aws-cdk-lib 2.138.0__py3-none-any.whl → 2.139.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of aws-cdk-lib might be problematic. Click here for more details.

Files changed (37) hide show
  1. aws_cdk/_jsii/__init__.py +1 -1
  2. aws_cdk/_jsii/{aws-cdk-lib@2.138.0.jsii.tgz → aws-cdk-lib@2.139.1.jsii.tgz} +0 -0
  3. aws_cdk/aws_apigateway/__init__.py +29 -16
  4. aws_cdk/aws_appconfig/__init__.py +289 -44
  5. aws_cdk/aws_appintegrations/__init__.py +55 -6
  6. aws_cdk/aws_autoscaling/__init__.py +62 -60
  7. aws_cdk/aws_backup/__init__.py +34 -42
  8. aws_cdk/aws_batch/__init__.py +9 -3
  9. aws_cdk/aws_bedrock/__init__.py +4144 -0
  10. aws_cdk/aws_cloudwatch/__init__.py +120 -0
  11. aws_cdk/aws_datazone/__init__.py +22 -0
  12. aws_cdk/aws_dms/__init__.py +2 -4
  13. aws_cdk/aws_ec2/__init__.py +123 -84
  14. aws_cdk/aws_ecr/__init__.py +630 -0
  15. aws_cdk/aws_ecs/__init__.py +121 -19
  16. aws_cdk/aws_efs/__init__.py +592 -0
  17. aws_cdk/aws_elasticloadbalancingv2/__init__.py +23 -8
  18. aws_cdk/aws_events_targets/__init__.py +17 -4
  19. aws_cdk/aws_kms/__init__.py +44 -0
  20. aws_cdk/aws_lambda/__init__.py +9 -0
  21. aws_cdk/aws_oam/__init__.py +204 -0
  22. aws_cdk/aws_rds/__init__.py +15 -11
  23. aws_cdk/aws_redshiftserverless/__init__.py +157 -0
  24. aws_cdk/aws_securitylake/__init__.py +160 -105
  25. aws_cdk/aws_ses_actions/__init__.py +155 -0
  26. aws_cdk/aws_ssm/__init__.py +5 -2
  27. aws_cdk/aws_timestream/__init__.py +1045 -0
  28. aws_cdk/aws_transfer/__init__.py +15 -6
  29. aws_cdk/aws_wisdom/__init__.py +2 -2
  30. aws_cdk/custom_resources/__init__.py +440 -0
  31. aws_cdk/cx_api/__init__.py +17 -0
  32. {aws_cdk_lib-2.138.0.dist-info → aws_cdk_lib-2.139.1.dist-info}/METADATA +1 -1
  33. {aws_cdk_lib-2.138.0.dist-info → aws_cdk_lib-2.139.1.dist-info}/RECORD +37 -37
  34. {aws_cdk_lib-2.138.0.dist-info → aws_cdk_lib-2.139.1.dist-info}/LICENSE +0 -0
  35. {aws_cdk_lib-2.138.0.dist-info → aws_cdk_lib-2.139.1.dist-info}/NOTICE +0 -0
  36. {aws_cdk_lib-2.138.0.dist-info → aws_cdk_lib-2.139.1.dist-info}/WHEEL +0 -0
  37. {aws_cdk_lib-2.138.0.dist-info → aws_cdk_lib-2.139.1.dist-info}/top_level.txt +0 -0
@@ -2875,6 +2875,9 @@ class CfnAnomalyDetector(
2875
2875
  name="name",
2876
2876
  value="value"
2877
2877
  )],
2878
+ metric_characteristics=cloudwatch.CfnAnomalyDetector.MetricCharacteristicsProperty(
2879
+ periodic_spikes=False
2880
+ ),
2878
2881
  metric_math_anomaly_detector=cloudwatch.CfnAnomalyDetector.MetricMathAnomalyDetectorProperty(
2879
2882
  metric_data_queries=[cloudwatch.CfnAnomalyDetector.MetricDataQueryProperty(
2880
2883
  id="id",
@@ -2927,6 +2930,7 @@ class CfnAnomalyDetector(
2927
2930
  *,
2928
2931
  configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union["CfnAnomalyDetector.ConfigurationProperty", typing.Dict[builtins.str, typing.Any]]]] = None,
2929
2932
  dimensions: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Sequence[typing.Union[_IResolvable_da3f097b, typing.Union["CfnAnomalyDetector.DimensionProperty", typing.Dict[builtins.str, typing.Any]]]]]] = None,
2933
+ metric_characteristics: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union["CfnAnomalyDetector.MetricCharacteristicsProperty", typing.Dict[builtins.str, typing.Any]]]] = None,
2930
2934
  metric_math_anomaly_detector: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union["CfnAnomalyDetector.MetricMathAnomalyDetectorProperty", typing.Dict[builtins.str, typing.Any]]]] = None,
2931
2935
  metric_name: typing.Optional[builtins.str] = None,
2932
2936
  namespace: typing.Optional[builtins.str] = None,
@@ -2938,6 +2942,7 @@ class CfnAnomalyDetector(
2938
2942
  :param id: Construct identifier for this resource (unique in its scope).
2939
2943
  :param configuration: Specifies details about how the anomaly detection model is to be trained, including time ranges to exclude when training and updating the model. The configuration can also include the time zone to use for the metric.
2940
2944
  :param dimensions: The dimensions of the metric associated with the anomaly detection band.
2945
+ :param metric_characteristics: Use this object to include parameters to provide information about your metric to CloudWatch to help it build more accurate anomaly detection models. Currently, it includes the ``PeriodicSpikes`` parameter.
2941
2946
  :param metric_math_anomaly_detector: The CloudWatch metric math expression for this anomaly detector.
2942
2947
  :param metric_name: The name of the metric associated with the anomaly detection band.
2943
2948
  :param namespace: The namespace of the metric associated with the anomaly detection band.
@@ -2951,6 +2956,7 @@ class CfnAnomalyDetector(
2951
2956
  props = CfnAnomalyDetectorProps(
2952
2957
  configuration=configuration,
2953
2958
  dimensions=dimensions,
2959
+ metric_characteristics=metric_characteristics,
2954
2960
  metric_math_anomaly_detector=metric_math_anomaly_detector,
2955
2961
  metric_name=metric_name,
2956
2962
  namespace=namespace,
@@ -3039,6 +3045,24 @@ class CfnAnomalyDetector(
3039
3045
  check_type(argname="argument value", value=value, expected_type=type_hints["value"])
3040
3046
  jsii.set(self, "dimensions", value)
3041
3047
 
3048
+ @builtins.property
3049
+ @jsii.member(jsii_name="metricCharacteristics")
3050
+ def metric_characteristics(
3051
+ self,
3052
+ ) -> typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnAnomalyDetector.MetricCharacteristicsProperty"]]:
3053
+ '''Use this object to include parameters to provide information about your metric to CloudWatch to help it build more accurate anomaly detection models.'''
3054
+ return typing.cast(typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnAnomalyDetector.MetricCharacteristicsProperty"]], jsii.get(self, "metricCharacteristics"))
3055
+
3056
+ @metric_characteristics.setter
3057
+ def metric_characteristics(
3058
+ self,
3059
+ value: typing.Optional[typing.Union[_IResolvable_da3f097b, "CfnAnomalyDetector.MetricCharacteristicsProperty"]],
3060
+ ) -> None:
3061
+ if __debug__:
3062
+ type_hints = typing.get_type_hints(_typecheckingstub__730fad039b3befd0235c3dce81008e3d9f65ab635fe956e8ed48f3ba7060aaba)
3063
+ check_type(argname="argument value", value=value, expected_type=type_hints["value"])
3064
+ jsii.set(self, "metricCharacteristics", value)
3065
+
3042
3066
  @builtins.property
3043
3067
  @jsii.member(jsii_name="metricMathAnomalyDetector")
3044
3068
  def metric_math_anomaly_detector(
@@ -3272,6 +3296,65 @@ class CfnAnomalyDetector(
3272
3296
  k + "=" + repr(v) for k, v in self._values.items()
3273
3297
  )
3274
3298
 
3299
+ @jsii.data_type(
3300
+ jsii_type="aws-cdk-lib.aws_cloudwatch.CfnAnomalyDetector.MetricCharacteristicsProperty",
3301
+ jsii_struct_bases=[],
3302
+ name_mapping={"periodic_spikes": "periodicSpikes"},
3303
+ )
3304
+ class MetricCharacteristicsProperty:
3305
+ def __init__(
3306
+ self,
3307
+ *,
3308
+ periodic_spikes: typing.Optional[typing.Union[builtins.bool, _IResolvable_da3f097b]] = None,
3309
+ ) -> None:
3310
+ '''This object includes parameters that you can use to provide information to CloudWatch to help it build more accurate anomaly detection models.
3311
+
3312
+ :param periodic_spikes: Set this parameter to true if values for this metric consistently include spikes that should not be considered to be anomalies. With this set to true, CloudWatch will expect to see spikes that occurred consistently during the model training period, and won't flag future similar spikes as anomalies.
3313
+
3314
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-anomalydetector-metriccharacteristics.html
3315
+ :exampleMetadata: fixture=_generated
3316
+
3317
+ Example::
3318
+
3319
+ # The code below shows an example of how to instantiate this type.
3320
+ # The values are placeholders you should change.
3321
+ from aws_cdk import aws_cloudwatch as cloudwatch
3322
+
3323
+ metric_characteristics_property = cloudwatch.CfnAnomalyDetector.MetricCharacteristicsProperty(
3324
+ periodic_spikes=False
3325
+ )
3326
+ '''
3327
+ if __debug__:
3328
+ type_hints = typing.get_type_hints(_typecheckingstub__782bb184e35a5f89f30dd279aa12cf0d77b7069596cc47017cd113eb386bfa0b)
3329
+ check_type(argname="argument periodic_spikes", value=periodic_spikes, expected_type=type_hints["periodic_spikes"])
3330
+ self._values: typing.Dict[builtins.str, typing.Any] = {}
3331
+ if periodic_spikes is not None:
3332
+ self._values["periodic_spikes"] = periodic_spikes
3333
+
3334
+ @builtins.property
3335
+ def periodic_spikes(
3336
+ self,
3337
+ ) -> typing.Optional[typing.Union[builtins.bool, _IResolvable_da3f097b]]:
3338
+ '''Set this parameter to true if values for this metric consistently include spikes that should not be considered to be anomalies.
3339
+
3340
+ With this set to true, CloudWatch will expect to see spikes that occurred consistently during the model training period, and won't flag future similar spikes as anomalies.
3341
+
3342
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-anomalydetector-metriccharacteristics.html#cfn-cloudwatch-anomalydetector-metriccharacteristics-periodicspikes
3343
+ '''
3344
+ result = self._values.get("periodic_spikes")
3345
+ return typing.cast(typing.Optional[typing.Union[builtins.bool, _IResolvable_da3f097b]], result)
3346
+
3347
+ def __eq__(self, rhs: typing.Any) -> builtins.bool:
3348
+ return isinstance(rhs, self.__class__) and rhs._values == self._values
3349
+
3350
+ def __ne__(self, rhs: typing.Any) -> builtins.bool:
3351
+ return not (rhs == self)
3352
+
3353
+ def __repr__(self) -> str:
3354
+ return "MetricCharacteristicsProperty(%s)" % ", ".join(
3355
+ k + "=" + repr(v) for k, v in self._values.items()
3356
+ )
3357
+
3275
3358
  @jsii.data_type(
3276
3359
  jsii_type="aws-cdk-lib.aws_cloudwatch.CfnAnomalyDetector.MetricDataQueryProperty",
3277
3360
  jsii_struct_bases=[],
@@ -4008,6 +4091,7 @@ class CfnAnomalyDetector(
4008
4091
  name_mapping={
4009
4092
  "configuration": "configuration",
4010
4093
  "dimensions": "dimensions",
4094
+ "metric_characteristics": "metricCharacteristics",
4011
4095
  "metric_math_anomaly_detector": "metricMathAnomalyDetector",
4012
4096
  "metric_name": "metricName",
4013
4097
  "namespace": "namespace",
@@ -4021,6 +4105,7 @@ class CfnAnomalyDetectorProps:
4021
4105
  *,
4022
4106
  configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.ConfigurationProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
4023
4107
  dimensions: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Sequence[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.DimensionProperty, typing.Dict[builtins.str, typing.Any]]]]]] = None,
4108
+ metric_characteristics: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.MetricCharacteristicsProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
4024
4109
  metric_math_anomaly_detector: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.MetricMathAnomalyDetectorProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
4025
4110
  metric_name: typing.Optional[builtins.str] = None,
4026
4111
  namespace: typing.Optional[builtins.str] = None,
@@ -4031,6 +4116,7 @@ class CfnAnomalyDetectorProps:
4031
4116
 
4032
4117
  :param configuration: Specifies details about how the anomaly detection model is to be trained, including time ranges to exclude when training and updating the model. The configuration can also include the time zone to use for the metric.
4033
4118
  :param dimensions: The dimensions of the metric associated with the anomaly detection band.
4119
+ :param metric_characteristics: Use this object to include parameters to provide information about your metric to CloudWatch to help it build more accurate anomaly detection models. Currently, it includes the ``PeriodicSpikes`` parameter.
4034
4120
  :param metric_math_anomaly_detector: The CloudWatch metric math expression for this anomaly detector.
4035
4121
  :param metric_name: The name of the metric associated with the anomaly detection band.
4036
4122
  :param namespace: The namespace of the metric associated with the anomaly detection band.
@@ -4058,6 +4144,9 @@ class CfnAnomalyDetectorProps:
4058
4144
  name="name",
4059
4145
  value="value"
4060
4146
  )],
4147
+ metric_characteristics=cloudwatch.CfnAnomalyDetector.MetricCharacteristicsProperty(
4148
+ periodic_spikes=False
4149
+ ),
4061
4150
  metric_math_anomaly_detector=cloudwatch.CfnAnomalyDetector.MetricMathAnomalyDetectorProperty(
4062
4151
  metric_data_queries=[cloudwatch.CfnAnomalyDetector.MetricDataQueryProperty(
4063
4152
  id="id",
@@ -4106,6 +4195,7 @@ class CfnAnomalyDetectorProps:
4106
4195
  type_hints = typing.get_type_hints(_typecheckingstub__929a09b64f3cc2009ffca4b74d148c42dfbbc7531a49bc66cb58443f8870fba2)
4107
4196
  check_type(argname="argument configuration", value=configuration, expected_type=type_hints["configuration"])
4108
4197
  check_type(argname="argument dimensions", value=dimensions, expected_type=type_hints["dimensions"])
4198
+ check_type(argname="argument metric_characteristics", value=metric_characteristics, expected_type=type_hints["metric_characteristics"])
4109
4199
  check_type(argname="argument metric_math_anomaly_detector", value=metric_math_anomaly_detector, expected_type=type_hints["metric_math_anomaly_detector"])
4110
4200
  check_type(argname="argument metric_name", value=metric_name, expected_type=type_hints["metric_name"])
4111
4201
  check_type(argname="argument namespace", value=namespace, expected_type=type_hints["namespace"])
@@ -4116,6 +4206,8 @@ class CfnAnomalyDetectorProps:
4116
4206
  self._values["configuration"] = configuration
4117
4207
  if dimensions is not None:
4118
4208
  self._values["dimensions"] = dimensions
4209
+ if metric_characteristics is not None:
4210
+ self._values["metric_characteristics"] = metric_characteristics
4119
4211
  if metric_math_anomaly_detector is not None:
4120
4212
  self._values["metric_math_anomaly_detector"] = metric_math_anomaly_detector
4121
4213
  if metric_name is not None:
@@ -4151,6 +4243,19 @@ class CfnAnomalyDetectorProps:
4151
4243
  result = self._values.get("dimensions")
4152
4244
  return typing.cast(typing.Optional[typing.Union[_IResolvable_da3f097b, typing.List[typing.Union[_IResolvable_da3f097b, CfnAnomalyDetector.DimensionProperty]]]], result)
4153
4245
 
4246
+ @builtins.property
4247
+ def metric_characteristics(
4248
+ self,
4249
+ ) -> typing.Optional[typing.Union[_IResolvable_da3f097b, CfnAnomalyDetector.MetricCharacteristicsProperty]]:
4250
+ '''Use this object to include parameters to provide information about your metric to CloudWatch to help it build more accurate anomaly detection models.
4251
+
4252
+ Currently, it includes the ``PeriodicSpikes`` parameter.
4253
+
4254
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-metriccharacteristics
4255
+ '''
4256
+ result = self._values.get("metric_characteristics")
4257
+ return typing.cast(typing.Optional[typing.Union[_IResolvable_da3f097b, CfnAnomalyDetector.MetricCharacteristicsProperty]], result)
4258
+
4154
4259
  @builtins.property
4155
4260
  def metric_math_anomaly_detector(
4156
4261
  self,
@@ -15148,6 +15253,7 @@ def _typecheckingstub__09a2ebaa31c6ab1b46831db515c9eec0f049e129318fe5ad32dd73c9e
15148
15253
  *,
15149
15254
  configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.ConfigurationProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
15150
15255
  dimensions: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Sequence[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.DimensionProperty, typing.Dict[builtins.str, typing.Any]]]]]] = None,
15256
+ metric_characteristics: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.MetricCharacteristicsProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
15151
15257
  metric_math_anomaly_detector: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.MetricMathAnomalyDetectorProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
15152
15258
  metric_name: typing.Optional[builtins.str] = None,
15153
15259
  namespace: typing.Optional[builtins.str] = None,
@@ -15181,6 +15287,12 @@ def _typecheckingstub__aa81b524032f55c8d3aa5c261568d608ed375b489e67451c339cda6df
15181
15287
  """Type checking stubs"""
15182
15288
  pass
15183
15289
 
15290
+ def _typecheckingstub__730fad039b3befd0235c3dce81008e3d9f65ab635fe956e8ed48f3ba7060aaba(
15291
+ value: typing.Optional[typing.Union[_IResolvable_da3f097b, CfnAnomalyDetector.MetricCharacteristicsProperty]],
15292
+ ) -> None:
15293
+ """Type checking stubs"""
15294
+ pass
15295
+
15184
15296
  def _typecheckingstub__f8f418300bad7bba64cba09c0d26246445ca23587310af02c4b72408240a1db4(
15185
15297
  value: typing.Optional[typing.Union[_IResolvable_da3f097b, CfnAnomalyDetector.MetricMathAnomalyDetectorProperty]],
15186
15298
  ) -> None:
@@ -15227,6 +15339,13 @@ def _typecheckingstub__621384455c6fe008d1544e799a687e205dfd7c831d4d16758c94209b7
15227
15339
  """Type checking stubs"""
15228
15340
  pass
15229
15341
 
15342
+ def _typecheckingstub__782bb184e35a5f89f30dd279aa12cf0d77b7069596cc47017cd113eb386bfa0b(
15343
+ *,
15344
+ periodic_spikes: typing.Optional[typing.Union[builtins.bool, _IResolvable_da3f097b]] = None,
15345
+ ) -> None:
15346
+ """Type checking stubs"""
15347
+ pass
15348
+
15230
15349
  def _typecheckingstub__d07af40dc753cdda4381651fa3711189e996a0d1ada4554c36c730242ecee721(
15231
15350
  *,
15232
15351
  id: builtins.str,
@@ -15289,6 +15408,7 @@ def _typecheckingstub__929a09b64f3cc2009ffca4b74d148c42dfbbc7531a49bc66cb58443f8
15289
15408
  *,
15290
15409
  configuration: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.ConfigurationProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
15291
15410
  dimensions: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Sequence[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.DimensionProperty, typing.Dict[builtins.str, typing.Any]]]]]] = None,
15411
+ metric_characteristics: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.MetricCharacteristicsProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
15292
15412
  metric_math_anomaly_detector: typing.Optional[typing.Union[_IResolvable_da3f097b, typing.Union[CfnAnomalyDetector.MetricMathAnomalyDetectorProperty, typing.Dict[builtins.str, typing.Any]]]] = None,
15293
15413
  metric_name: typing.Optional[builtins.str] = None,
15294
15414
  namespace: typing.Optional[builtins.str] = None,
@@ -112,6 +112,7 @@ class CfnDataSource(
112
112
  )],
113
113
 
114
114
  # the properties below are optional
115
+ auto_import_data_quality_result=False,
115
116
  data_access_role="dataAccessRole"
116
117
  ),
117
118
  redshift_run_configuration=datazone.CfnDataSource.RedshiftRunConfigurationInputProperty(
@@ -558,6 +559,7 @@ class CfnDataSource(
558
559
  )],
559
560
 
560
561
  # the properties below are optional
562
+ auto_import_data_quality_result=False,
561
563
  data_access_role="dataAccessRole"
562
564
  ),
563
565
  redshift_run_configuration=datazone.CfnDataSource.RedshiftRunConfigurationInputProperty(
@@ -810,6 +812,7 @@ class CfnDataSource(
810
812
  jsii_struct_bases=[],
811
813
  name_mapping={
812
814
  "relational_filter_configurations": "relationalFilterConfigurations",
815
+ "auto_import_data_quality_result": "autoImportDataQualityResult",
813
816
  "data_access_role": "dataAccessRole",
814
817
  },
815
818
  )
@@ -818,11 +821,13 @@ class CfnDataSource(
818
821
  self,
819
822
  *,
820
823
  relational_filter_configurations: typing.Union[_IResolvable_da3f097b, typing.Sequence[typing.Union[_IResolvable_da3f097b, typing.Union["CfnDataSource.RelationalFilterConfigurationProperty", typing.Dict[builtins.str, typing.Any]]]]],
824
+ auto_import_data_quality_result: typing.Optional[typing.Union[builtins.bool, _IResolvable_da3f097b]] = None,
821
825
  data_access_role: typing.Optional[builtins.str] = None,
822
826
  ) -> None:
823
827
  '''The configuration details of the AWS Glue data source.
824
828
 
825
829
  :param relational_filter_configurations: The relational filter configurations included in the configuration details of the AWS Glue data source.
830
+ :param auto_import_data_quality_result: Specifies whether to automatically import data quality metrics as part of the data source run.
826
831
  :param data_access_role: The data access role included in the configuration details of the AWS Glue data source.
827
832
 
828
833
  :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-datazone-datasource-gluerunconfigurationinput.html
@@ -847,16 +852,20 @@ class CfnDataSource(
847
852
  )],
848
853
 
849
854
  # the properties below are optional
855
+ auto_import_data_quality_result=False,
850
856
  data_access_role="dataAccessRole"
851
857
  )
852
858
  '''
853
859
  if __debug__:
854
860
  type_hints = typing.get_type_hints(_typecheckingstub__ad6a5a243d0193849a3ba940cfbd956439268966f2ff08bff1fbcf5af20fe953)
855
861
  check_type(argname="argument relational_filter_configurations", value=relational_filter_configurations, expected_type=type_hints["relational_filter_configurations"])
862
+ check_type(argname="argument auto_import_data_quality_result", value=auto_import_data_quality_result, expected_type=type_hints["auto_import_data_quality_result"])
856
863
  check_type(argname="argument data_access_role", value=data_access_role, expected_type=type_hints["data_access_role"])
857
864
  self._values: typing.Dict[builtins.str, typing.Any] = {
858
865
  "relational_filter_configurations": relational_filter_configurations,
859
866
  }
867
+ if auto_import_data_quality_result is not None:
868
+ self._values["auto_import_data_quality_result"] = auto_import_data_quality_result
860
869
  if data_access_role is not None:
861
870
  self._values["data_access_role"] = data_access_role
862
871
 
@@ -872,6 +881,17 @@ class CfnDataSource(
872
881
  assert result is not None, "Required property 'relational_filter_configurations' is missing"
873
882
  return typing.cast(typing.Union[_IResolvable_da3f097b, typing.List[typing.Union[_IResolvable_da3f097b, "CfnDataSource.RelationalFilterConfigurationProperty"]]], result)
874
883
 
884
+ @builtins.property
885
+ def auto_import_data_quality_result(
886
+ self,
887
+ ) -> typing.Optional[typing.Union[builtins.bool, _IResolvable_da3f097b]]:
888
+ '''Specifies whether to automatically import data quality metrics as part of the data source run.
889
+
890
+ :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-datazone-datasource-gluerunconfigurationinput.html#cfn-datazone-datasource-gluerunconfigurationinput-autoimportdataqualityresult
891
+ '''
892
+ result = self._values.get("auto_import_data_quality_result")
893
+ return typing.cast(typing.Optional[typing.Union[builtins.bool, _IResolvable_da3f097b]], result)
894
+
875
895
  @builtins.property
876
896
  def data_access_role(self) -> typing.Optional[builtins.str]:
877
897
  '''The data access role included in the configuration details of the AWS Glue data source.
@@ -1577,6 +1597,7 @@ class CfnDataSourceProps:
1577
1597
  )],
1578
1598
 
1579
1599
  # the properties below are optional
1600
+ auto_import_data_quality_result=False,
1580
1601
  data_access_role="dataAccessRole"
1581
1602
  ),
1582
1603
  redshift_run_configuration=datazone.CfnDataSource.RedshiftRunConfigurationInputProperty(
@@ -4835,6 +4856,7 @@ def _typecheckingstub__e39737bda51e6e9e0b04ce2c0598b00c495cf2dad8f53d4761c7a31ec
4835
4856
  def _typecheckingstub__ad6a5a243d0193849a3ba940cfbd956439268966f2ff08bff1fbcf5af20fe953(
4836
4857
  *,
4837
4858
  relational_filter_configurations: typing.Union[_IResolvable_da3f097b, typing.Sequence[typing.Union[_IResolvable_da3f097b, typing.Union[CfnDataSource.RelationalFilterConfigurationProperty, typing.Dict[builtins.str, typing.Any]]]]],
4859
+ auto_import_data_quality_result: typing.Optional[typing.Union[builtins.bool, _IResolvable_da3f097b]] = None,
4838
4860
  data_access_role: typing.Optional[builtins.str] = None,
4839
4861
  ) -> None:
4840
4862
  """Type checking stubs"""
@@ -5054,7 +5054,7 @@ class CfnEndpoint(
5054
5054
 
5055
5055
  :param after_connect_script: For use with change data capture (CDC) only, this attribute has AWS DMS bypass foreign keys and user triggers to reduce the time it takes to bulk load data. Example: ``afterConnectScript=SET session_replication_role='replica'``
5056
5056
  :param babelfish_database_name: The Babelfish for Aurora PostgreSQL database name for the endpoint.
5057
- :param capture_ddls: To capture DDL events, AWS DMS creates various artifacts in the PostgreSQL database when the task starts. You can later remove these artifacts. The default value is ``true`` . If this value is set to ``N`` , you don't have to create tables or triggers on the source database.
5057
+ :param capture_ddls: To capture DDL events, AWS DMS creates various artifacts in the PostgreSQL database when the task starts. You can later remove these artifacts. If this value is set to ``True`` , you don't have to create tables or triggers on the source database.
5058
5058
  :param database_mode: Specifies the default behavior of the replication's handling of PostgreSQL- compatible endpoints that require some additional configuration, such as Babelfish endpoints.
5059
5059
  :param ddl_artifacts_schema: The schema in which the operational DDL database artifacts are created. The default value is ``public`` . Example: ``ddlArtifactsSchema=xyzddlschema;``
5060
5060
  :param execute_timeout: Sets the client statement timeout for the PostgreSQL instance, in seconds. The default value is 60 seconds. Example: ``executeTimeout=100;``
@@ -5177,9 +5177,7 @@ class CfnEndpoint(
5177
5177
 
5178
5178
  You can later remove these artifacts.
5179
5179
 
5180
- The default value is ``true`` .
5181
-
5182
- If this value is set to ``N`` , you don't have to create tables or triggers on the source database.
5180
+ If this value is set to ``True`` , you don't have to create tables or triggers on the source database.
5183
5181
 
5184
5182
  :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-dms-endpoint-postgresqlsettings.html#cfn-dms-endpoint-postgresqlsettings-captureddls
5185
5183
  '''