069596cc47017cd113eb386bfa0b)
|
|
3329
|
+
check_type(argname="argument periodic_spikes", value=periodic_spikes, expected_type=type_hints["periodic_spikes"])
|
|
3330
|
+
self._values: typing.Dict[builtins.str, typing.Any] = {}
|
|
3331
|
+
if periodic_spikes is not None:
|
|
3332
|
+
self._values["periodic_spikes"] = periodic_spikes
|
|
3333
|
+
|
|
3334
|
+
@builtins.property
|
|
3335
|
+
def periodic_spikes(
|
|
3336
|
+
self,
|
|
3337
|
+
) -> typing.Optional[typing.Union[builtins.bool, _IResolvable_da3f097b]]:
|
|
3338
|
+
'''Set this parameter to true if values for this metric consistently include spikes that should not be considered to be anomalies.
|
|
3339
|
+
|
|
3340
|
+
With this set to true, CloudWatch will expect to see spikes that occurred consistently during the model training period, and won't flag future similar spikes as anomalies.
|
|
3341
|
+
|
|
3342
|
+
:see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-anomalydetector-metriccharacteristics.html#cfn-cloudwatch-anomalydetector-metriccharacteristics-periodicspikes
|
|
3343
|
+
'''
|
|
3344
|
+
result = self._values.get("periodic_spikes")
|
|
3345
|
+
return typing.cast(typing.Optional[typing.Union[builtins.bool, _IResolvable_da3f097b]], result)
|
|
3346
|
+
|
|
3347
|
+
def __eq__(self, rhs: typing.Any) -> builtins.bool:
|
|
3348
|
+
return isinstance(rhs, self.__class__) and rhs._values == self._values
|
|
3349
|
+
|
|
3350
|
+
def __ne__(self, rhs: typing.Any) -> builtins.bool:
|
|
3351
|
+
return not (rhs == self)
|
|
3352
|
+
|
|
3353
|
+
def __repr__(self) -> str:
|
|
3354
|
+
return "MetricCharacteristicsProperty(%s)" % ", ".join(
|
|
3355
|
+
k + "=" + repr(v) for k, v in self._values.items()
|
|
3356
|
+
)
|
|
3357
|
+
|
|
3275
3358
|
@jsii.data_type(
|
|
3276
3359
|
jsii_type="aws-cdk-lib.aws_cloudwatch.CfnAnomalyDetector.MetricDataQueryProperty",
|
|
3277
3360
|
jsii_struct_bases=[],
|
|
@@ -4008,6 +4091,7 @@ class CfnAnomalyDetector(
|
|
|
4008
4091
|
name_mapping={
|
|
4009
4092
|
"configuration": "configuration",
|
|
4010
4093
|
"dimensions": "dimensions",
|
|
4094
|
+
"metric_characteristics": "metricCharacteristics",
|
|
4011
4095
|
"metric_math_anomaly_detector": "metricMathAnomalyDetector",
|
|
4012
4096
|
"metric_name": "metricName",
|
|
4013
4097
|
"namespace": "namespace",
|
|
@@ -4021,6 +4105,7 @@ class CfnAnomalyDetectorProps:
|
|
|
4021
4105
|
*,
|
|
4022
4106
|
configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.ConfigurationProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
|
|
4023
4107
|
dimensions: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Sequence[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.DimensionProperty, typing.Dict[builtins.str, typing.Any]]]]]] = None,
|
|
4108
|
+
metric_characteristics: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.MetricCharacteristicsProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
|
|
4024
4109
|
metric_math_anomaly_detector: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.MetricMathAnomalyDetectorProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
|
|
4025
4110
|
metric_name: typing.Optional[builtins.str] = None,
|
|
4026
4111
|
namespace: typing.Optional[builtins.str] = None,
|
|
@@ -4031,6 +4116,7 @@ class CfnAnomalyDetectorProps:
|
|
|
4031
4116
|
|
|
4032
4117
|
:param configuration: Specifies details about how the anomaly detection model is to be trained, including time ranges to exclude when training and updating the model. The configuration can also include the time zone to use for the metric.
|
|
4033
4118
|
:param dimensions: The dimensions of the metric associated with the anomaly detection band.
|
|
4119
|
+
:param metric_characteristics: Use this object to include parameters to provide information about your metric to CloudWatch to help it build more accurate anomaly detection models. Currently, it includes the ``PeriodicSpikes`` parameter.
|
|
4034
4120
|
:param metric_math_anomaly_detector: The CloudWatch metric math expression for this anomaly detector.
|
|
4035
4121
|
:param metric_name: The name of the metric associated with the anomaly detection band.
|
|
4036
4122
|
:param namespace: The namespace of the metric associated with the anomaly detection band.
|
|
@@ -4058,6 +4144,9 @@ class CfnAnomalyDetectorProps:
|
|
|
4058
4144
|
name="name",
|
|
4059
4145
|
value="value"
|
|
4060
4146
|
)],
|
|
4147
|
+
metric_characteristics=cloudwatch.CfnAnomalyDetector.MetricCharacteristicsProperty(
|
|
4148
|
+
periodic_spikes=False
|
|
4149
|
+
),
|
|
4061
4150
|
metric_math_anomaly_detector=cloudwatch.CfnAnomalyDetector.MetricMathAnomalyDetectorProperty(
|
|
4062
4151
|
metric_data_queries=[cloudwatch.CfnAnomalyDetector.MetricDataQueryProperty(
|
|
4063
4152
|
id="id",
|
|
@@ -4106,6 +4195,7 @@ class CfnAnomalyDetectorProps:
|
|
|
4106
4195
|
type_hints = typing.get_type_hints(_typecheckingstub__929a09b64f3cc2009ffca4b74d148c42dfbbc7531a49bc66cb58443f8870fba2)
|
|
4107
4196
|
check_type(argname="argument configuration", value=configuration, expected_type=type_hints["configuration"])
|
|
4108
4197
|
check_type(argname="argument dimensions", value=dimensions, expected_type=type_hints["dimensions"])
|
|
4198
|
+
check_type(argname="argument metric_characteristics", value=metric_characteristics, expected_type=type_hints["metric_characteristics"])
|
|
4109
4199
|
check_type(argname="argument metric_math_anomaly_detector", value=metric_math_anomaly_detector, expected_type=type_hints["metric_math_anomaly_detector"])
|
|
4110
4200
|
check_type(argname="argument metric_name", value=metric_name, expected_type=type_hints["metric_name"])
|
|
4111
4201
|
check_type(argname="argument namespace", value=namespace, expected_type=type_hints["namespace"])
|
|
@@ -4116,6 +4206,8 @@ class CfnAnomalyDetectorProps:
|
|
|
4116
4206
|
self._values["configuration"] = configuration
|
|
4117
4207
|
if dimensions is not None:
|
|
4118
4208
|
self._values["dimensions"] = dimensions
|
|
4209
|
+
if metric_characteristics is not None:
|
|
4210
|
+
self._values["metric_characteristics"] = metric_characteristics
|
|
4119
4211
|
if metric_math_anomaly_detector is not None:
|
|
4120
4212
|
self._values["metric_math_anomaly_detector"] = metric_math_anomaly_detector
|
|
4121
4213
|
if metric_name is not None:
|
|
@@ -4151,6 +4243,19 @@ class CfnAnomalyDetectorProps:
|
|
|
4151
4243
|
result = self._values.get("dimensions")
|
|
4152
4244
|
return typing.cast(typing.Optional[typing.Union[_IResolvable_da3f097b, typing.List[typing.Union[_IResolvable_da3f097b, CfnAnomalyDetector.DimensionProperty]]]], result)
|
|
4153
4245
|
|
|
4246
|
+
@builtins.property
|
|
4247
|
+
def metric_characteristics(
|
|
4248
|
+
self,
|
|
4249
|
+
) -> typing.Optional[typing.Union[_IResolvable_da3f097b, CfnAnomalyDetector.MetricCharacteristicsProperty]]:
|
|
4250
|
+
'''Use this object to include parameters to provide information about your metric to CloudWatch to help it build more accurate anomaly detection models.
|
|
4251
|
+
|
|
4252
|
+
Currently, it includes the ``PeriodicSpikes`` parameter.
|
|
4253
|
+
|
|
4254
|
+
:see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-metriccharacteristics
|
|
4255
|
+
'''
|
|
4256
|
+
result = self._values.get("metric_characteristics")
|
|
4257
|
+
return typing.cast(typing.Optional[typing.Union[_IResolvable_da3f097b, CfnAnomalyDetector.MetricCharacteristicsProperty]], result)
|
|
4258
|
+
|
|
4154
4259
|
@builtins.property
|
|
4155
4260
|
def metric_math_anomaly_detector(
|
|
4156
4261
|
self,
|
|
@@ -15148,6 +15253,7 @@ def _typecheckingstub__09a2ebaa31c6ab1b46831db515c9eec0f049e129318fe5ad32dd73c9e
|
|
|
15148
15253
|
*,
|
|
15149
15254
|
configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.ConfigurationProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
|
|
15150
15255
|
dimensions: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Sequence[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.DimensionProperty, typing.Dict[builtins.str, typing.Any]]]]]] = None,
|
|
15256
|
+
metric_characteristics: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.MetricCharacteristicsProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
|
|
15151
15257
|
metric_math_anomaly_detector: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.MetricMathAnomalyDetectorProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
|
|
15152
15258
|
metric_name: typing.Optional[builtins.str] = None,
|
|
15153
15259
|
namespace: typing.Optional[builtins.str] = None,
|
|
@@ -15181,6 +15287,12 @@ def _typecheckingstub__aa81b524032f55c8d3aa5c261568d608ed375b489e67451c339cda6df
|
|
|
15181
15287
|
"""Type checking stubs"""
|
|
15182
15288
|
pass
|
|
15183
15289
|
|
|
15290
|
+
def _typecheckingstub__730fad039b3befd0235c3dce81008e3d9f65ab635fe956e8ed48f3ba7060aaba(
|
|
15291
|
+
value: typing.Optional[typing.Union[_IResolvable_da3f097b, CfnAnomalyDetector.MetricCharacteristicsProperty]],
|
|
15292
|
+
) -> None:
|
|
15293
|
+
"""Type checking stubs"""
|
|
15294
|
+
pass
|
|
15295
|
+
|
|
15184
15296
|
def _typecheckingstub__f8f418300bad7bba64cba09c0d26246445ca23587310af02c4b72408240a1db4(
|
|
15185
15297
|
value: typing.Optional[typing.Union[_IResolvable_da3f097b, CfnAnomalyDetector.MetricMathAnomalyDetectorProperty]],
|
|
15186
15298
|
) -> None:
|
|
@@ -15227,6 +15339,13 @@ def _typecheckingstub__621384455c6fe008d1544e799a687e205dfd7c831d4d16758c94209b7
|
|
|
15227
15339
|
"""Type checking stubs"""
|
|
15228
15340
|
pass
|
|
15229
15341
|
|
|
15342
|
+
def _typecheckingstub__782bb184e35a5f89f30dd279aa12cf0d77b7069596cc47017cd113eb386bfa0b(
|
|
15343
|
+
*,
|
|
15344
|
+
periodic_spikes: typing.Optional[typing.Union[builtins.bool, _IResolvable_da3f097b]] = None,
|
|
15345
|
+
) -> None:
|
|
15346
|
+
"""Type checking stubs"""
|
|
15347
|
+
pass
|
|
15348
|
+
|
|
15230
15349
|
def _typecheckingstub__d07af40dc753cdda4381651fa3711189e996a0d1ada4554c36c730242ecee721(
|
|
15231
15350
|
*,
|
|
15232
15351
|
id: builtins.str,
|
|
@@ -15289,6 +15408,7 @@ def _typecheckingstub__929a09b64f3cc2009ffca4b74d148c42dfbbc7531a49bc66cb58443f8
|
|
|
15289
15408
|
*,
|
|
15290
15409
|
configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.ConfigurationProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
|
|
15291
15410
|
dimensions: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Sequence[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.DimensionProperty, typing.Dict[builtins.str, typing.Any]]]]]] = None,
|
|
15411
|
+
metric_characteristics: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.MetricCharacteristicsProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
|
|
15292
15412
|
metric_math_anomaly_detector: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.MetricMathAnomalyDetectorProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
|
|
15293
15413
|
metric_name: typing.Optional[builtins.str] = None,
|
|
15294
15414
|
namespace: typing.Optional[builtins.str] = None,
|
aws_cdk/aws_datazone/__init__.py
CHANGED
|
@@ -112,6 +112,7 @@ class CfnDataSource(
|
|
|
112
112
|
)],
|
|
113
113
|
|
|
114
114
|
# the properties below are optional
|
|
115
|
+
auto_import_data_quality_result=False,
|
|
115
116
|
data_access_role="dataAccessRole"
|
|
116
117
|
),
|
|
117
118
|
redshift_run_configuration=datazone.CfnDataSource.RedshiftRunConfigurationInputProperty(
|
|
@@ -558,6 +559,7 @@ class CfnDataSource(
|
|
|
558
559
|
)],
|
|
559
560
|
|
|
560
561
|
# the properties below are optional
|
|
562
|
+
auto_import_data_quality_result=False,
|
|
561
563
|
data_access_role="dataAccessRole"
|
|
562
564
|
),
|
|
563
565
|
redshift_run_configuration=datazone.CfnDataSource.RedshiftRunConfigurationInputProperty(
|
|
@@ -810,6 +812,7 @@ class CfnDataSource(
|
|
|
810
812
|
jsii_struct_bases=[],
|
|
811
813
|
name_mapping={
|
|
812
814
|
"relational_filter_configurations": "relationalFilterConfigurations",
|
|
815
|
+
"auto_import_data_quality_result": "autoImportDataQualityResult",
|
|
813
816
|
"data_access_role": "dataAccessRole",
|
|
814
817
|
},
|
|
815
818
|
)
|
|
@@ -818,11 +821,13 @@ class CfnDataSource(
|
|
|
818
821
|
self,
|
|
819
822
|
*,
|
|
820
823
|
relational_filter_configurations: typing.Union[_IResolvable_da3f097b, typing.Sequence[typing.Union[_IResolvable_da3f097b, typing.Union["CfnDataSource.RelationalFilterConfigurationProperty", typing.Dict[builtins.str, typing.Any]]]]],
|
|
824
|
+
auto_import_data_quality_result: typing.Optional[typing.Union[builtins.bool, _IResolvable_da3f097b]] = None,
|
|
821
825
|
data_access_role: typing.Optional[builtins.str] = None,
|
|
822
826
|
) -> None:
|
|
823
827
|
'''The configuration details of the AWS Glue data source.
|
|
824
828
|
|
|
825
829
|
:param relational_filter_configurations: The relational filter configurations included in the configuration details of the AWS Glue data source.
|
|
830
|
+
:param auto_import_data_quality_result: Specifies whether to automatically import data quality metrics as part of the data source run.
|
|
826
831
|
:param data_access_role: The data access role included in the configuration details of the AWS Glue data source.
|
|
827
832
|
|
|
828
833
|
:see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-datazone-datasource-gluerunconfigurationinput.html
|
|
@@ -847,16 +852,20 @@ class CfnDataSource(
|
|
|
847
852
|
)],
|
|
848
853
|
|
|
849
854
|
# the properties below are optional
|
|
855
|
+
auto_import_data_quality_result=False,
|
|
850
856
|
data_access_role="dataAccessRole"
|
|
851
857
|
)
|
|
852
858
|
'''
|
|
853
859
|
if __debug__:
|
|
854
860
|
type_hints = typing.get_type_hints(_typecheckingstub__ad6a5a243d0193849a3ba940cfbd956439268966f2ff08bff1fbcf5af20fe953)
|
|
855
861
|
check_type(argname="argument relational_filter_configurations", value=relational_filter_configurations, expected_type=type_hints["relational_filter_configurations"])
|
|
862
|
+
check_type(argname="argument auto_import_data_quality_result", value=auto_import_data_quality_result, expected_type=type_hints["auto_import_data_quality_result"])
|
|
856
863
|
check_type(argname="argument data_access_role", value=data_access_role, expected_type=type_hints["data_access_role"])
|
|
857
864
|
self._values: typing.Dict[builtins.str, typing.Any] = {
|
|
858
865
|
"relational_filter_configurations": relational_filter_configurations,
|
|
859
866
|
}
|
|
867
|
+
if auto_import_data_quality_result is not None:
|
|
868
|
+
self._values["auto_import_data_quality_result"] = auto_import_data_quality_result
|
|
860
869
|
if data_access_role is not None:
|
|
861
870
|
self._values["data_access_role"] = data_access_role
|
|
862
871
|
|
|
@@ -872,6 +881,17 @@ class CfnDataSource(
|
|
|
872
881
|
assert result is not None, "Required property 'relational_filter_configurations' is missing"
|
|
873
882
|
return typing.cast(typing.Union[_IResolvable_da3f097b, typing.List[typing.Union[_IResolvable_da3f097b, "CfnDataSource.RelationalFilterConfigurationProperty"]]], result)
|
|
874
883
|
|
|
884
|
+
@builtins.property
|
|
885
|
+
def auto_import_data_quality_result(
|
|
886
|
+
self,
|
|
887
|
+
) -> typing.Optional[typing.Union[builtins.bool, _IResolvable_da3f097b]]:
|
|
888
|
+
'''Specifies whether to automatically import data quality metrics as part of the data source run.
|
|
889
|
+
|
|
890
|
+
:see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-datazone-datasource-gluerunconfigurationinput.html#cfn-datazone-datasource-gluerunconfigurationinput-autoimportdataqualityresult
|
|
891
|
+
'''
|
|
892
|
+
result = self._values.get("auto_import_data_quality_result")
|
|
893
|
+
return typing.cast(typing.Optional[typing.Union[builtins.bool, _IResolvable_da3f097b]], result)
|
|
894
|
+
|
|
875
895
|
@builtins.property
|
|
876
896
|
def data_access_role(self) -> typing.Optional[builtins.str]:
|
|
877
897
|
'''The data access role included in the configuration details of the AWS Glue data source.
|
|
@@ -1577,6 +1597,7 @@ class CfnDataSourceProps:
|
|
|
1577
1597
|
)],
|
|
1578
1598
|
|
|
1579
1599
|
# the properties below are optional
|
|
1600
|
+
auto_import_data_quality_result=False,
|
|
1580
1601
|
data_access_role="dataAccessRole"
|
|
1581
1602
|
),
|
|
1582
1603
|
redshift_run_configuration=datazone.CfnDataSource.RedshiftRunConfigurationInputProperty(
|
|
@@ -4835,6 +4856,7 @@ def _typecheckingstub__e39737bda51e6e9e0b04ce2c0598b00c495cf2dad8f53d4761c7a31ec
|
|
|
4835
4856
|
def _typecheckingstub__ad6a5a243d0193849a3ba940cfbd956439268966f2ff08bff1fbcf5af20fe953(
|
|
4836
4857
|
*,
|
|
4837
4858
|
relational_filter_configurations: typing.Union[_IResolvable_da3f097b, typing.Sequence[typing.Union[_IResolvable_da3f097b, typing.Union[CfnDataSource.RelationalFilterConfigurationProperty, typing.Dict[builtins.str, typing.Any]]]]],
|
|
4859
|
+
auto_import_data_quality_result: typing.Optional[typing.Union[builtins.bool, _IResolvable_da3f097b]] = None,
|
|
4838
4860
|
data_access_role: typing.Optional[builtins.str] = None,
|
|
4839
4861
|
) -> None:
|
|
4840
4862
|
"""Type checking stubs"""
|
aws_cdk/aws_dms/__init__.py
CHANGED
|
@@ -5054,7 +5054,7 @@ class CfnEndpoint(
|
|
|
5054
5054
|
|
|
5055
5055
|
:param after_connect_script: For use with change data capture (CDC) only, this attribute has AWS DMS bypass foreign keys and user triggers to reduce the time it takes to bulk load data. Example: ``afterConnectScript=SET session_replication_role='replica'``
|
|
5056
5056
|
:param babelfish_database_name: The Babelfish for Aurora PostgreSQL database name for the endpoint.
|
|
5057
|
-
:param capture_ddls: To capture DDL events, AWS DMS creates various artifacts in the PostgreSQL database when the task starts. You can later remove these artifacts.
|
|
5057
|
+
:param capture_ddls: To capture DDL events, AWS DMS creates various artifacts in the PostgreSQL database when the task starts. You can later remove these artifacts. If this value is set to ``True`` , you don't have to create tables or triggers on the source database.
|
|
5058
5058
|
:param database_mode: Specifies the default behavior of the replication's handling of PostgreSQL- compatible endpoints that require some additional configuration, such as Babelfish endpoints.
|
|
5059
5059
|
:param ddl_artifacts_schema: The schema in which the operational DDL database artifacts are created. The default value is ``public`` . Example: ``ddlArtifactsSchema=xyzddlschema;``
|
|
5060
5060
|
:param execute_timeout: Sets the client statement timeout for the PostgreSQL instance, in seconds. The default value is 60 seconds. Example: ``executeTimeout=100;``
|
|
@@ -5177,9 +5177,7 @@ class CfnEndpoint(
|
|
|
5177
5177
|
|
|
5178
5178
|
You can later remove these artifacts.
|
|
5179
5179
|
|
|
5180
|
-
|
|
5181
|
-
|
|
5182
|
-
If this value is set to ``N`` , you don't have to create tables or triggers on the source database.
|
|
5180
|
+
If this value is set to ``True`` , you don't have to create tables or triggers on the source database.
|
|
5183
5181
|
|
|
5184
5182
|
:see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-dms-endpoint-postgresqlsettings.html#cfn-dms-endpoint-postgresqlsettings-captureddls
|
|
5185
5183
|
'''
|